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Abstract

The problems of intersection and union of spheres of the same radius in Hamming
metric are considered. The formula for number of points in intersection is derived in case
of two spheres. It is proved that three or more spheres of radius R (covering radius of a

code C) centered at points belonging to some quasi-perfect code Cintersect at most at one
point. It is also proved that the increase of cardinality of union of spheres of the same
radius, depending on radius, is a concave function and can have at most one or two
maximum values depending on length.
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1. Introduction

Let E = {0; 1}. Denote by E™ the set of vertices of the unit cube, that is each vector can be
represented as a = (a4, ..., a,), Where a; € E, i = 1, ...,n. For each pair of vectors «, § denote
by d(a, ) the Hamming distance between the vectors aand . For a € E™ denote by S}*(a) the
sphere with centre a and radius r, that is S/ (@) = {8/ € E™,d(a,8) < r}. The carrier of the
vector a € E™ we define as car(a) = {i/a; # 0,i =1, ...,n}. Denote by w(a) the weight of
vector a, that is w(a) = |car(a)|. Denote by N,, the set of the first n natural numbers, i.e.
N, = {1, ...,n}. A code C will be called a subset of E™ [1]. Usually the codes are considered for
which some other additional properties take place such as linearity, cyclicity, etc. In some cases
a problem to find the intersection of k spheres of the fixed radius can arise [2-4]. We will
consider this problem for a simple case, namely when the centers of the spheres belong to a
quasi-perfect code with the covering radius R. Recall that a code C is called quasi perfect [1] if
the following condition holds: R, = 1.+ 1, where R, = maxycgnmin.cd(x,c) and r; =
[(de —1)/2]. The number d. is called a minimum distance of the code C, i.e.d; =
Ming, c,ecc,=c,d(C1, ¢2). We also consider the problem of increase of union of spheres of some
radius depending on the radius. More precisely let us have a set C € E™ and let f.(r) =
|Ugec S? (@) — Ugec Si—1 (a)]. It is important to check [2],[5] if the function f-(r)is concave,
with one or two maximal values depending on n and C.
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2. Intersection of Two Spheres

In the next section we will consider the problem of intersection of k(k > 2) spheresin some
cases, so it is useful at first to consider the case of two spheres.Suppose we have two spheres
with centers « and g and radiir; and r, respectively. We denote the intersection of the
mentioned spheres by I .. (a,B) i.e. I ., (a,B) = Si (a) N SE (B).Itis easy to show that each
case can be reduced to the case when a = 0, therefore furthermore we assume that the
mentioned case takes place. Without losing generality we assume, that r, < ry. It is easy to see
that when r; + 1, < d (where d = d(a, 8)) the considered intersection is empty, so we suppose
that r; + r, = d.We denote the cardinality of intersection by I7, (d). Let us take any vectory

and find out conditions, under which the vector y belongs to the set I ,. (a, ). Let car(y) N
car(B) = y and car(y)\car(B) = x (Figurel).
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In order fory belongs to the intersection, x and yshould satisfy the following system of
inequalities:

x+ysn
{d—x+y£r2.

Let us denote a = [@] Consider the following three cases.

Casea. 0 <r; <d. It is easy to see, that when x < a then r, —x > 1, —d + x and whenx >
athen r, —x <r, —d + x (Fig. 2).
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Therefore

@ =, 5 (01 )+ B B (),

l
In case when r; + r, = d we can write (3) in a S|mpler form:

T+
B = (77,
Caseb. 0 <r, <d,d <r <n.Thiscase, in its turn, is divided into two separate cases:
Subcase b.1. r, > r; — d. By straightforward verification we get that when x < a then r, —x >

r, —d + x and when x > athenr, — x <r, —d + x (Fig. 3).
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Therefore
—_d+ird n—d
12, (d) =30, rzzjio‘”‘(l.)( - )+Z L 275 (4)( i )
Subcase b.2.r, <, — d. In this case we get that r1 —x=r,—m+xwhend —r, < x <d.

Therefore
—d+ifdy(n—d
(@ = S0 S (D) (79
Casec.d <1, <r <n. This case is also divided into two separate cases.

Subcase ¢.1.r; > 1, +d. We getthat when x < athenr, —x >r, —d + x and when x > a
thenr; —x < r, —d + x (Fig. 4).
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Therefore

—d+i rd n—d —ird n—d
1@ =S5 (D () 2ten DS (D ()
Subcase ¢.2.r; <1, + d. In this case we getthat ;, —x >, —d + xwhend —r, < x < d.

