On Existence of 2-partition of a Tree, Which Obeys the Given Priority

Suren V. Balikyan[†], Rafayel R. Kamalian[‡]

† Yerevan State University e-mail: suren.balikyan@gmail.com † Russian-Armenian State University e-mail: rrkamalian@yahoo.com

Abstract

A necessary and sufficient condition is obtained for the problem of such partitioning of the set of vertices of a tree G into two disjoint sets V_1 and V_2 , which, for a given function $p:V(G)\to \{-1,0,1\}$ with some special restriction, satisfies the condition $|\lambda(v)\cap V_1|-|\lambda(v)\cap V_2|=p(v)\cdot(|\{v\}\cap V_1|-|\{v\}\cap V_2|)$ for any vertex v of G, where $\lambda(v)$ is the set of all vertices of G adjacent to v.

References

- [1] S. V. Balikyan, R. R. Kamalian, "On NP-completeness of the problem of existence of locally-balanced 2-partition for bipartite graphs G with $\Delta(G) = 3$ ", Reports of NAS RA, Applied Mathematics, vol. 105, num. 1, pp. 21–27, 2005.
- [2] S. V. Balikyan, R. R. Kamalian, "On NP-completeness of the problem of existence of locally-balanced 2-partition for bipartite graphs G with $\Delta(G)=4$ under the extended definition of the neighbourhood of a vertex", Reports of NAS RA, Applied Mathematics, vol. 106, num. 3, pp. 218–226, 2006.
- [3] S. V. Balikyan, "On locally-balanced 2-partitions of some bipartite graphs", Abstracts of papers of 15th International Conference "MATHEMATICS. COMPUTING. EDUCATION.", vol. 15, p. 7, Dubna, Russia, January 28 February 02 2008.
- [4] F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1969.
- [5] C. Berge, Graphs and Hypergraphs, Elsevier Science Ltd, 1985.

Ծառի այնպիսի 2-տրոհման գոյության մասին, որը ենթարկվում է տրված նախապատվությանը

Ս. Քալիկյան, Ռ. Քամալյան

Ամփոփում

Umwgվшծ է шйһршдѣгт և ршվшршр щшуйшй G дшпһ дшдшрйвһр ршдմпгрушй V_1 և V_2 ұһштվпп ѣйршршдմпгрупійвһрһ шуйщһиһ трпһйшй апупгрупійр щшраѣрпі һшйшр, пр трվшд һштпі шшһйшйшфшірпійвһрпі фпійцрішуһ һшйшр ршішршрі һштшрш шшуйшйр $p:V(G) \to \{-1,0,1\}$ дшпһ упіршршйулір v ашашрһ һшйшр $|\lambda(v) \cap V_1| - |\lambda(v) \cap V_2| = p(v) \cdot (|\{v\} \cap V_1| - |\{v\} \cap V_2|)$, пртѣп $\lambda(v)$ -пій йгшйшірішд t v-рй цһд ашашрйврһ ршайпгрупійр: