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Abstract

Let D be a 2-strongly connected directed graph of order p > 3. Suppose that
d(x) > p for every vertex x € V(D) \ {zo}, where x( is a vertex of D. In this paper, we
show that if D is Hamiltonian or d(z¢) > 2(p — 1)/5, then D contains a Hamiltonian
path, in which the initial vertex dominates the terminal vertex.
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1. Introduction

In this paper, we consider finite digraphs (directed graphs) without loops and multiple arcs.
Every cycle and path are assumed to be simple and directed. We shall assume that the reader
is familiar with the standard terminology on digraphs and refer the reader to [1]. A cycle
(path) in a digraph D passing through all the vertices of D is called Hamiltonian. A digraph
containing a Hamiltonian cycle is called a Hamiltonian digraph. A Hamiltonian path in a
digraph D in which the initial vertex dominates the terminal vertex is called a Hamiltonian
bypass. There are numerous sufficient conditions for the existence of a Hamiltonian cycle in
digraphs (see, e.g., [1, 2, 3]). It is natural to consider an analogous problem for the existence
of a Hamiltonian bypass.

It was proved in [4] - [9] that a number of sufficient conditions for a digraph to be Hamil-
tonian is also sufficient for a digraph to contain a Hamiltonian bypass (with some exceptions
which are characterized). In particular, Theorems 1.4 and 1.5 were proved in [5] and [6],
respectively. To formulate these theorems, we need the following definitions.

Definition 1: Let Dy denote any digraph of order p > 3, p is odd, such that V (Dy) = AUB,
where ANB =0, A is an independent set with (p+1)/2 vertices, B is a set of (p—1)/2 ver-
tices inducing an arbitrary subdigraph, and Dy contains all the possible arcs between A and B.

Definition 2: For any k € [1,p — 2] let D, denote a digraph of order p > 3, obtained
from K, and K, by identifying a vertex of the first with a vertex of the second.
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Definition 3: By Ty we denote a tournament of order 5 with vertex set {x1,xs, x3,24,y}
and arc set {x;x;y1 |i € [1,3]} U{zyz1, 21y, 3y, YyTo, Y2s, T123, ToTa}.

Theorem 1: (Benhocine [5]). Let D be a 2-strong digraph of order p with minimum degree
at least p — 1. Then D contains a Hamiltonian bypass, unless D 1is isomorphic to a digraph

of type Dy.

Theorem 2: (Darbinyan [6]). Let D be a strong digraph of order p > 3. Suppose that
d(x) +d(y) > 2p — 2 for every pair of non-adjacent vertices x, y of V(D). Then D contains
a Hamiltonian bypass, unless D is isomorphic to a digraph of the set Do U {Dp_j 1, T5, Cs}.

The author [10] proved the following results.
Theorem 3: (Darbinyan [10]). For every integer p > 8 there is a 2-strong non-Hamiltonian
digraph of order p, which has p — 1 vertices of degrees at least p.

Theorem 4: (Darbinyan [9]). Let D be a 2-strong digraph of order p > 3 with the mini-
mum degree at least p—4. If p—1 vertices of D have degrees at least p, then D is Hamiltonian.

Theorem 5: (Darbinyan [10]). Let D be a strong digraph of order p > 3. Suppose that
d(xz) +d(y) > 2p — 1 for every pair of non-adjacent vertices x,y € V(D) \ {20}, where zy is
some vertex in V(D). Then D contains a cycle of length at least p — 1.

The following corollary follows from Theorem 5.
Corollary 1: Let D be a strong digraph of order p > 3. If p — 1 wvertices of V(D) have
degrees at least p, then D is Hamiltonian or contains a cycle of length p— 1 (in fact, D has
a cycle that contains all the vertices with degrees at least p).

Remark 1: For the proof of Theorem 3, it suffices to consider a digraph H(n) of order
n > 8, which is defined as follows:

V(H(n)) = {$07$17$27'--axn—47ylay2>?/3} and
ACH()) = {11 # 7} U {@iis [0 i < n— 4} Uy |19 3,1 <j <n—6)
U{ziz; |1 <j<i<n—4}U{zp_ayi,zn-|l <i<3}U{ziz, 5]1<i<n-T}

U {9€o$n75, Tn—520, Tn—aZ0, xn76mnf4}-

Note that Theorem 3 disproves a conjecture of Thomassen ([2]. Every 3-strong digraph of
order p with minimum degree at least p+ 1 is strongly Hamitonian-connected).