Therefore
_wd r—d+i (d\ (mn—d
I;;rz(d) - i=02j2:0 (L) ( ] )

3. Intersection of Spheres Centered at Codewords of Quasi-perfect Code

Suppose we have spheres with radiiry, 15, ..., 1, centered at points a4, a,, ..., a; respectively. Now
we consider the intersection of k(k = 3)spheres with the radius R incase when the centers of
spheres are codewords of any quasi-perfect code. As we mentioned, we can assume that a, = 0.
Proposition 1. Let vectors ay,...,a; becodewords of the quasi-perfect code with an even
minimum distance d = 2t(t > 2), then | N%_; SZ(a;)| = 1 if and only if
l. d(ai,aj) = Zt,l -'ptj,
I.NE, car(a;) = t.
Otherwise, the considered intersection is empty.
Proof. Necessity is obvious let us prove thesufficiency. Note that in this case we haver = t,
r =t — 1. From thecondition d = 2t itfollows that the intersection of the spheres of radius R
centered at the points ay, ..., a,is nonempty only ifd(a; a;) = 2t, i #j. So we get w(ap) = -+ =
w(ay) = 2tand |car(a;) ncar(a;)| =t, i,j = 2,..,k, i #j. Let z € I§(0,q;). From the reasoning
of the previous section it follows that w(z) = t, car(z) S car(a;) and car(z) < car(a;) therefore
there is only z belonging to the intersection.
Now let us have vectors a,, ..., a, which are codewords of any quasi-perfect code with an odd
minimum distance, i.ed, = 2t — 1. This means that the covering radius of the code is R, = t.
Suppose we want to know the intersection of spheres with the radius ¢ centered at ay, ..., a;.AS
we mentioned, consider that a; = 0. Partition the set {2, ..., k} into two nonintersecting subsetsk;
and K, in the following way

. (Kjifw(a;) =2t—-1

Le {KZ if w(a) = 2t
From the condition d, = 2t — 1 follows that the considered intersection is not empty only when
|K;| < 1. Without loosing generality assume that K; = {1}. Let Now we can formulate the
following:

Proposition 2. Let vectors a4, ...,a,be codewords of the quasi-perfect code with an odd
minimum distance d = 2t — 1(t > 2), then| N, SF(a;)| = 1 if and only if

l. d(ai, aj) = 2t,d(a1,aj) =2t—1

I.NE, car(a;) = t.

Otherwise the considered intersection is empty.

Proof. The schema of proof is analogous to proposition 1.

4. Variation Function of Area Size of Sphere System is Concave

Consider an arbitrary « € E™.Then it is easy to check that for a fixed n the function f,(r) =
|S7(a) — S7- 1 ()| is concave. For n odd there are two maximums of f,(r) at (n —1)/2and
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(n+ 1)/2. When n is even, then there is one maximal value at the point n/2.In a generalized
model a number of packed spheres can be considered. Given a subset C € E™ and let f.(r) =
|Ugec S? (@) — Ugec Si—1 (@)]. It is important to check if the function f.(r) is also concave,
with one or two maximal values depending on nand C. A harder generalization will be the case
of different radii but our interest will be restricted to the basic case of one fixed r. There can also
be considered not the spheres but the spherical structures [6].

Consider the case of two vertices, aand . If one of these vectors is the negation of the other,
then: if n is odd, there is one maximum at (n —1)/2 and f.(r) = 0 for r > (n — 1)/2; when
nis even, then fi, gy (1is increasing in interval r <n/2 and fi, ,(r) = 0 when r > n/2. It

reminds to compare the following 2 values: fi, g;(n/2 — 1) = 2 (n/zn_ 1) and fiq5(n/2) =

n . . - .
(n/Z)' It is easy to check that the only maximum accepts at n/2 — 1, just it needs to take into

account that n is even.

Now consider the case of aand £, not opposite in E™. Choose an index i and the variable x; so that
a; = B;. Partition E™ in the direction i, then @ and g belong to one of the parts of E™, let it be the sub-
cube E,’}i;%,. Denote by a‘ and Sthe projections of a and ﬁtoE}}i;%). The areas of our consideration n,
StH@) U SH(B)and SH(a) U SHH(B) — S71(a) U S, (B), can be partitioned in the direction i. In these
two n — 1 dimensional sub-cubes we receive the same pair of vertices:a‘and ', and the radius r in EX =6,
and ¢ and " and the radius r — 1 in E}Z}. In theseterms fiq 5y (1) = f iy g3y () + f g g1y (r = 1. In
fact, we have the same function and the same points for E™~1.If suppose that f is concave, having 1 or 2
maximal values, then this shifted sum will have the same properties.

