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Abstract

Let D be a strong digraph on n = 2m+ 1 > 5 vertices. In this paper we show that
if D contains a cycle of length n —1, then D has also a cycle which contains all vertices
with in-degree and out-degree at least m (unless some extremal cases).
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1. Introduction

The digraph D is hamiltonian if it contains a hamiltonian cycle, i.e. a cycle of length |V (D)|.
A set S of vertices in a digraph D (an undirected graph G) is said to be cyclable in D (in
G) if D (G) contains a cycle through all vertices of S.

There are many well-known conditions which guarantee the cyclability of a set of vertices
in an undirected graph. Most of them can be seen as restrictions of hamiltonian conditions to
the considered set of vertices (See [4, 5, 15, 16, 18]). However, for general digraphs, relatively
few degree conditions are known to guarantee hamiltonisity in digraphs (See [2, 3, 7, 9, 13,
14, 17, 19]). The more general and classical one is the following theorem of M. Meyniel:

Theorem A [13]. If D is a strong digraph of order n > 2 and d(z) + d(y) > 2n — 1 for
all pairs of nonadjacent vertices in D, then D is hamiltonian .

In [8], the first author proved the following:

Theorem B [8]. Let D be a strong digraph of order n > 3. If d(x) + d(y) > 2n — 1 for
any two non-adjacent vertices x,y € V(D) — {20}, where zy is some vertex of D, then D is
hamiltonian or contains a cycle of length n — 1.

The following result is immediately corollary of Theorem B.

Corollary [8]. Let D be a strong digraph of order n > 3. If D has n — 1 vertices of
degree at least n, then D is hamiltonian or contains a cycle of length n — 1.

A Meyniel set M is a subset of V(D) such that d(z) + d(y) > 2n — 1 for every pair of
vertices x, y in M which are nonadjacent in D. In [4], K. A. Berman and X. Liu improved
Theorem B proving the following generalization of the well-known Meyniel’s theorem.

Theorem C [4]. Let D be a digraph of order n. If D is strongly connected, then every
Meyniel set M lies in a cycle.

Theorem C also generalizes the classical theorems A. Ghouila-Houri [11] and D.R. Woodall
[19].
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The digraph D is S-strongly connected if for any pair x,y of distinct vertices of S there
exists a path from z to y and a path from y to z in D (See [12]). H. Li, E. Flandrin and J.
Shu [12] proved the following generalization of Theorem C.

Theorem D [12]|. Let D be a digraph of order n and M be a Meyniel set in D. If D is
M -strongly connected, then D contains a cycle through all vertices of M.

C. Thomassen [17] (for n = 2k + 1) and the first author [7] (for n = 2k) proved the
following:

Theorem E [17, 7|. If D is a digraph of order n > 5 with minimum degree at least
n — 1 and with minimum semi-degree at least n/2 — 1, then D is hamiltonian (unless some
extremal cases which are characterized).

We put a question to know if this result of C. Thomassen and the first author has a
cyclable version.

Let D be a digraph of order n = 2m + 1. A Thomassen set T is a subset of V(D) such
that d*(z) > m and d~(x) > m for every x € T, we denote the vertices of T' by T-vertices.
The cycle containing all vertices of T is called a T-cycle.

In this paper we prove the following two theorems which provide some support for the
above question.

Theorem 1. Let D be a strong digraph of order n =2m+1 > 3 and D contains a cycle
of length n — 1. Then one of the following holds:

1. D contains a cycle containing all vertices with in-degree and out-degree at least m;

1. D s isomorphic to digraphs Ds or Dy or belongs to the set Ly U Lo;

1. K CDCI[Ky+ Knl;

m,m+1 =
iv. D contains a cycle C := x1xs ... Toma1 of lengthn — 1, and if v ¢ V(C) and z is not
adjacent to the vertices xy,, 1, ..., 1y, j >3, then x;, 12, 231,41 € D and N (x) = N*(x,)

and N~ (v) = N~ (ay,) for all i € [1,j]. In particular, {x;,, 2y, ..., 21,2} is an independent
set of vertices.

Theorem 2. Let D be a 2-strong digraph of order n = 2m + 1 > 3. Then any two
T-vertices x and y are on a common cycle in D.

Our proofs are based on the argument of [17, 7].

2. Terminology and Notations

We shall assume that the reader is familiar with the standard terminology on the directed
graphs (digraphs) and refer the reader to monograph of Bang-Jensen and Gutin [1] for
terminology not discussed here. In this paper we consider finite digraphs without loops and
multiple arcs. For a digraph D, we denote by V(D) the vertex set of D and by A(D) the set
of arcsin D. The order |D| of D is the number of its vertices. Often we will write D instead of
A(D) and V(D). The arc of a digraph D directed from z to y is denoted by zy. For disjoint
subsets A and B of V(D) we define A(A — B) as the set {xy € A(D)/z € A,y € B} and
A(A,B)=A(A— B)UA(B — A). lf z € V(D) and A = {x} we write z instead of {z}. If
A and B are two disjoint subsets of V(D) such that every vertex of A dominates every vertex
of B, then we say that A dominates B, denoted by A — B. The subdigraph of D induced
by a subset A of V(D) is denoted by (A). The path (respectively, the cycle) consisting of
the distinct vertices x1, zy, ..., 2, (m > 2) and the arcs z;x;,1, ¢ € [1,m — 1] (respectively,
TiTiyq, 1 € [1,m — 1], and x,,21), is denoted z1x5 - - - z,, (respectively, 125 - - x,21). For a
cycle Cy = x1x9 - - - xxx1, the subscripts considered modulo &, i.e. x; = x5 for every s and
i such that ¢ = s(mod k). If P is a path containing a subpath from z to y we let P[z,y]
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denote that subpath. Similarly, if C' is a cycle containing vertices z and y, C[z,y| denotes
the subpath of C' from x to y. For an undirected graph G, we denote by G* symmetric
digraph obtained from G by replacing every edge xy with the pair xy, yx of arcs. K,
(respectively, K, ,) denotes the complete graph of order n (respectively, complete bipartite
graph with partite sets of cardinalities p and ¢), and K,, denotes the complement of complete
undirected graph of order n. Two distinct vertices x and y are adjacent if xy € A(D) or
yx € A(D) (or both). We denote by a(x,y) the number of arcs between the vertices = and
y. In particular, a(z,y) = 0 (respectively, a(z,y) # 0) means that x and y are not adjacent
(respectively, are adjacent). For integers a and b, a < b, let [a, b] denote the set of all integers
which are not less than a and are not greater than b.