In this paper, we prove the following theorem.
Theorem 6: Let D be a 2-strong digraph of order p > 3. Suppose that d(z) > p for every

vertex x € V(D)\{xo}, where xq is a vertex of D. If D is Hamiltonian or d(z) > 2(p—1)/5,
then D contains a Hamiltonian bypass.
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2. Terminology and Notation

In this paper, we consider finite digraphs without loops and multiple arcs. For a digraph D,
we denote by V(D) the vertex set of D and by A(D) the set of arcs in D. The orderof D is the
number of its vertices. Let x, y be distinct vertices in D. The arc of a digraph D directed from
x to y is denoted by zy (we say that x dominates y). For disjoint subsets A and B of V(D) we
define A(A — B) astheset {xy € E(D) |z € A,y € B}, A(A,B) = A(A — B)UA(B — A).
The notation A — B denotes that every vertex of A dominates every vertex of B. A +— B
means that A — B and there is no arc from a vertex of B to a vertex of A. If z € V(D) and
A = {x}, we write x instead of {z}. The out-neighborhood of a vertex x is the set N*(z) =
{y e V(D) |zy € A(D)} and N~ (z) = {y € V(D) |yz € A(D)} is the in-neighborhood of
x. Similarly, if A C V/(D), then N*(x,A) = {y € A|zy € A(D)} and N~ (2,A4) = {y €
Alyx € A(D)}. The out-degree of x is d*(x) = [NT(x)| and d™ () = [N~ (z)| is the in-degree
of x. Similarly, d*(z, A) = |[N*(z, A)| and d~(z, A) = [N~ (x, A)|. The degree of the vertex
x in D is defined as d(z) = d*(z) + d~ (x) (similarly, d(z, A) = d* (x, A) + d~(z, A)).

The subdigraph of D induced by a subset A of V(D) is denoted by D[A]. The path
(respectively, the cycle) consisting of the distinct vertices xy, s, ..., 2z, (m > 2) and the
arcs x;Tiy1, 1 < i < m — 1 (respectively, z;z;41, 1 <1 <m — 1, and z,,27), is denoted by
T1Tg - -+ Xy, (respectively, xqxg - -« x,21). We say that xixs - - - 2, is a path from zy to x,, or
is an (z1,x,,)-path. The length of a cycle or a path is the number of its arcs. A cycle of
length k, & > 2, is denoted by C}%. For a cycle Cy := x5 - - - £, the subscripts considered
modulo k, i.e., x; = x4 for every s and ¢ such that ¢ = s (mod k). If P is a path containing a
subpath from z to y, we let P[x,y] denote that subpath. Similarly, if C' is a cycle containing
vertices = and y, Clz,y|] denotes the subpath of C' from z to y. For a digraph D of order n,
by D(n,2) = [x12,; x12223 . . . x,] we denote a Hamiltonian path in which the initial vertex
z; dominates the terminal vertex z,,.

A digraph D is strongly connected (or, just, strong) if there exists a path from z to y
and a path from y to x for every pair of distinct vertices z,y. A digraph D is k-strongly
connected (or, k-strong), if |V(D)| > k+ 1 and D[V (D) \ A] is strong for any set A of at
most k£ — 1 vertices. Two distinct vertices x and y of a digraph D are adjacent if xy € A(D)
or yr € A(D) (or both). By K is denoted the complete digraph of order n.

3. Preliminaries

The following well-known simple Lemmas 1-3 are the basis of our results and other theorems
on directed cycles and paths in digraphs. They will be used extensively in the proof of our
result.

Lemma 1: (Héggkvist and Thomassen [12]). Let D be a digraph of order p > 3 con-
taining a cycle C,,, 2 < m < p— 1. Let x be a vertex not contained in this cycle. If
d(xz,V(Cp)) = m+ 1, then for every k, 2 < k < m+ 1, D contains a cycle of length k
including x.

