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Abstract

A novel method of monotone recognition based on the partitioning of the grid
into discrete structures isomorphic to binary cubes (called “cube-split”
technique) was proposed in our recent work, and a theoretical level description
of two algorithms /algorithmic schemes/ solving this problem was also
introduced. This paper provides implementation details of those algorithms, as
well as focuses on the recognition of monotone binary functions with a small
number of units.
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1. Introduction

Let =7 ; denote the n-th Cartesian degree of the set .:'m+1 = {0 1,--,m}:
~n —
Sm+1 = {(a1, ’ an)lal € Emaal ‘I’l}

or, in other words, Z} , ; is the set of vertices of the n- d1mens10nal (m + 1)-valued discrete grid.
The total number of Vertlces of 2}, is equal to (m + 1)™. We consider a component-wise
partial order “<” on =}, defined in the following way: for arbitrary vertices a = (aq,**, a,)
and b = (by,++,by) of Z). .4, a precedes b (a < b) if and only if a; < b; for i = 1,---,n. Then,
(E}+1,<) is a partially ordered set; we will use its Hasse diagram for geometrical
interpretations.

f(xy, %, x0): ER 11 = {0,1} is called a binary function defined on ZJ,,,. We say that
f (x4, %5, ,x,) is @ monotone function if for any two vertices a,b of Z},;, a = b implies:
f(a) = f(b). The vertices of =}, , where f takes the value “1”, are called units of the function.
The set of units of f is usually denoted by N¢. The vertices of Zy, 4, where f takes the value “0”
are called zeros of the function. a® € £ Hm+1 1s called a lower unit of f, if f(a') = 1 and f(b) =
0 for every b € Z}%,; less than al. a® € ., is called an upper zero of f, if f(a®) = 0 and
f(b) =1 for every b € E} ., greater than a®.
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Fig. 1 demonstrates the Hasse diagram of 22, and a monotone binary function f defined
on ZZ. Highlighted vertices (4,4,4), (4,4,3), (4,3,4), (3,4,4), (4,4,2), (4,3,3), (3,4,3), (3,3,4),
(2,4,4), (4,3,2), (3,3,3), (2,4,3), (1,4,4), (1,4,3) are units of the function, where (4,3,2), (3,3,3),
and (1,4,3) are its lower units. The rest of vertices of Z5 are zeros of the function, and (4,4,1),
(4,2,4), (3,4,2),(2,3,4), and (0,4,4) are its upper zeros.

We consider the problem of query-based algorithmic identification/recognition of
monotone binary functions defined on Z]},;. This problem is initially investigated by V.
Korobkov and V. Alekseev, but also, consecutively, by many other authors [1-4]. For m = 1,
this is the case of ordinary monotone Boolean functions defined on the binary cube E", E™ =
{(ay,,ap)|a; € {0,1},i = 1,---,n}. Hansel’s chain-splitting technique of E™ [5] is a well-
known effective tool for monotone Boolean function recognition. The outline of the algorithm is

as follows: the set of vertices of the binary cube is partitioned into disjoint chains of different
lengths (there are a total of C,lln/ 2l chains in the n-dimensional cube). A key property of the
Hansel’s chains is that once the function values are known for all the vertices in all the chains of
length k, then the function values, inferable by monotonicity, are unknown for at most two

vertices in each chain of the next length k + 2. The maximum number of queries to recognize
the monotone Boolean function defined on the n-dimensional cube is C,lln/ 2J+C,lln/ 2+
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Fig. 1. Monotone function defined on Z2.

An extension of this technique to the case of multi-valued grids and monotone binary
functions is obtained in [2-3]. In [2], V. Alekseev developed the algorithm U, for recognition of
a monotone binary function defined on Ey y,..k, = Zk, X E, X =+ X E, (B, ={0,1,-+, k —
1},i = 1,:--,n), which, in some sense, tries to generalize G.Hansel’s algorithm. [2] proved that:

TWe) _ 1
TWops) < S [log,(k = 1)],
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Where T'(U,) denotes the complexity of Uy, and T(U,p¢) is the complexity of the optimal
algorithm U, k = maxk;. It is also found that:

T(Uope) = [M[ + [N and T(Uo) < |M| + |logzk| - |N],

where M and N are the 2 sets of vertices in the middle layer area of Zj i, ..k,

M= {(al,---,an) € Eikyky P Mt tag = E ~(k — 1)]},
N = {(al,---,an) € Ejkyky P A1t an = E * ok — 1)] + 1}.