3. Preliminaries

The following well-known simple lemmas are the basis of our results and other theorems on
directed cycles and paths in digraphs. They will be used extensively in the proofs of our
results.

Lemma 1 [10]. Let D be a digraph onn > 3 vertices containing a cycle Cy,, m € [2,n—1].
Let x be a vertex not contained in this cycle. If d(x,Cy,) > m+ 1, then D contains a cycle
Cy for all k € [2,m + 1].

Lemma 2 [6]. Let D be a digraph on n > 3 vertices containing a path P = x1xs ... Ty,
m € [2,n — 1] and let x be a vertex not contained in this path. If one of the following
conditions holds:

(i) d(x, P) > m + 2;

(ii) d(x, P) > m+1 and xxy ¢ D or xp,z1 ¢ D;

(#ii) d(x, P) > m, zxy ¢ D and xpx ¢ D

then there is an i € [1,m — 1] such that z;x,zx;s1 € D, i.e., D contains a path
T1To ... TiTTiv1 ... Ty of length m (we say that x can be inserted into P or the path
T1To ... TiTTiyq ... Ty 1S extended from P with x ).

4. Proof of Theorem 1

Here we prove only Theorem 1 and for it we need the following definitions.

Definition 1. D; is a digraph (see [1, 17]) with the wvertex set V(D7) =
{1, 29,23, 4,5, x,y} such that N*(x1) = {x9, 25,4y}, NT(x9) = {w3,24,y}, NT(x3) =
{x9, 24,2}, Nt (x4) = {23, 25,2}, N"(25) = {z1,2,9}, NT(x) = {21, 29,23} and N*(y) =
{1, 24,25}

Definition 2. Ds is a digraph (see [1, 17]) with the vertex set V(Ds) = {x1, x5, 23,2, y}
such that Nt (z1) = {x2,y}, NT(22) = {x3,2}, Nt(z3) = {z,y}, NT(z) = {21, 22} and
N*(y) = {z1, x5}

We denote by L; the set of three digraphs obtained from Dj; by adding the arc zyx3 or
xzxy (or both).

Definition 3. By Lo we denote the set of digraphs D with the vertex set V(D) =
{z1,29,...,Tom, x} and with the following properties:

i. D contains a cycle x1x5...xomx1 of length 2m and the vertices x and s, are not
adjacent;

ii. Nt(z) =NT(x9m) ={x1,%2,...,xm} and N~ (x) =N~ (22m) = {Zm, Tmt1, - - -, Tom—1};
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iii.  A({x1, 29, .. xm1} — {@Tmi1, a2, Tomo1}) = 0, the induced subdigraphs
{x1, 22, ..., xm}) and ({Tm, Tmi1, ..., Tam—1}) are arbitrary and one may add any number
of arcs that go from {Tmi1, Tmio, ..., Tom—1} to {T1,29,...,2}. (Note that the digraphs

from Lo are not 2-strong and x, xs,, are T-vertices which are not in the common cycle.

Proof of Theorem 1. The proof is by contradiction. Suppose that Theorem 2 is false,
in particular, D is not hamiltonian. Let C := x5 ... 2, 121 be an arbitrary cycle of length
n— 1in D and let the vertex x is not containing this cycle C'. In further, by H we denote a
hamiltonian cycle in D.

Then z is a T-vertex. Since C' is a longest cycle, using Lemmas 1 and 2, we obtain the
following claim:

Claim 1. (i). d(z) = n — 1 and there is a vertex z;, [ € [1,n — 1] which is not adjacent
to x.

(ii). If ;o ¢ D, then xx;41 € D and if x; ¢ D, then x;_yx € D, where i € [1,n — 1].

(iii). If the vertices z and x; are not adjacent, then z; 1z, zz;y, € D and d(x;) =n — 1.
O

By Claim 1(i), without loss of generality, we may assume that the vertices x and x,_;
are not adjacent. For convenience, let p :=n —2 and y := z,,_;. We have yx, 2,y € D and
xpx, xx1 € D by Claim 1(iii). Therefore, y is a T-vertex and d(y) =n — 1.

Claim 2. At least two vertices of C' are not adjacent to x unless D is isomorphic to Dy
or D7 or belongs to the set Ly U L.

Proof. We prove Claim 2 by contradiction. Let C':= x5 ... 2z,_1x;. Then, by Lemma
1, d(x) =n—1and d"(z) = d (z) = m, since D is not hamiltonian. It is easy to see that
some vertex x; (say, y := x,_1) is not adjacent to x. Then, by Claim 1(iii), z,x, xz1 € D.
If y is not a T-vertex, then the cycle z1x5...x,_oyx; contains all T-vertices. So, we can
assume that y is a T-vertex. Then d(y) = n — 1 (by Lemma 1) and d*(y) = d~ (y) = m.
From our assumption it follows that

Nt (z) ={z1,22,...,2m} and N (2) ={Tm, Tmi1, -, Tp} (1)

We first prove that there is a vertex xy, k € [2,p — 1], which is not adjacent to y. Assume
that it is not the case. Then

Nt(y) ={z1,22,..., 0} and N (y) = {Tm, Tmi1, -, Tp} (2)

Since D is not hamiltonian we have

A{xr, s} = {2 ) =0, (3)

for otherwise, if z;2; € D, where i € [1,m — 1] and j € [m + 1,n — 2], then by (1) and (2),
H=uazy...2;x;...2,2T;41 ... Tj_1y21 is a hamiltonian cycle. Therefore

A({l.la s 7$m—17$7y} - {xm—&—la s 71.77,—2}) = @7
i.e., D belongs to the set Ly which is a contradiction.