The following lemma is a modification of a lemma by Bondy and Thomassen [13].

Lemma 2: Let D be a digraph of order p > 3 containing a path P = x12o... Ty, 2 < m <
p— 1 and x be a vertex not contained in this path. If one of the following conditions holds:
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(7) d(z,V(P)) > m+2;

(i7) d(x,V(P)) > m+1 and zz1 ¢ A(D) or zy,x ¢ A(D);

(1ii) d(x,V(P)) > m, zx; ¢ A(D) and x,x ¢ A(D);
then there is an i, 1 <i < m — 1, such that x;x,xx;11 € A(D) i.e., T1To. .. T;TTir1 ... Ty
is a path of length m D (we say that x can be inserted into P).

The following lemma is a simple extension of a lemma by Bang-Jensen, Gutin and Li [14].

Lemma 3: Let P = wus...us be a path in a digraph D (possibly, s = 1) and let
Q = v1vy... v be a path (or QQ = vive. .. vy be a cycle) in DIV (D)\V(Q)], t > 2. Suppose
that for each u;, 1 <1i <'s, there is an arc v;vj+; on Q such that vju;, u;vj11 € A(D). Then
there is a (vi,ve)-path (or a cycle) of length t + k — 1 (respectively, t + k), 1 < k <'s, with
vertex set {vy,va, ..., v} U{ug, ug, ..., ug}t.

4. Proofs of the Main Results

Theorem 6: Let D be a 2-strong digraph of order p > 3. Suppose that d(z) > p for every
verter x € V(D)\{xo}, where xy is a vertex of D. If D is Hamiltonian or d(x¢) > 2(p—1)/5,
then D contains a Hamiltonian bypass.

Proof: Suppose, on the contrary, that is D contains no Hamiltonian bypass. We first will
prove the following claim (note that in the proofs of Claim 1 and Case 1, we do not use the
fact that D is 2-strong).

Claim 1: D has no cycle of length | through xo, where l=p—1 orl=p— 2.

Proof: Suppose that the claim is not true. Assume that C,_1 = 2125 . ..

Tp_1x1, Tg € V(Cp_1) and y ¢ V(C,_1). Since D contains no Hamiltonian bypass, for every
i, 1 <i<p-—1, we have d*(y,{z;, x;11}) < 1 and d~(y, {x;, x;11}) < 1. Therefore,

p—1

2d(y) = > (d"(y, {zi, wipr}) + d~ (y, {zi, i1 })) < 2(p — 1),

=1

which contradicts that d(y) > p. Thus, D contains no cycle of length p — 1 through .
Now assume that D contains a cycle of length p — 2 through z¢. Let C,_3 = z125 . ..
Tp_ot1, Tg € V(Cp_2) and z,y ¢ V(Cp_z). Since D contains no cycle of length p — 1
through zo, from Lemma 1 it follows that zy,yz € A(D), d(z,V(Cp—3)) = d(y, V(Cp_2)) =
p — 2 and there is a vertex x; such that the vertices z, z; are not adjacent and the arcs
Ti1x,xxipy are in D. If yx; € A(D), then D(p,2) = [yz;; yxClrig, i), if 2y € A(D),
then D(p,2) = [z;y; Clz;, vi-1]xy], a contradiction. We may therefore assume that z; and
y also are not adjacent. Using this, Lemmas 1, 2 and the fact that D contains no cycle
of length p — 1 througt xy, we obtain that x; = x¢, z; 1y, yr;11 € A(D) and the vertex z
(y) is adjacent to every vertex in V(D) \ {z¢}. Hence, we have that if zz; 1o € A(D), then
D(p,2) = [yzis1; yrClrite, i41]], a contradiction. If xx; 1o ¢ A(D), then z;_sx € A(D) and
D(p,2) = [xi—1y; Clxi—1, i—2)xy], a contradiction. Claim 1 is proved. o

Now, we divide the proof into two cases to consider.
Case 1. D is Hamiltonian.
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Let C, = z122 ... 2,21 be a Hamiltonian cycle in D. Since D contains no Hamiltonian
bypass, we have that z;,12; ¢ A(D) for every i, 1 <1i < p. Using this, it is not difficult to
check that if p < 6, then D contains a Hamiltonian bypass. We may therefore assume that
p=T.

