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Abstract

Formal languages LA and LW are introduced as in [1] for the representation of
primitive recursive arithmetical and string functions. Shannon functions SH, and SH 4
describing the relations between the complexities of functions representations in these
languages are defined as in [1]. A new proof of the upper bounds for SH,y is presented;
it is based on a new method giving in some cases new possibilities for applications in
comparison with the methods considered in [1].
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Investigations described in this paper may be considered as the continuation of those
presented in [1]. Let us recall definitions of some notions given in [1]. We suppose that an
alphabet 4=1{a,,a,,...,a,}, where p>1, is fixed. The set of all strings in this alphabet (including
the empty string A) is denoted by A"; the set of all k-tuples (Q,,0,,...0,), where O, €4 for
1<i<k, will be denoted by (4")*. The set of all non-negative integers {0, 1, 2, ... } will be
denoted by N; the set of all &~tuples (x,,x,,...,x,), where x, e N for 1<i<#k, will be denoted by
N*. k-dimensional string function in A is defined ( [1], [2] ) as a mapping of (4" )" into A k-
dimensional arithmetical function is defined as a mapping of (N)* into N. Primitive recursive

string functions in A as well as primitive recursive arithmetical functions are defined in a usual
way as in [1] and [2]. The alphabetic enumeration of the set A" is defined as in [1] and [2]; let us
recall that this enumeration defines a one-to-one correspondence between the sets A" and N. The
non-negative integer, corresponding to a string Q in the alphabetic enumeration is denoted by
7(Q). The string in A" corresponding to the number » in this enumeration is denoted by o, (n) or

an. The length of a string Q is denoted by |Q| All these notations are used in [1].

The alphabetic enumeration of strings gives also a one-to-one correspondence between n-
dimensional string functions in 4, and n-dimensional arithmetical functions.
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Namely, we say ( [1], [2] ) that an n-dimensional arithmetical function f represents an n-
dimensional string function F, if
F(ax, ax,, .., ax,)=af(x, x,, ..., X,)
for all x,x,,...,x, in V. In this case we say also that /" and f correspond to one another.
The mentioned correspondence gives also a one-to-one correspondence between primitive
recursive string functions in 4 and primitive recursive arithmetical functions ( [1], [2] ).

In [1] the formal languages L4 and LW are introduced for the representation of primitive
recursive arithmetical functions and primitive recursive string functions. The formal expressions
in these languages are said to be terms; by te L4 and re LW we denote the statements “f is a
term in LA”, “r is a term in LW”. In the definition of LA the symbols S and R are used for the
operators of superposition and primitive recursion of arithmetical functions; in the definition of
LW the symbols § and R are used for the operators of superposition and alphabetic primitive
recursion of string functions ( [1], [2] ). Special notations for some modifications of the
mentioned operators ( Sbl, Sbr, Sel, Ser, Sb, Se in LA, Sbl, Sbr, Sel, Ser, Sb, Se in LW) are also
included in LA and LW ([1]). We shall consider below special cases of the implementation of the
modifications b and Se of the operator § (see [1]); these cases are described in the following
points (1), (2), (3). Let us note that all the terms considered in (1), (2), (3) are terms in the
language LW.

() If f and g are terms expressing correspondingly a v—dimensional

function /" (where v>2) and a one-dimensional function g, then the term Se( f ,&) expresses the
v —dimensional function 4 such that

G, 0,,..0,) = (0,05, 0,15 8(0,))
for all values of the variables Q,, Q,, ...,0,.

(2) If f and g are terms expressing correspondingly a 2-dimensional function f and a

k-dimensional function g (where k>1), then the term Sb( f ,g) expresses the (k+1)-
dimensional function / such that

MOy, 0y 041 = [(8(Q1, Drss D) Oi)

for all values of the variables Q,, O,, ...,0,.,.
3) If f,5.,8 are terms expressing correspondingly a v-—dimensional

function /" (where v>2) and one-dimensional functions g, and g,, then the term Sh( f ,8,,8,)
expresses the (v—1) dimensional function / such that

h(Q] :Qz:"':Qvf]) = f(g] (Q]): gz (Q] )7 Qz:---a Qvfl)
for all values of the variables Q,, O,, ...,0, .