Thus, there is a vertex zy with k € [2, p — 1] which is not adjacent to y. By Claim 1(iii),
Tr-1Y,yTr+1 € D. Observe that xy also is a T-vertex. If k € [m + 1,p — 1], then m > 3 and
from d~(xx, {z,y}) = 0 it follows that there is a vertex xz;, i € [1, m — 1], such that x;z;, € D.
Therefore H = 1 ... 2% ... TpT%i41 . .. Tp_1yT1, a contradiction. So, we can assume that
k < m. Similarly, we can assume that & > m. Therefore it remains to consider the case
when m = k and the vertex y is adjacent to all vertices of P\ {z,,}. If n =5, i.e., m =2,
then x1y,yxs € D and xozy ¢ D, w329 ¢ D, i.e., D is isomorphic to the well-known digraph
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Ds or D € L, since if we add the arc zy23 or z3z; (or both) to Ds, then the resulting digraph
also is not hamiltonian, i.e., D € L;. Assume that m > 3. It is not difficult to see that

d(Tm, {x1,2,}) =0 and A({x1,...,Tm2} = Tm) = A(@m — {Tmy2, ..., 2p1) =0, (4)

in particular, x,, is not adjacent to xy and z,. Therefore

{Tms1s - Tpo1} = Ty — {@0, o T | (5)

This implies that z, and x; are T-vertices, since Z1...Tm-1YTm11 - .. Tp_1TmTT1 (respec-
tively, Zy ... Tim_1Y Tl - - - TpTTyT2) is a cycle of length n — 1 which does not contain z,,
(respectively, x1).

Now we consider the vertex y. If x,_1y € D, then zx, ¢ D and yx, ¢ D imply that
xiz, € D for some i € [1,m—1], and hence H = x; ... 2;2,2%;i41 - . . Tp_1yZ1, a contradiction.
So, we can assume that =, 1y ¢ D and, similarly, yzo ¢ D, ie., yr,_1,22y € D. Using
Lemma 2, we obtain that

{z1, 22, ., 1} = Y = {Zmi1, Tingas - - -, Tp ) (6)

It is not difficult to see that d*(x1, Plxs, xm+1]) = 0, for otherwise, if z1x; € D, i € [3,m],
then by (1) and (6), H = x12; ... 2222 . .. x;—1yx1, and if 212,41 € D, then by (1), (5) and
(6), H= 21ZTpmt1 ... TpTTiTs . .. Ty_1yx1, which is a contradiction. Similarly, we can show
that d~(z,, P|zy_1, T,—2]) = 0. Therefore

Nt (1) = {22, Y, Tms2, Tz, - -, Tp} and N (z,) = {zp_1,9, 21,72, ..., T} (7)

By (7), (5) and (6) it is easy to see that ... %y, 2ZpYTmi1 ... Tp_1Tmaxy (respectively,
T1Tmt2 - TpZLy To ... Tmo1yT1) is a cycle of length n — 1, which does not contain z,,_4
(respectively, x,,+1). This means that x,,_; and x,,,, are T-vertices.

Now we will consider the vertex z,, ;. Then z,_12; ¢ D for all i € [m + 2,p]

(for otherwise, by (5), H = 1...Zpm1%; ... TpYTpmi1 ... Li1Tm2T1) and Tp,_1xy ¢ D
(for otherwise, H = x1...Tm—2yYTmt1 - .. TpTTmTm_121 by (5) and (6)). Thus, we have
dt (Tm-1,{x1, T, Tmi2, ..., xp}) = 0. Therefore

Tm—1 — {1.27 oy Tm—2,Y, T,y l'm—&-l}' (8)

Now, if m > 4, then by (7), (1), (8) and (5) we have H = 212,2%p,—1Zm+1 - - - Lp_ 1T T2 - . .
Tm_2yx1, which is a contradiction.

Therefore m = 3, i.e., n = 7. From (4), (5) and (7) we obtain that x,xs, 329, T125 € D,
x1 and x5 are T-vertices and d(xs3,{z1,25}) = 0. It is easy to see that d*(xq, {x1,25}) =
d* (x5, {xs, x4}) = 0. From this we conclude that x5z, € D. Now we see that xiz5yrsx30a,
is a cycle of length n — 1 which does not contain z,. This means that z, is a T-vertex and
dt(zy) = d~(z3) = 3. Since d* (xy, {z, 21, 25}) = 0, it follows that zoz4 € D. Therefore D is
isomorphic to the digraph D7. Claim 2 is proved.

Claim 3. Let z,_1x,yz, € D and for some k € [2,p — 2| x; and y are not adjacent.
Then zj, and z, also are not adjacent.

Proof. Since z; and y are not adjacent it follows that z,_1y,yzr 1 € D (by Claim
1(iii)). Now if x4z, € D, then H = 2y ... p2pYTp11 - . . Tp122y; and if z,2, € D, then
H=uz...251yxpx) . .. Tp—1721. In each case we have obtained a hamiltonian cycle, which
is a contradiction.
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Claim 4. If z,_y2z and yx, € D, then d(z;,{z,y}) > 1 for all i € [2,p — 2].

Proof. Suppose, on the contrary, that d(x;, {z,y}) = 0 for some ¢ € [2,p — 2]. Then by
Claim 1(iii), #;—1 — {z,y} — 241, and by Claim 3 the vertices z; and z, are not adjacent.
Now, since w; is a T-vertex and cannot be inserted into P[zy,z,_1| and into Plz;y1,2,-1],
using Lemma 2, we obtain that

p+1=d(x;) = d(x;, Plxy, x-1]) + d(zi, Plxis1, vp-1]) <i+p—i=p,

a contradiction.