Claim 2: If xo # x;.1, then the vertices x; and x;1o are not adjasent, where 1 <1i < p.
Proof: Suppose, on the contrary, that is for some 7, 1 < i < p, xg # x;41 and the vertices
Z;, Tiyo are adjasent. Without loss of generality we may assume that ¢ = 1. Since xg # x3,
we have d(z3) > p and, by Claim 1, zj25 ¢ A(D). Hence, z3x1 € A(D). It is clear that
xo # %1 or T # x3. This together with Claim 1 implies that z,xo ¢ A(D) or xzoz4 ¢ A(D).
Since there is no (z3, x;)-Hamiltonian path, using Lemma 2(ii) , we obtain that

d(z9, V(D) \ {z2}) = d(zg, {z1, 23}) + d(w2, V(D) \ {71, 72, 23}) <2+p—-3=p—1,

which contradicts that d(zq) > p. o

It is not difficult to show that there are two distinct vertices x; and x;,; such that
Tikr; € A(D) and xg & {Ti11, Tivo, ..., Tizg_1}. We may assume that k is chosen so that
k is the smallest possible. Without loss of generality we may assume that ¢ = 1. Then
d~(x1,{x2,x3,...,2x}) = 0. From Claim 2 it follows that 3 <k <p — 2.

Assume first k = 3, i.e., 2421 € A(D). By Claim 2, the vertices z5 and x4 (z; and x3)
are not adjacent since zg ¢ {x2,x3}. Now from z;1z; ¢ A(D), d(z2) > p and d(z3) > p it
follows that

d(za, {z5, 26,...,2p}) > p—2 and d(xs,{zs5,26,...,2,}) >p—2.

Hence, by Lemma 2, the vertex x2 (z3) can be inserted into x5z . ..x,. Then, by Lemma 3,
there is an (x4, x;)-Hamiltonian path, which is a contradiction as x4z, € A(D).

Assume next that £ > 4. By Claim 2, the vertices z; and x;,5, where 1 <i < k — 1 are
not adjacent. From the minimality of & it follows that if 1 <7 < j < k+1, then z;z;, € A(D)
if and only if j = k+1 and ¢ = 1. From the minimality of £ > 4 and Claim 1 it follows that
for each z; € {1, 29, ..., 2k 2},

d(wi, {wit2, Tirs}) = d(@p-1, {zps1}) = 0. (1)

Also we need to show the following claim.

Claim 3: Suppose that 1 < i < j—1 < k. Then z,x; € A(D) if and only if i = 1 and
j=k+1.

Proof: For a proof by contradiction, suppose that z,,z, € A(D), where 1 <m <n—1<k
and m # 1 orn # k+1. Without loss of generality, we may assume that n—m is the minimum
possible. From (1) it follows that n —m > 4, i.e., {Zms1,...,Zn-1}| =n—m —1> 3. Note
that R := 2, 2n,Tpy1 ... TpT122 . .. Ty, s a cycle of length p —n +m + 1 < p — 3 through .
By the minimality of k& and n — m, for every y € {z;,11,...,T,_1} we have

Ay, {Tms1, - Tpn_1}t) <2 and d(y,V(R)) >p—2.

Therefore, by Lemma 1, every vertex y € {x;11,...,Zn_1} can be inserted into R. Now
using Lemma 3, we obtain a cycle of length p — 1 through xy, which contradicts Claim 1.
From Claim 3 and the minimality of £ > 4 it follows that