As it will be seen below, it is convenient to represent the list of variables for the function
h in the following form: R, Q,, Q,,... ,Q,. Using this list, we can write the expression for / as

follows:
h(R, Qsa Oy an)zf(gl (R), g,(R), Qsa Oyseess Qv)
In [1] Shannon functions SH ,,(n) and SH,, (n) are introduced; these functions
describe the relations between the lengths of terms expressing arithmetical functions (in L4) and

string functions (in LW) when the considered functions correspond to one another. Namely, if
te LW, then by LA(t) we denote the set of all terms in LA expressing the arithmetical function

corresponding to the string function expressed by 7 Similarly, if re L4, then by LW(r) we
denote the set of all terms in LW expressing the string function corresponding to the arithmetical
function expressed by . Now we can give (see [1]) the definitions of SH ,, (n) and SH,, (n) as
follows:



I. Zaslavski and M. Khachatryan 83

SH = ma min :
wa (1) (teLW)&)((\t\Sn) (rELA(t) |r|) >
t|)

In [1] the following statement is established (see the main theorem in [1]): there are upper
and lower bounss for SH ,,(n) and SH, (n) such that each of them has the form cn+d,

SH ,,(n)= max min
AW( ) (reLA)&(|r|<n) \teLW (r)

where ¢ and d are some constants.

We shall consider the function SH ,;, (n). There are some defects in the proof of the upper
bouns for this function in [1]; their removal requires essential changes in the proof. Below we
give another proof of the mentioned bouns based on a method which is different from those used
in [1]. Namely, we shall give a new proof of the following theorem.

Theorem. There are constants ¢ and d such that for any non-negative integer n

SH ,, (n)Scn +d.
We shall use three Lemmas in the proof given in [1] (similar statements are proved also in

n times

[2]). By v(n) we denote the function such that v(0)=A, v(n)=a,q,...q, for any positive integer n.

Lemma 1. There are constants ¢' and d'such that for any term teLA expressing a
function 1(x,,x,,..,x,), a term ®elLW expressing some function ¢(Q,,0,,...0,) can be
constructed such that the following conditions are satisfied:

L. o(v(x),v(x,),..v(x,)) =v((x,X,,....x,)), forany x,x,,..,x, in N.

2 [of<cl]+d

Lemma 2. There is a primitive recursive string function G such that G(v(m)) =am for any

me N.
Lemma 3. The one-dimensional string function y(Q)=v(x(Q)) is primitive recursive.
Proof of Theorem. Let ¢ be any term in LA expressing some function z(x,, x,, ..., x,,). As
it is proved in [1], the following inequality holds: m<|i|.
The string function corresponding to 7 let us denote by w(Q, O,, ..., 0,). We shall

construct a term Q in LW having the length mentioned in Theorem and expressing the function
V.

!

Using Lemma 1 we construct a term @ in LA such that |®|<c'|f|]+d’, where ¢’ and d' are
constants (fixed in Lemma 1), and @ expresses a function ¢ satisfying the condition
PO () (1), V(X,) = V(5 Xy ,))
for any x,x,,...,x, iIn N.
Using Lemmas 1 and 2 we obtain the following equalities

v(0,,0,..0,) =at(x(Q),7(Q,)..7(0,)) =
=G (v (t(m(0).7(Q,)..(0,)))) =

=G(p(v(7(@)).v (7(0.).. (7(2,))) =

=G (p(r(0).7(2)-7(0,)));

By G and ¥ we denote the terms in LW expressing the functions G and y.
Let us consider the well-known primitive recursive arithmetical functions ¢, /, r, defining

a one-to-one correspondence between N° and N. Such functions we define by the following
equalities:
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c(x’y):(X+y)()2€+y+1)+x

c(l(2),7(2)) = z,

l(c(x, ) =x, r(c(x,y))=y.
We consider also the following functions (where n>2, 2<k<n ):

2

(X, Xy,.05x,) = c(..clc(x,X,),X3),..5 X))
%/_/
(n—1) times

(n—1) times
¢, (2)=1((..1(2)..));
(n—k) times
—
¢, (2)=r((.1(2)...))).
Obviously, for any x,,x,,...,x,,z in N and for 1<k <n, the following equalities hold:
c"(c,(2),¢,,(2),....c,,(2) = z;
¢, (c"(x,%,,...,X,))) =X,.
Using Lemma 1 we construct string functions o, A, p, such that for any x, y, zin N
o(v(x),v(y)) =v(c(x, »));
Av(2)) =v((2));
pv(2)) =v(r(2)).
Let us note a peculiarity of these functions.
If some strings O, O,, O, in 4 do not contain other letters except a,. then the following

equalities hold: o (A(Q), p(0)) =0, A(c(0,,0,)) =0,, p(c(Q,,0,)) =0,. However, in general

such equalities are not valid.
Let us consider also the following string functions (where n>2, 2<k<n)

0" (9,0, Qn) =0(..0(c(0,,0,), Q3)’---a Qn);

(n—1) times

2,(0) = 2.2 0)..)
(n—k) times
2,0(0) = PUA(-A(0)..))).