Claim 5. If z,_;x € D, then the vertices y and z,_; are adjacent.

Proof. Suppose, on the contrary, that y and x,_; are not adjacent. Then by Claim
1(iii), zp—oy,yx, € D. If xpx,—1 € D, then H = 1 ...2, 2yx,x,_1221, a contradiction. So,
we can assume that z,x,_1 ¢ D. Moreover, if zz; € D with ¢ € [2,p — 2|, then x;_12,-1 ¢ D
(for otherwise, we would have a hamiltonian cycle H = @1... 21Ty 12,2 . . . Tp_2yT1).
Recall (by Claim 2) that there is a vertex z; with [ € [2,p — 2| which is not adjacent to
x. Note that x; 1o and zx;,; € D by Claim 1(iii). Since z is a T-vertex, it follows that
d*(x, Plxg, x,-2]) > m — 2. If we consider the vertex x,_1, then from d~(x,_1,{y,z,}) =0
and the above observation it follows that

xx,—1 and x;_1xp_1 € D. 9)

Hence z,2; ¢ D (for otherwise, if z,2; € D, then H = 21 ... 212Xy 12pT) . . . Tp_2YT1).
Case 5.1. | < p — 3. Then it is not difficult to see that the vertices x; and x,_; are

not adjacent. Indeed, if x,_12; € D, then H = @1 ... x112p_12; . . . Tp_2yxpxay by (9); and if

TTp—1 € D, then H = oy ... 2;2p_12,2%11 - . . Tp_oy@y, Which is a contradiction. From this,

p+1=d(x) = d(z;, Pley, zi1]) + d(zy, Pl 2p-]) + d(@, {y, 7, }). (10)

Now we show that
1z, and z,_ox; € D. (11)

Let first yz; € D. Then zxy ¢ D (for otherwise, H = 1 ... 212741 ... Tpyx2; 1S
hamiltonian cycle, a contradiction). Since the vertex z; cannot be inserted into Plxy,z; 4]
and P[x41, Tp_s], from (10), z,2; ¢ D and Lemma 2 it follows that d(z;, Plx1, x;-1]) =1 —1,
d(zy, Plxiy1,0p—2]) = p — 1 — 1 and 22, 202 € D.

Let next yx; ¢ D. Similarly as in the case yx; € D we deduce that d(x;, Plzi41, p—2]) =
p—1—1and xx,,x, oz, € D. (11) is proved.

Now using (9) and (11), we obtain a hamiltonian cycle H = @y ... 212y 12111 - . . Tpo Xy TpY 21,
which is a contradiction.

Case 5.2. | = p—2. Then z,x,_2» ¢ D and d(zp—2, {zp-1,2,}) < 2. By the considered
case | < p — 3, w.l.o.g. we can assume that the vertex x is adjacent to all vertices of
Plzy,x,_3]. Then

Nt (@) ={z1,29,. .., Tm1,Tp 1} and N (2) = {Zpm_1, Ty -+ -, Tp_3, Tp_1, Tp} (12)

This together with {x,_3,z,-1,2,} — « implies that m > 3 and zxz, € D.

Subcase 5.2.1. yzo € D. Assume that yx, o ¢ D. Then d(y, Plze,x,_3]) = m — 2
since y and z,_; are not adjacent. From this and d~(z,_2,{z,y,2,}) = 0 it follows that
TiTp_2,YTit1 € D for some i € [1,p—4]. Therefore H = x1 ... 2,2p_2Xp_ 12pYTis1 . . . Tp_3TT1,
which is a contradiction. So, we can assume that yz, o € D. Now it is easy to see that x;
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and x,_» are not adjacent. Indeed, if z12,_2 € D, then H = 212, 2Tp_12pyT2 ... Tp_3TT1;
and if x, oz € D, then H = z1...2,_372,_12pyTp—271; Which is a contradiction. Since
Zp_o cannot be inserted into P[xg, x,_3], by Lemma 2 we have d(z,_2, P2, z,—3]) < p — 3.
On the other hand,

p+1=d(@y2) = d(p2, Plrs, xp-3]) + d(zp-2, {2p-1,7p}) + al@p-2,y)

implies that d(x,_o, Plzs,2,-3]) = p — 3. Hence, by Lemma 2, x, sz5 € D and
Ty ... Tp_3TTp_1TpYTp_2 T2 is a cycle of length n — 1 which does not contain z;. There-
fore ;1 is a T-vertex. Now we consider the vertex x;. Observe that if z1x; € D,
i € [m,p— 2], then by (12), H = xz;...2,y2s...2,122y; and if xy2, 4 € D,
then H = 212, 12,yxp_oTs ... T, 3xx1, a contradiction. Therefore d*(z1,{x,y, Tm, Tmi1,
...y Tp_1}) = 0 which contradicts that = is a T-vertex.

Subcase 5.2.2. The vertices z5 and y are not adjacent. Then z,y,yxrs € D by Claim
1(iii), and by Claim 3 the vertices =, and z, also are not adjacent. Observe that if x;z € D
with i € [3,p — 1], then zox;11 ¢ D (for otherwise, H = z129xi11 ... 2py2s ... x;x21). From
this we have, if zox ¢ D, then d~ (z, Plzs, z,-1]) = m — 1 and at least m + 2 vertices are not
dominated by xy since d* (a9, {y,z,x,}) = 0, which contradicts that x, is a T-vertex. So,
we can assume that xox € D. Since the vertex x is adjacent to all vertices of Pz, z,_3] it
follows that m = 3. Note that xoxy € D by (9), and z, x3, x4 are T-vertices. It is easy to
see that

dt (zg, {x1, x5,y}) = dV (x3, {z, 21, 22}) = d¥ (24, {y, 23, 21}) = d” (23, {x, 24, 25}) = 0.