d(.ﬁUg, {x27 T3, ... 7[L'k}) = d(xkv {[L‘Q,Z)ﬂ'g, s ,.Z'k}) =1
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and for every i, 3 <i < k — 1, d(x;,{xa, x3,...,2x}) = 2. Therefore, d(x;,V(Q)) > p — 2,
where 2 < i < k and Q := Tp41%42 ... T,21. Note that |[V(Q)| =p—k+1. If £ > 5, then
V(Q)| < p—4, and, by Lemma 2(i), every vertex z;, 2 < i < k, can be inserted into Q. If
k =4, then |[V(Q)| = p—3, d(z2,V(Q)) > p—1, d(z4,V(Q)) > p—1 and d(z3, V(Q)) > p—2.
Since d(x3, {1, z5}) = 0, again using Lemma 2, we obtain that each vertex z; € {xq, x3, 24}
can be inserted into (). Therefore, by Lemma 3, there is an (xjy1,x;)-Hamiltonian path,
which contradicts our initial supposition since zxz; € A(D). The discussion of Case 1 is
completed.

Case 2. D is not Hamiltonian.

(*) Observe that by Claime 1, in this case every cycle through zy in D has length at
most p — 3.

Then, by Corollary 1, D contains a cycle of length p — 1. Let C,_1 = 2122 .. 2,121 be
a cycle of length p — 1 in D. By Claim 1, zy € V(C,_1). For this case, we first give the
following claim and lemma.
Claim 4: Let P := x1x5... 2,1 be an (x1,x,-1)-path of length p— 2 through xy in D. Then
r1x,-1 ¢ A(D).
Proof: For a proof by contradiction, suppose that zyz,_; € A(D). Let x ¢ V(P). Then
d(x) > p since x # xy. Since D contains no Hamiltonian bypass, it follows that x cannot be
inserted into P. Now using Lemma 2(i) and d(x) > p, we obtain that z,_2 and zz; € A(D).
Therefore, x122 ... z,_122; is a Hamiltonian cycle in D, which contradicts the hypothesis of
this case.
Lemma 4: D contains no cycle of length p — 3 through x.
Proof: Suppose that the lemma is not true. Let C':= x125 ...
Tp_sox1 be a cycle of length p — 3 through z¢ in D and let B := V(D) \ V(C). By Claim
1, D contains no cycle of length p — 1 and p — 2 through xy. This together with Lemma 1
implies that for every y € B,

p<d(y) =d(y,V(C)) +d(y, B) < p—3+d(y,B).

Therefore, d(y, B) > 3. This implies that D[B] is Hamiltonian since |B| = 3, in particular,
D[B] is strong.

We now consider the folowing two cases.

Case (a). There exists a vertex y € B, which is adjacent to every vertex x; for all i,
1<i:<p—4.

Let yuzy be a Hamiltonian cycle in D[B].

If y and z( are adjacent then using the observation (*), it is not difficult to show that
either d~(y,V(C)) = 0 or d*(y,V(C)) = 0. Without loss of generality, we assume that
d*(y,V(C)) =0. Then V(C) — y. This together with Claim 1 implies that A(B — V(C)) =
(), which contradicts that D is 2-strong. We may therefore assume that y and z, are not
adjacent. If 1y € A(D), then {z,xs,..., 2,4} — y. Therefore, A(B — V(C)\ {z:1}) = 0.
This means that D[V(D) \ {x1}] is not strong, i.e., D is not 2-strong, a contradiction.
Now assume that z1y ¢ A(D). Then yz; € A(D) since y and x; are adjacent. Similarly,
zp_gy € A(D). Then by the above observation (*), d(x¢, B) = 0. Let zyy € A(D) with
2 <k <p-—4and k be the minimum possible. It is not dificult to show that

{$k7$k+17 s 737;074} —Yy—= {.1'1,1'2, s wrkfl}-

Assume first that £ < p — 5. Then by Claim 1, d™(z,_4, B) = 0. If 2,42 € A(D), then
D(p,2) = [xp_42; Tp_sTox1 ... Tp_5yuz], a contradiction. Therefore, z, 42z ¢ A(D). Thus,
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d(z,{xo, xp—4}) = 0 and d(z, {x1, 22, ..., 7p_5}) > p—4. Again using Lemma 2(i) and (*), we
obtain that x, 52 € A(D). Therefore, x, 42021 ... 2,52y is a path of length p — 2 through
xo and x,_4y € A(D), which contradicts Claim 4.

Assume next that k = p —4. Then y — {x1,29,...,2,-5}. Hence, if p—5 > 2, then for
the converse digraph of D we have the considered former case. For 4 < p < 6, this completes
the discussion of Case (a).

Case (b). For every y € B there exists a vertex x; with 1 <k < p — 4 such that y and
x) are not adjacent.

To complete the proof of Lemma 4 in this case, we first prove the following claims.
Claim 5: x;_1y ¢ A(D) or yrgs1 ¢ A(D).

Proof: Suppose, on the contrary, that x;_1y € A(D) and yxry € A(D). Note that
d(xy) > p since zy # xo. Using observation (*), we obtain that d(zy, B) = 0. Now consider
the cycle R 1= 2% ... Tp—1YZpy1 - . - Tp_axo of length p — 3 through z,. By Claim 1, x
cannot be inserted into R (for otherwise we obtain a cycle of length p — 2 througth z).
Therefore by Lemma 1, p < d(zy) = d(zx, B) + d(x, V(R)) < p — 3, a contradiction.
Claim 6: (i) If vx_1y € A(D), then xppy ¢ A(D). (ii) If yrr—1 € A(D), then yxpy1 ¢
A(D).

Proof: (i) Suppose that the claim is not true. Then {xp_1,2441} — y. By Claim 5,
yrr1 ¢ A(D). Since y cannot be inserted into the path Clzgi1, xr—1] and yzr 1 ¢ A(D),
from Lemma 2(ii) it follows that d(y, V(C)) = p — 4.

Assume first that there is a vertex xy # x such that y and z, also are not adjacent. Let
s be chosen so that |V (C[xz, x,])| is the minimum possible. Note that x4 ¢ {xg_1, Tr41}.

Write P := Clxgy1, Ts-1] and Py := Clxgyi1, Tx_1]. Then

p—4=d(y,V(C)) =dly,V(P) +d(y, V(P) < |[V(P)|+ [V(R)|+1=p—4

This implies that d(y, V(P1)) = |[V(P)| and d(y, V(P,)) = |V (FP2)| + 1. Now using Lemma
2, we obtain z;_1y € A(D) and yxs11 € A(D). By Claim 5, zy = 29 and d™ (2341, B) =
d(zs, B) = 0. Rcall that zyuz is a Hamiltonian cycle in D[B]. If xxz € A(D), then
D(p,2) = [xxz; Clzg, Tr—1|yuz], a contradiction. Therefore, z and zj, are not adjacent. Now
using Lemma 2, d(z) > p, d(z,{zk,xs}) = 0 and the fact that d(z, {zgs1, Txs2}) = 0, we
obtain xy12 € A(D). Therefore, C|xy1, xk_1]yuz is a path of length p — 2 thruogh z, and
Zpy12 € A(D), which contradicts Claim 4.

Assume next that y is adjacent to every vertex of V(C) \ {zx}. Then by Claim 1,
V(C)\ {z} — y since xp11y € A(D) and yxp1 ¢ A(D). Again using observation (*), we
obtain that A(B — V(C)) = 0, which contradicts that D is 2-strong. This completes the
proof of Claim 6(i).

For the proof of Claim 6(ii), it suffices to consider the converse digraph of D. Claim 6 is

proved. o
Claim 7: If yx,_, € A(D), then xx1y ¢ A(D).
Proof: For a proof by contradiction, suppose that yz,_; € A(D) and zp1y € A(D).
Claim 6 implies that zx_1y ¢ A(D) and yxp ¢ A(D). Since y cannot be inserted into
Clxgy1, Tr—1), using Lemma 2(iii), we obtain d(y, V(C|zri1, zx—1]) < p — 5, which contra-
dicts that d(y, V(C)) > p — 4. Claim 7 is proved. 5

Claim 8: (i) The vertices y and xy11 are adjacent; (ii) The vertices y and xy_1 are adjacent.
Proof: (i) Suppose that the claim is not true, i.e., d(y,{zx, xxr1}) = 0. Write @ :=
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Clxg+2, Tr—1]. Then d(y,V(Q)) = p — 4. Therefore by Lemma 2, yryio € A(D) and
zr—1y € A(D) since y cannot be inserted into Q.