The terms i LW expressing the functions o, 4, p, o", 4,, 4, (where

nl?>
n>2, 2<k <n) we denote, correspondingly, by &, i, p, 6", in,, Ak

If some strings Q,, O,, ... 0,, 0 in A do not contain other letters except a,. then the
following equalities hold (where n>2, 2<k<n):

0" (4,,(0),4,,(D),... 4,,(Q)) = O,
2,(0"(0,0,,...0,)) =0;
/Ink(an(Q]’QZ””’Qn)) = Qk-

In general such equalities are not valid.
Now in the case, when m > 2, let us construct the term C" as follows:

(m—-1) times (m—2) times

C" = 8e(Sh(G,..., Se(SB(G,7), 7)) 7)), 7).
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Here the group of symbols Se(Sh(G, is repeated (m-1) times; after this the group y) is repeated
once; after this the group , 7)) is repeated (m-2) times; finally, the group ,7) is repeated once. It

is easily seen that the length of the term C” does not exceed ¢,,m+d,,, where ¢, and d,, are

102
some constants. Let us consider some subterms of the term C™ as well as functions expressed by
them. It is easily seen that the following statements are valid.

The term Sb(6,7) expresses the function U(y(Q,),Qz).

The term C’ = Se(Sh(G,7),7) expresses the function U(}/(Q]),}/(Qz)), that is, the
function o (¥(Q)),7(Q,)).

The term Sb(6,Se(Sh(G,7),7)) expresses the function U(G(;f(Q, ), y(Qz)),Q3).

The  term C’ = Se(Sb(G,Se(Sb(G,7),7)),7) expresses the  function
o (o (7(0),7(0,)),7(0,)), that is, the function o’ (7(0,),7(0,).7(0,)).

Using similar considerations, we conclude that the term C" expresses the function

o(..o(a(r(Q),7(0)),7(D)), - 7(0,)),

that is, the function

" (¥(9):7(D,),7(D3)s--,7(0,.))-

Further, let us construct the term 3" (where m>1) as follows:

m—1) times (m-1) times
Lrime TR
3" = Sb(...Sb(Sb(D, A, p), A, p).... A, p).
It is easily seen that the length of the term 3" does not exceed |d)| +c¢m+d

.1» Where ¢, and

d,, are some constants. Using the inequalities |®|<c'|f|+d’ and m<|f| we conclude that the
length ‘Sm‘ does not exceed c,2|t|+d,2, where ¢, and d,, are some constants. Let us consider

some subterms of the term JI”, as well as functions expressed by them. It is easily seen that the
following statements are valid.
As it is said above, the term @ expresses the function ¢ depending on m variables. The

function ¢ we denote also by ¢,. The term J' is defined as the term which is equal to ®.

The term J° = Sb(d),i, p) expresses some function ¢, depending on (m—1) variables; the
list of variables for this function we denote by R,,0;,...,0,. Using such notations we can
represent the equality describing the function ¢,(R,,0;,...,0, ) as follows:

b, (R1’Q3"'-’ Qm) = q)(/l(Rl )> p(Rl ), Q3’---: Qm):
that is

?(R,0s,...0,) = (A (R)), A, (R), Os..... O,,)-
The term J° =Sb(Sh(®,1,5),4,p) expresses the function »,(R,,0,,0,,....0,)
depending on (m—2) variables; the equality describing this function can be represented as
follows:

?,(R,,0,,0s,...,0,) = p(A(AU(R,)), p(A(R,)), p(R,), 0y, O, ... O,)s
that is

Py (R, 04,055, 0,) = (451 (Ry), 43, (Ry), A5 (R, ), O, 05, O, ).
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The term J* = Sh(Sh(Sh(D, 1, 5), A, p), A, p) expresses the function ¢,(R;,0;,0,.....0,)
depending on (m—3) variables; the equality describing this function can be represented as
follows:

05(R;,0;,0,...,0,) = o(MAA(R,))), p(AA(R)))), p(A(R))), p(Ry), 05,0y, O,)s
that is

@5 (Ry, 05, O, O,) = (A (R,), Ay (R,), Ay3 (Ry), Ay (R,), 05, O, O,,)-

om

Using similar considerations, we conclude that the term JI" expresses the function
@1, depending on one variable (we shall denote this variable by R, ). The equality

describing this function can be represented as follows:
Plm-1y (R(m—])) = Q(A(A(.A( R, )--))> P(AA(A( R, JE9)) p(R(m—l) ),
| — — [ —