Now we consider the general case of arbitrary ¢ € E™. Denote by Cy,—, and Cy,—; the partition
compounds of C in direction x;. Let C;'—, and Cy,—,be projections of Cy,_, and Cy,—, in direction x;. In

n

the first step, when r = 1 we receive: in E,’}i;l1 a union of Ugec, _, ST (a@)and Cy—,, and similarly in
=
E};i;%) a union of Ua’ECxi:o St (@) and €y 4. In reality, in dimension n — 1 we have to consider two sets
of vertices — those are basic in that cube and these vertices draw r spheres around, and the projection
vertices that draw r — 1 spheres around. The second set may add some new neighbours to the basic set
produced by the first set. The difficulty to watch these sets concerns the radii difference. To use the
induction hypotheses we have to transform the constructions so that a situation appears, that is standard in
dimension n — 1. For this purpose by an evident note it is sufficient to consider not the basic sets of
vertices but the ones appeared after the first step —(Uaecxi=IS{l (@) U= in ExZ} and

(Uaec,._, ST (@) U Gy —qin EPZL. In this case the basic f will appear as the sum of 2 functions in
i= i

dimension n — 1 by the radius r — 1.

At this stage we have 2 concave functions in n — 1, which have 1 or 2 maximums by the supposition
of induction. It is evident that the sum of functions will increase when functions increase separately, and
that it decreases in part in case of decrease in both of them. Consider the point ¢ of the first decrease in f.
At least one of the sub-functions has its decrease at ¢. Let this be the function at E}'_}. The sensitive part
that initiates this decrease will be the set Cy,_;. The complementary part can’t be sensitive because its
radius is higher in E}Ji;% and its decrease must happen earlier and this will cause the summary decrease
inf. Then, the projection of Cy,_, that appears with the radius r — 1 in E;’l;%) will have the same size in
the next step when the radius is equaltor. This will sufficiently initiate the decrease in the sub-function at
E3b.
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Zkudhugh dbnphuynd uptpwttph hwundwi b dhwynpdwt npny
hunlmpnitiitph Uwuht

Z. “tutnjub
Udthnthnid

TYhunwplhynud £ ZEUdhugh dknphund upbpubph hwndwt b dhwynpdwt YEnkph
quibnt juughpp: PEipJwsd b puwtwdl’ Epynt wwppbp sowpwhnubpnyg ubtpukph
hwwindwt hwudwnp: Ugugnigqus k, np tpkp b wdkjh r ownwynny upbkpubikpp, npnig
ququpltpp yunwiund tu npbk pjuqhjuunwpu) Ynnh, Jupnn kb hwndby
wlktwowwnp Ukl Jhunny (R-p tpdws Ynnph swsjuwt swnwhnt k): Uygugnigws L
twl, np ubbpwibph vhwynpdwt' swnwynhg Jupqus dniulghuyh wép niuh dby
Jud EpYynt dwpuhunid” jujuqus nwpwsnipjut swihnquljuinipinthg:

O HEKOTOPBIX CBOMCTBAX MepeceyeHus U 00bequHeHUs chep B METPUKE
XeMMUHTAa

A. JlanostH
AHHOTaANUA

PaccmarpuBaeTcs mpobiieMa HaXOXKIACHUSI NepecedeHus U oObequHeHus: chep B MeTpuke XeEeMMHHTa.
[IpuBenena dhopmyna Ui ynciaa TOUYEK nepecedeHus st AByx cdep. HokazaHo, uro Tpu u Oomee chepsl
pamuyca R,IEHTpBl KOTOpPBIX TpPUHAIUIEKAT HEKOTOPOMY KBazucoBepiieHHOMY koay C, Moryr
nepecekaTbesi auiib B oHoM Touke (R pamuyc mokpeitust koga C). Takke T0Ka3aHO, YTO BO3pacTaHHe
(yHKIMU 4Hchaa TOYEK B OOBEAMHEHMH HEKOTOPHIX cdep OT paanyca MOXKET WMETb OJMH WU JBa
MaKCHMyMa B 3aBHCHMOCTH OT MEpPBI IIPOCTPAHCTBA.