Assume first that 1 # x9. We know that d(zy) > p and d(z441) > p. Using obveration
(*), it is not difficult to show that d(xy, B) = d(zy4+1, B) = 0. Therefore, d(zy, V(Q)) > p—2
and d(zx41, V(Q)) > p— 2. These together with Lemmas 2 and 3 imply that the vertices xy
and xj,1 both can be inserted into ). As a consequence, we obtain a cycle of length p — 2
through xy, which contradicts Claim 1.

Assume next that z5,1 = x9. Then d(zg, B) = d” (x,B) = 0. If 23z € A(D), then
D(p,2) = [xxz; Clzg, Tr—1|yuz], a contradiction. If zu € A(D), then Clxy, xx_1]yz is a path
of length p — 2 through xy and z,u € A(D), which contradicts Claim 4. We may there-
fore assume that d(z,{zg, xx1}) = d(u, {xg, zx11}) = 0. Therefore, d(z,V(Q)) = p — 4,
2x4o and zx_12 € A(D). Now using Claims 1 and 5, we obtain that there is a vertex z
such that {y, z} = V(C[zk42,zs]) and V(C[zs, 2x-1]) — {y, 2}. Whitout loss of generality,
assume that |V (Clzriz,zs])| > 2 (for otherwise we consider the converse digraph of D).
Then D(p,2) = [yzii2; yuzCloiss, Tri2]], a contradiction. This contradiction completes the
proof of Claime 8(i). By the same arguments one can prove Claim 8(ii). Claim 8 is proved.

Now we return to the proof of the lemma. From Claim 8 it follows that y is adjacent to
x_1 and g, 1. Therefore, only the following cases are possible: (i) xy_1y and yx, 1y € A(D),
(1) {zp_1, 2621} — v, (1) v = {xp_1, 211}, (V) 2x1y and yzp_; € A(D). On the other
hand, Claims 5, 6 and 7 imply that none of these cases holds. This contradiction completes
the discussion of Case (b). Lemma 4 is proved. o

Now we are ready to complete the proof of the theorem in Case 2. Since D is not
Hamiltonian, by Corollary 1, D contains a cycle of length p —1. Let R := z129...2p_121 be
a cycle of length p — 1 in D. Then by Claim 1 and Lemma 4, we know xy ¢ V(R) and for
every i, 7, 1 < 1,5 < p— 1 the following hold:

d” (zo, {z:}) + d" (20, {Tis1, Tiva, Tivs, Tiva}) < 1,

d*(zo, {z;}) + d™ (xo, {j—1, Tj_a, Tj_3, j_4}) < 1.

Therefore, d(zg) + 4d*(zo) < p — 1 and 4d (x¢) + d"(z9) < p — 1. These mean that
5d(zg) < 2p — 2, i.e., d(xg) < 2(p — 1)/5, which contradicts that d(z¢) > 2(p — 1)/5. The
theorem is proved. o

Corollary 2: (Benhocine [5]). Every strong digraph D of order p > 3 and with minimum
degree at least p contains D(p,2).

Proof: By the famous theorem of Ghoula-Houri, D is Hamiltonian. Therefore, from the
proof of Theorem 6 in Case (a), it follows that D contains a Hamiltonian bypass.
Perhaps the following proposition will be useful for Conjecture 1 (see, in section Conclu-
sion).