Therefore z3x5, 2429, 123 € D. Since xyrszizoxx; (respectively, Toxzyrsrayzs) is a
cycle of length n — 1 = 6, it follows that x5 (respectively, x1) is a T-vertex. Now from

d+(l‘5, {.1'2, X3, .1'4}) =d- (.1'1, {.1'2,1'3, .1'4}) =0
we have xsx; € D. Therefore, D is isomorphic to the well-known digraph D; or is hamilto-
nian, a contradiction to our assumption.

Subcase 5.2.3. 2oy € D and yzy ¢ D. Then by Claim 1(ii) we have x;y € D and there
is a vertex xj to k € [3,p — 3| which is not adjacent to y ( since m > 3). Then z;_;y and
yxp41 € D by Claim 1(iii). Using Claim 3, we obtain that z; is not adjacent to z; and z,,.
Since zj, cannot be inserted into P[za, 1] and Plzgi1, xp—1], applying Lemma 2 to these
paths, we obtain that

d($k,P[$2,$k_1]) < k— 17 d(l'k,P[.T]H_l,[L'p_l]) < p— k’

p+1<d(zy) = d(zg, Plra, vp—1]) + d(xg, Pltgi, Tp-1]) + a(xy, x)

and a(zy,z) = 2 (in other words zzy, xxx € D) and each inequality is, in fact, an equality.
Hence, by Lemma 2, xx9, zp— 12, € D. From zxy, i,z € D we obtain that
Nt (z) ={x1,29,..., 28, xp_1} and N~ (2) = {&g, Tpy1,- - Tpo3, Tp_1, Tp}

and o1 ... Tp_1YTht1 . .. Tpo1 T2y 18 a cycle of length n — 1. Therefore x, is a T-vertex
and kK = m—1. Now we will consider the vertex x,. Then z,x; ¢ D for all i € [k,p—1]U{2}
(for otherwise, H = x122... i 12%p_12pT; ... Tp_oyxy wWhen i € [k + 1,p — 2]; and H =
X1 Tio1YTpXi . .. Tp_qxxy when @ = 2,k,p — 1 which is a contradiction). Thus, we have
that the vertex x, does not dominate at least m 4 1 vertices, which is a contradiction, since
x, is a T-vertex. This contradiction completes the proof of Claim 5.

By Claim 2 there is a vertex x;, where [ € [2,p — 1], which is not adjacent to z, and by
Claim 1(iii), 2,12, zx141 € D.

Remark 1. Let a vertex xy, where k € [2, p—1], is not adjacent to the vertices x and y (in
other words d(zy, {z,y}) = 0). Then x x4, xxx1 € D and N~ (z) = N~ (y), N*(z) = N (y).
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By Claim 1(iii), zx—1 — {2,y} — Xr41, @k is a T-vertex and z;, cannot be inserted into
Plzy, x—1] and P[zg11,xp). Using Lemma 2, we obtain that

d(zk, Plr1,x5-1]) < k and d(zk, Plzigr, ) <p—Fk+1,

p+1=d(zy) = dzy, Plry, xx-a]) + d(n, Plog, zp]) <p+ 1.

Therefore, each inequality is, in fact, an equality. Hence, by Lemma 2, x4, 22, € D.

Now we show that N~ (z) = N~ (y) and N*(z) = N*(y). Assume that this is not the
case. Let x;o € D and z;y ¢ D. Then z; ¢ {x4_1,2,}, and by Claim 1(ii), yx;11 € D. Since
TrpT1, 2T, € D, it is not difficult to see that H = z129 ... 2;2Tk41 . .. TpYTisa . .. TxT1 When
t<k—1land H =x122... 24— 1YTit1 ... TpTk . .. ;221 When ¢ > k, a contradiction. To show
that N*(z) = N*(y) it suffices to consider the converse digraph of D.

Claim 6. d*(z,_1,{z,y}) < 1.

Proof. Suppose, on the contrary, that x,_1z and z,_1y € D. Then | < p — 2. Since D
is not hamiltonian it follows that if zx;41 € D or yx;41 € D, then x;2, ¢ D. This together
with d™(zp, {z,y}) = 0 and d* (x, P[ze, xp,—1]) = m — 1, implies that at least m + 1 vertices
do not dominate x,. Clearly, z, is not T-vertex. We will distinguish three cases according
as xjy € D or ;yy ¢ D and yx; € D or z; and y are not adjacent.

Case 6.1. z;y € D. Then d (x;,{z,,2,—1}) = 0 (for otherwise, if z,x; € D, then
H = x... o224 . 2pmyzy; and if z,m120 € D, then xy .. o224 ... 2p_ 1y 1S
a T-cycle, a contradiction). So, by the above observation we have that x, and z; are not
adjacent. Since z,_12; ¢ D and the vertices z; cannot be inserted into P[xq,x;-1] and
Plx41,2,-1], using Lemma 2, we obtain that

d(zy, Plzy, 21-1]) <1 and d(x, P, 2p—1]) <p—1—1.
Therefore
p+1=d(x) = d(z, Py, xi-1]) + d(xr, Plriga, vp-1]) + a(x, y).
From this we conclude that yz; € D and each inequality is, in fact, an equality. Hence, by
Lemma 2, x;zy € D and H = @y ...2;_12%41 . . . Tpyx;x1, which is a contradiction.

Case 6.2. xy ¢ D and yz; € D. Then xz;y ¢ D (for otherwise, H =
T1... T1XT41 - .. 2pyxxry) and from d(y) = n — 1 by Claim 1(ii) we have, yx;11 € D.
Since z; cannot be inserted into Plx;11,x,] and into Plxy, x;—1], using Lemma 2, we obtain
that

d(z, Plzy,21-4]) =1 —1 and d(xy, Plzig, x)) =p—1+1,
and z,z; € D. By Claim 2 there is a vertex x, where k € [2,p — 2|, which is not adjacent
to y. Then zy_1y,yzp1 € D (by Claim 1(iii)) and zj is a T-vertex. We can assume that
xpx ¢ D (for otherwise, for the vertex y we would have Case 6.1).

Assume first that & < [ — 1. Then from zzz ¢ D it follows that & < [ — 2.
Now we will consider the vertex z;. It is easy to see that zz, ¢ D since D is not
hamiltonian. Since z, is not T-vertex and yx; € D it follows that if z,2;, € D, then
H = ... 2,1y ... 2p%) ... 71221 is a hamiltonian cycle, and if z,_yz;, € D, then
T1.. . Tp1YTy. .. Tp_1T ... Ty—1xx1 1S a T-cycle. In each case we have a contradiction.
Therefore the vertices z; and z, are not adjacent and x, 1x; ¢ D. Consequently,
since xp cannot be inserted into Plxy,xk—1] and Plzgi1,2p—1] by Lemma 2 we obtain

d(zg, Plxy, x,—1]) < k and d(zg, Pk, 2p—1]) <p—Fk—1
Therefore
p+1=d(xy) = d(xy, Plxr, xx-1]) + d(xk, Plegsr, vpa]) +alzg,z) <k +p—k—1+1=p,
which leads to a contradiction, since zyx ¢ D (a(zy,x) < 1).
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Assume second that k > 1 + 1. From x;y ¢ D it follows that k > [ + 2. We may assume

that y is adjacent to all vertices of P[xy,2;41]. Then
{z1,29,..., 2141} C N*(y) and d(y, P[zi41,2p-1]) = m — L.

Now consider the vertex x;. It is not difficult to see that if z;y € D, i € [ +1,p — 1],
then xjx;11 ¢ D ( for otherwise, H = xy... 2%y ... 2pxx; ... x;yz1). Therefore, since z;
is a T-vertex and d*(x;, {z,y}) = 0, we obtain that z; does not dominate at least m + 1
vertices, which is a contradiction and completes the proof of Case 6.2.

Let {x;,, 1, ... 2, } be aset of vertices which at the same time are not adjacent to x and
y, where 2 <y <y <--- <. <p—1. Note that (by Claim 1(iii)) for all ¢ € [1,r] we have
Ty, 1%, XXy, 41, T,y and yzy, 4 € D.

Remark 2. The set {z,y,z;,,x,,...,2;} is an independent set of vertices.

Indeed, if x32;, € D and [; < [, then H = @zy...2,%, ... 222041 ... Ty, 1Y T1;
and if x,1, € D and [; > l;, then by Remark 1, z,z;, € D and H =
Ty Ty YTy41 - - Ty Ty - T,—1x01. Ineach case we arrive at a contradiction.

Case 6.3. The vertices x; and y are not adjacent. We can assume that for all j € [2, p—2]
the vertices z; and x are not adjacent if and only if z; and y are not adjacent. Then by
Remarks 1 and 2 for all i € [1,7] we have

N*(@) = N*(y) = N*(z,) and N~(2) = N~(y) = N~(a,),

and {x,y,x;,,x,, ..., 2, } is an independent set of vertices. Note that if zz;11 € D, then
z;x, ¢ D (for otherwise, H = 1 ... 2;2,2%;41 ... Tp—1yx;). From this and d~(z,, {z,y}) =0
it follows that at least m + 1 vertices do not dominate z,. Therefore, x, is not a T-vertex.
Similarly, we can show that if {z;, 2,41} — = (respectively, © — {x;,z;41}), then x;4,
(respectively, x;) is not a T-vertex; and if xz; € D and z;x € D, then x;_12,41 ¢ D. The
proof of Claim 6 is completed. o

Claim 7. z,_,,x ¢ D.

Proof. Suppose, on the contrary, that xz,_yz € D. Then, by Claims 5 and 6 we have
Tp—1y ¢ D and yx,_; € D. Hence by Claim 1(ii), yz, € D. From this and Claim 2 it follows
that m > 3. There are three possibilities: zxy € D or x and x5 are not adjacent or xox € D.

Case 7.1. zxy € D. If yzo € D or y and x5 are not adjacent, then for the converse
digraph of D we have that Claim 5 or Claim 6 is not true. Thus, we can assume that
2oy € D and yxo ¢ D. Then x1y € D, by Claim 1(ii). Recall that there is a vertex x; with
k € [3,p — 2] (by Claim 2) which is not adjacent to the vertex y and hence, by Claim 1(iii),
Tr_1Y,YyTrr1 € D and xy is a T-vertex.

Now we will prove that the vertex z; is not adjacent to the vertices x; and z, and

Tp_1Tk, TkTa, LT, TT € D. (13)

Suppose that this is not the case. If xyz1 € D, then H = 21yxpq1 ... 2p2xs . .. 2p21; if 2128, €
D, then H =z, .. . 2px2s . .. xp_1yxy; if 2z, € D, then H = 1. .. 23 2pYTht1 - . - Tp_1TT1;
and finally if x,2;, € D, then H = 21...24_1y2,2 ... Tp_1221. In each case we have a
contradiction. Therefore z;, is not adjacent to the vertices z; and z,. From this it follows
that (since zj is a T-vertex)

p+1=d(x) = d(xy, Plxe,xk_1]) + d(xk, Plxgs1, Tp-1]) + a(zk, x). (14)

Since the vertex xj, cannot be inserted into P[zs, 5—1] and P[x41, zp—1] by Lemma 2, we have
d(zk, Plza, x4—1])) < k —1 and d(xy, Plrrs1, vp-1]) < p— k.



S. Darbinyan and I. Karapetyan 115

This together with (14) implies that the above inequalities, in fact, are equalities and
a(x,xy) = 2 (in other words zyx,zx) € D). Again, using Lemma 2, we obtain that
Tp_1Tk, Ty € D. (13) is proved.