(m=1) (m-1) (m=2) (m=2)
that is
q)(m—]) (R(m—l)) = q)(ﬂ“ml (R(m—l) )’ ﬂ“mz (R(m—l) )’ ey lmm (R(m—l) ))
Now let us construct the term
S(3",C").
This term expresses the function

(4,1 (0" (7(2): (D)5, 7(D,)))s 4,2 (07 (7 (D), (D, )50, 7(D,)))5 -

s A (07 (1 (9 7(Dy)s - 7(D,))))-
But the strings y(Q,),7(Q,),....y(0Q,) do not contain other letters except a,. So, we can

conclude that the function expressed by S(J3",C"), is equal to
(¥ (), 7(Dy),-- 7 (D,,))-

Hence the term
Q=58(G,8(3",C")
expresses the function

G(o(r(Q),7(0y)s--,7(0,)))s
that 1s, the function

v(Q,0,,--,0,)-
Clearly,

|Q| <c, |t| +d,;,
where c;; and d,, are some constants. So, the statement of Theorem is proved for m > 2.

The cases m=1 and m=0 are considered in a similar way. This completes the proof of
Theorem.

Note. Applying usual methods of the recursive functions theory, we can obtain essentially
more simple and more natural expressions for the term € than those considered above, for
example

Q=S8(G,S@,SF,1"), ST, 1", ... , ST, I"))),
where any term ;" for 1<k <m expresses the function
Ikm(Ql’Qz’---’Qm) = Qk-
However, such expressions do not give the required bounds of |Q| For this aim special methods

should be used. One of such methods is implemented above.



I. Zaslavski and M. Khachatryan 87

References

[1] M. H. Khachatryan. “On the Representation of Arithmetical and String Functions in Formal
Languages,” Transactions of IIAP of NAS of RA, Mathematical Problems of Computer Science, vol.
27, pp. 37-53, 2006.

[2] A. L. Maltsev. Algorithms and Recursive Functions. 2" Edition, Moskow, Nauka , 1986 (in Russian).

Submitted 28.11.2012, accepted 30.01.2013.

NMupqugnyt wunpunpupd (REinipupy) pyupwtwljut b punwjht
dIniujghwibph hwdbdwwnwljut pupnnipjut dwuht

b. Quuuyjuljh b U. wswwnpjub
Udthnthnud

Thunwplynud  Bu [1]-nid uvwhdwidwés wwpqugnyt winpunupd  (rElnipuhy)
pYuputiwlut b pupuwyhtt dnruljghwkph thphuyugdwi L4 & LW duwght (Eqnitbpp:
Ctunth SH,, U SH,, dnmulghwibtpp, npnup punipwugpnid i pwpwbwljui b
punujhtt dnruljghwibkph wkpuyugnudubph pwpnpnipniuubph dholt Enws juwbpp
uoJuws (Egniubkpnud, uvwhdwiyniud G, huswybu [1]-nud: Uh unp dbpnngnyd wpynud & SH ,,
dnmiujghuyh JEphtt quwhwwnwljuih wwwgnygp: Uy dbpnnp npny phwypbpnud
wywhnynud £ Jhpwenipjniiubph wbh juyt htwpwynpnipjniukp, put® [1]-nud
nphunwplyynn dkpnnubpp:

O cpaBHUTEIBHOH CIOXXHOCTU IIPUMHUTUBHO PeKyPCUBHBIX
apudMeTUYeCKUX U CJIOBAaPHBIX QYHKIIUI

Y. I 3acnaBckuit 1 M. Xauarpsan
AnHoTanus

Paccmarpusatorcs ¢opmansusie s3siku LA u LW, BBenenusle B [1] mas mpencraBieHUs
IIPUMUTHBHO PEKypPCUBHBIX apudmerndeckux u caoBapusix ¢yukinit. Oyukunu Illennona
SH,, un SH,,, BbIpOKAOIHAE COOTHOIICHUS MEKIY CIOXKHOCTAMHU IIPEICTaBICHUS
apudMeTUYeCKUX U CIOBAPHBIX (QYHKIUI B 3TUX SI3BIKAX, OIPeEeIAIOTCI TaK JKe, Kak B [1].
[laeTcs HOBOe JIOKa3aTeJbCTBO BepXHel oleHKHU And SH ,, , OCHOBAHHOE HA METOJE, AAI0IIEM

B pAAg€ ClIydacB HOBBIC BO3MOXHOCTH JIA HpI/IJ'IO)KCHl/If/'I o CpaBHCHHIO C METOJaMH,
paccMmarpuBaeMbIMU B [1].