Proposition 1: Let D be a non-Hamiltonian 2-strong digraph of order p > 3. Suppose that
d(z) > p for every vertex x € V(D) \ {xo}, where xq is a vertex of D. If P = x125...%p 2
is an (1, xp—2)-path of length p — 3 through xo in D, then x1x,_o ¢ A(D).
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Proof: For a proof by contradiction, suppose that z1x,_» € A(D). Write V(D) \ V(P) =
{y1,92}. We know that d(y;) > p and d(yy) > p since g € V(P). From Claim 4 it
follows that y; cannot be inserted into P. On the other hand, since D contains no cycle
of length p — 1 through zy, we have that y,xy ¢ A(D) or x, oy; ¢ A(D). Now using
Lemma 2(ii), we obtain d(y;, V(P)) = p — 2 and y1y2, yo11 € A(D). Without loss of
generality, assume that y;21 ¢ A(D). Then by Lemma 2(ii), z,_oy1 € A(D). Since D is not
Hamiltonian and contains no cycle of length p—1 through =, it follows that d~ (x1, {y1, y2}) =
0. Then x, oy € A(D). If z1y; € A(D) (or z1y2 € A(D)), then it is not difficult to show
that D(p,2) = [z1y1;21%2. .. Tp_olath] (or D(p,2) = [X1Y2; X1%2 ... Tp_oy1ye]) is in D, a
contradiction. Therefore, d*(z1,{y1,y2}) = 0. Thus, d(x1,{y1,y2}) = 0. This together with
Lemma 2 and d(y;, V(P)) = p — 2 implies that {y;,y2} — x2. Then by Claim 1, 21 = x
since a3 ... Tp_2Y1Y2T2 is a cycle of length p — 1.

Write @Q := x973...2p_2. Then |V(Q)| =p —3, d(y1,V(Q)) > p — 2 and d(y2, V(Q)) >
p— 2. Since xg — {22, 2,_2}, by Claim 4 we have that neither y; nor y, can be inserted into
Q. Then by Lemma 2(iii), we obtain that d(yi, V(Q)) = d(y2,V(Q)) = p — 2 and the arcs
YoU1, Tp—2Ya, Y1T2 are in A(D).

We claim that the vertex y; (y2) is adjacent to each vertex of V(Q).

Assume that this is not the case. Let d(y1, {z;}) = 0, where 3 < i < p—3. From Lemma
2(iii), d(y1, V(Q)) = p—2 and the fact that the vertex y; cannot be inserted into @ it follows
that x;_1y1, y1zi1 € A(D). Since yoyr, y1y2 € A(D), it is easy to see that d(ye, {z;}) =0
and z; 1Y, y2x;1 € A(D). They imply that the vertex z; can be inserted neither into
S :=xy...x;_1 nor into T := ;41 ... xp_o. Then it is easy to see that d(z;, {zo}) =2 and

p—2<d(x;, V(S)) + d(z:, V(T)) < V() + V(T)[ +2=p—2.

Therefore, d(z;, V(S)) = |[V(S)| + 1 and d(z;, V(T')) = |V(T')| + 1. Again using Lemma 2,
we obtain z,_ox; and z;xy € A(D). Hence, xor;xs ... Ti1y1y2Tit1 - .. Tp_o is an (T, Tp_2)-
Hamiltonian path, a contradiction as z¢z,—o € A(D). This proves that y; (y2) is adjacent
to every vertex in V(Q). Therefore, there is an integer [, 2 < < p — 2, such that

{xlyxl+17 e 7%—2} — {y1, y2} — {902, T3, ... 795l}- (2)

If 3 <1 <p-—3, then by (2), xoxp_2y123 ... Tp_3y222 is an (xo, x2)-Hamiltonian path, which
is a contradiction as xgry € A(D). If l =2 or I = p—2, then A({y1,y2} — V(D) \{z2}) =10
or A(V(D)\ {zp—a} = {y1,y2}) =0 when | = 2 or [ = p — 2, respectively. This means that
D is not 2-strong, a contradiction. Proposition 1 is proved.

5.  Conclusion

In the current article, we examined the existence of a Hamiltonian bypass in 2-strong digraphs
of order p, in which p—1 vertices have degrees at least p. We proved that if such digraphs are
Hamiltohian or have the minimal degree more than 2(p — 1)/5, then such digraphs contain
a Hamiltonian bypass.

If we consider the digraph H(n) (by Remark 1, H(n) is 2-strong, d(zo) = 4 and is not
Hamiltonian), then we see that D(n,2) = [y121; Y1Y2Y3T2T3 . . . Tpn_sTox1] is a Hamiltonian
bypass. By the above arguments, we believe that the following conjecture is true.
Conjecture 1: Let D be a 2-strong digraph of order p. If p — 1 wvertices in V(D) have
degrees at least p, then D contains a Hamiltonian bypass.
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