From (13) and Claim 2 it follows that m > 4. By (13), the cycle
X1 Tho1YTht1 - - - Tp1 a2y (respectively, ©o...Tp_1YThi1 ... TprxRx) has length n — 1
and does not contain z, (respectively, x1). Therefore, x, and x; are T-vertices. It is easy to
see that

if yr;e D with i€ [2,p—1], then z;,,2,¢ D (15)

(otherwise, if yx; and x;_12, € D, then xy...z;_12,yx;...xp—1xx; is a hamilto-
nian cycle).  Note that z,_,z, ¢ D (otherwise if z,_,2, € D, then by (13),
Ty ... T 1TpYThi1 - .. Tp1Txrxy is a hamiltonian cycle, a contradiction). From (15),
d*(y, Plza,2p-1]) = m — 2, z_12, ¢ D and xx, ¢ D it follows that at least m vertices
do not dominate x,. Consequently, the vertex y is adjacent to all vertices of P — {x;}.
Hence

{1'171'27---71%—1} — Y — {$k+17$k+27---7$p}7 (16)

and k —1=p—k=m—1. From z4_12, ¢ D and (15),(16) we have
d™(zp, Plxg—1,2p—2]) =0 and {z1,x2,...,Tk_2} — ). (17)

From this and (13) we have that x; ... Zk_2XpYTit1 . .. Ty_12k227 is & cycle of length n — 1
which does not contain x,_;. This means that x;_; is a T-vertex and x;_; cannot be inserted
into Plzy, vx—2] and Plzgi1, Tp_1]Tk.

Now we will consider the vertex x;_; and claim that x;_; is not adjacent to the vertices x;
and z,. Indeed, if x124_1 € D, then by (13), H = x124_1 ... 2p2xs . .. Xp_2yxy; if 24121 € D,
then by (17) and (13), H = 212,YTgs1 - . . Tp1XTkXT2 . .. Tp—121; if zpxp—1 € D, then by
(16), H = z1...252YTpTp—1 ...Tpqxxy; if 212, € D, then by (13) and (16), H =
T1 .. Tp1TpYThtq - - - Tp_1TE2T1. In each case we have obtained a contradiction. Therefore
Tp—1 is not adjacent to the vertices z; and x,. Now by Lemma 2 we have

p+1=d(zg_1) = d(xg_1, Plre, tx_o]) + d(xk_1, Plxri1, xp_1] U {zr}) + a(zgp_y1, {z,y}) <

p—1+a(zy_1,{x,y}).

It is possible only if a(xg_1,{z,y}) = 2 (i.e., xx_1y and zxp_1 € D since yrx_; ¢ D and
xp_1z ¢ D). It is not difficult to see that d~ (xy, Plzg_1,2,-1]) = 0 (otherwise if z,2, € D,
i € [k,p—1], then H = z1y2;41 ... 2,202 ... 2;21). Hence x,_oxy € D and by (13), H =
T1YTyl - - - TpTLp_ 1Tk T2 . . . Tp—ox1, Which is a contradiction. The contradiction completes
the proof of Case 7.1 .

Case 7.2. The vertices z and z, are not adjacent. Then by Claim 1(iii), x;2 and
xxs € D. By Claim 4 we have that the vertices x5 and y are adjacent. If we consider the
converse digraph of D, then using Claim 5 we see that zoy € D and yxy ¢ D. Therefore, by
Claim 1(ii), 1y € D since y is a T-vertex. Now we will consider the vertex z;. Note that x,
also is a T-vertex. If x,xo € D, then H = z1yzpzs ... x,—1221, a contradiction. So, we can
assume that x,x5 ¢ D. By Lemma 2, d(xy, P|xs, x,]) < p—2 since x5 cannot be inserted into
P|x3, x,]. From this, since  and x5 are not adjacent, yxs ¢ D and x5 is a T-vertex, we obtain
that xoz1 € D. Now it is easy to see that if yx; € D with i € [4,p], then z;,_129 ¢ D (for
otherwise, H = z1yz; ... T,xT3 ... x;—12221). Consequently, from d*(y, Plxy,xp]) = m — 1
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and d~(xq, {x,y}) = 0 it follows that at least m + 1 vertices do not dominate xo, which is a
contradiction. The obtained contradiction completes the proof of Case 7.2 .

Case 7.3. zox € D. Then zyx € D by Claim 1(ii). Then from d~ (z, {21, 22, 2p—1,2p}) =
4 we have m > 4. It follows that there is a [ € [3,p — 2] such that x; »x,x; 12,221 € D
and x; and x are not adjacent by Claim 2. Note that with respect to the vertices x5 and y
the following subcases are possible: yxs € D or xoy € D or the vertices y and x, are not
adjacent.

Subcase 7.3.1. yxs € D. It is not difficult to see that the vertices x; and x; are not
adjacent. Indeed, if 12, € D, then H = x12;...2,yxs ... xy_122; and if 22, € D, then
H = x1x341 ... 2,yxo ... 2321, which is a contradiction.

We first prove that

YTy, TTa, Tyx—1, Tx—2 € D and x;_0x; ¢ D. (19)

Proof of (19). Assume that z,2; € D. Then x;y ¢ D (for otherwise, if z;y € D, then
H=u .. .5 1254 ... c,xy2;). Since 27 and z; are not adjacent and x; cannot be inserted
into Plze, z;—1] and Pz, 7], using Lemma 2, we see that

p+1=d(x) = d(z, Plrz, mi1]) + d(@, Plaga, 2p]) + alz,y) < p+ a(a,y).

It follows that d(x;, P[xy, ;1)) = {—1 and a(z;,y) = 1. Therefore yz; € D and z;xy € D
by Lemma 2.

Now assume that z,x; ¢ D. Then, similarly, as before we obtain that d(x;, P|zy, 2;_1]) =
I —1, d(x;, Plxi41,2p)) = p — 1 and a(z,y) = 2 (i.e., yz;, 1y € D). By Lemma 2, we have
that ;2o € D. Now we will consider the path z; 1242 . .. 2pyx1 ... 1_22;—1 and the vertex
x; instead of y. Then using Claims 6 and 5 we obtain that x;z;_1, z;2;-2 € D and x;_9x; ¢ D.
So, indeed, (19) is satisfied, as desired.

W.lo.g. we can assume that zz;,5 ¢ D and x and ;.5 are adjacent (because otherwise
for the path x;412142 ... 2pyx: ... ;-1 we would have Case 7.1 or 7.2 which we have already
dealt with). Then by Claim 1(ii) we have, z; 112, 21400 € D.

Now we consider the vertex z. If x;x € D with ¢ € [2,p—1], then 212,41 ¢ D (for other-
wise, H = 21%i41 ... Tpy2e ... x;xx1). If 292y € D, then H = 212141 ... 2,y %s . .. 1120
by (19). Observe that zs... 2122111 ... 2,yx29 is a cycle of length n — 1 which does not
contain ;. This means that x; is a T-vertex. Now from d~(x, P[za, zp_1]) = m — 2 and
d*(z1,{y, z151}) = 0 it follows that the vertex x is adjacent to all vertices of P — {x;} which
is not possible since m > 4, x;.1x € D and D is not hamiltonian.

Subcase 7.3.2. x5y € D. Then by Claims 2 and 1(iii) there is a vertex x;, with
k € [3,p — 2] such that 2, _jy,yxr1 € D and y is not adjacent to xj. It is easy to see
that x, and x;, are not adjacent (i.e., a(xy,x,) = 0). Indeed, if z32, € D, then H =
T1 ... TkTpYTit1 - .. Tp—1xxy; and if zpzy, € D, then H = 21 ... 25 1yTpTk . . . Tp—12 21, Which
is a contradiction. Now we prove that

zp_17y, and xpx € D. (20)

Proof of (20). Let xyx; € D. Then zx, ¢ D (since, otherwise, if xxp € D, then H =
X1 Th_1YTht1 - - . Tprxwpry) and hence, since a(zy,x,) = 0 and the paths Plzy,z_1] and
Plxy41,xp—1] cannot be extended with z; by Lemma 2 we have d(xy, Pz, x5-1]) < k,
d(xy, Plzyyr, vpa]) < p—k and
p+1=d(xy) = d(xy, Plry, xg-1]) + d(vg, Plgir, vp_1]) + a(zp, ) =p+ 1.
Therefore d(xy, Plx1,x5-1]) = k, d(zk, Pltis1,2p-1]) = p — k and a(zg,x) = 1 (e,
zrx € D). Now, using Lemma 2, we obtain that x, iz, € D.
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Let now zxz1 ¢ D. Then d(xy, Plzy, 2x-1)) < k—1, a(zg,x) = 2 (i.e., zpz, 2z € D) and
d(zk, PlTks1, xp-1]) = p— k. Again, using Lemma 2, we obtain that z,_12x € D. So, indeed
(20) is satisfied, as desired. o

Now we will consider the vertex x,, which is a T-vertex since @y ... Ty 1YTpi1 - - . Tp_1TLTT,
is a cycle of length n — 1. If x;y € D with ¢ € [1,p — 2], then z,x;41 ¢ D (for otherwise,
H = x1...2;yxp%it1 ... xp_1221). Note that d~(y, Plx1,xp—2]) = m — 1 and z,x541 ¢ D
(if xzpxps1 € D, then by (20), H = &1 ... 2k 1YZpTht1 - . . Tp_1xpxzy. 1t follows from the
observation above that the vertex y is adjacent to all vertices of P — {x}. Therefore

N_(y) = {$17$27 s 7$k—17$p} and N+(y) = {$17$k+17$k+27 e 71'p}-

Then for the path xp1Tk1e ... 2px2125. .. 241 and for the vertex y by Claims 5 and 6
we have the considered Case 7.1.

Subcase 7.3.3. The vertices y and x5 are not adjacent. Then zy,yzs € D (by Claim
1(iii)), =2 and x, are not adjacent (by Claim 3) and z, is a T-vertex.

Assume that zozy € D. Then x;29 ¢ D if zx;,1 € D, i € [3,p — 1] (for otherwise, H =
T1TTig1 - TpYTs ... T;xox1). Now from d¥(x, Plry, xp—1]) = m — 1 and d~(z2, {z,y}) = 0
it follows that d~(x2) < m — 1, which is a contradiction. So, we can assume that xox; ¢ D.
Therefore

p+1=d(x2) = d(za, Plxs, x,-1]) + d(z2, {z1,2}) < d(z9, Plxs, z,1]) + 2.

Hence d(zs, P|zs,z,-1]) = p — 1. By Lemma 2, x5 can be inserted into the path
Plxs,x,-1], a contradiction which completes the proof of Claim 7.

Let us now complete the poof of the theorem. Since D is not hamiltonian from Claim
7 and Remark 2 it follows that for any cycle C' := zyx5... 29,21 of length n — 1 = 2m
if v ¢ V(C) then NT(x) = N (x) = {x1,23,...,%om_1} and {xo,24,..., 2o, x} is an
independent set of vertices. Therefore K . C D C [K,, + K,11]*. The proof of the
Theorem is complete.

Remark 3. Let D be a digraph with the vertex set V(D) = {x1, z2, x3, x4, x5, x,y} such
that Nt (x1) = {x9, 24}, NT(29) = {x,y, 23,25}, NT(23) = NT(x) = N (y) = {21, 22, 24, },
Nt (zy) ={z,y,2z5} and Nt (x5) = {z,y,23}. Tt is easy to check that the vertices z,y, x, 3
and x4 are T-vertices and the vertices x; and x5 are not T-vertices. Moreover, the digraph
D is 2-strong and contains no cycle through z,y, zo, x5 and x4.
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