In case of =}, ,the sets in the two middle layers are:

M, = {(al,..-,an) EEN. . a++a,

|51}

5]+ 1)

and consequently, the estimate of complexity of the algorithm U, on =7}, will be:

NO = {(all'..lan) E Err;'l+1 H al + -.._I_ an

T(Uo) < Mol + llogzm] - [No|.

A recent novel method of the monotone recognition based on a partitioning of the grid
into discrete structures isomorphic to binary cubes (called “cube-split” technique) is proposed in
[6], and two algorithms /algorithmic schemes/ solving this problem are also introduced. This
paper provides implementation details of these algorithms, as well as focuses on the recognition
of monotone binary functions with a small number of units.

The paper is organized as follows: Section 2 introduces the cube-splitting technique.
Section 3 provides the implementation framework of these algorithmic schemes. Section 4
addresses some particular cases with a small number of units that comes from applications.

2. The Cube-Splitting Technique

In this section we introduce the cube-splitting technique of recognition of monotone binary
functions [6]. Two homogeneous areas inside the =), ; are defined in the following way:
- upper homogeneous area H, - this is the set of all “upper” elements of Z%,,, i.e.,
elements with all-coordinate values > m/2;
- lower homogeneous area H, — this is the set of all “lower” elements, i.e., elements with
all-coordinate values < m/2. It is clear that:

(mTH)nfor odd m,

(? +1)" for evenm

Al =|A| =

The following results were introduced in [6].

(1) 4 can be split into |H | disjoint discrete structures isomorphic to binary cubes:
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Emi1 =& U U&p,

where every &; contains exactly one vertex from H, while the remaining vertices of £; can be
determined uniquely by this vertex through the complementarity interchanges of the
coordinate values. £ N &; = @, if i # j. The procedure is called “cube-splitting” of Zj , ;.

(2) The “cube-splitting” of =7, ; keeps the monotonicity property in the following way: let F be a
monotone binary function defined on Z},;, then either Ny N &; is empty, or it satisfies the
binary monotonicity property, i.e., for arbitrary vertex a of Np N &;, all vertices of &; greater
than a, also belongto Np N E; (fori =1,---,n).

By integrating (1) and (2), a novel monotone recognition method has been proposed in [6].

2.1 Definitions/descriptions

For each vertex V; = (v, -+, v; ) of H we compose the following set:
Ev, ={(ay,",a,) € 5 11la; € {viym—wv;}forallj,1<j<n}

and call €y, the vertical equivalence class of V;.
€y, contains a unique vertex from H, - this is the vertex with all coordinates > m/2; and
contains a unique vertex from H, - this is the vertex with all coordinates < m/2. The remaining
vertices of €y, can be obtained by component value inversions (with respect to m). €y, N SV]. =
@ for different vertices V; and V; of H. In this manner Z%,, can be split into |ﬁ | disjoint sets
/equivalence classes/ uniquely defined by the elements of H (or H).

The number of elements of £, varies between 29 and 2™ depending on the number of
components of V; differing from m/2. Indeed, if k denotes the number of components of V;
differing from m/2, i.e. k = |{vij|vl-]. # (m — vij)}|, then |8Vi| = 2% Notice that k = n always

for odd m. For example, Fig. 2 demonstrates €3 4,3y, €(2,3.4) and €42 2y In =3,
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Fig. 2. Examples of cubes in a cube split of 53.
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For every vertex (a4, -+, ay) of the equivalence class €y, we distinguish its sub-list of all
coordinates accepting a value differing from m/2, let this be the list: (as,,,ag, ). This list
exactly fits the list of all coordinates of V; that are different from m/2. The reminder part of
coordinates accepts the only value m/2 over the V;, as well as over the whole set of vertices of
Ey,. Now, identifying (a,, -, a5, ) with the binary sequence g = (By,*+, By) of length k such
that f; = 1 if and only if as; > m/2, - we map (aq,-+,a,) into the vertex f = (f1,+, Bx) of
the k-dimensional binary cube E¥. In this manner, we obtain a 1-1 mapping M: E&v, > E K The
vertex of €y, with all coordinates < m/2 is mapped into the vertex (0,--+,0) of E k (on the 0-th
layer); the vertex of &, with all coordinates > m/2 is mapped into the vertex (1,--+,1) of E k
(on the n-th layer); and, in general, all vertices of Evy which have [ coordinates > m/2
(consequently, m — [ coordinates < m/2), are mapped into the vertices of [-th layer of E¥,

Hereafter, all structures (vertices, chains, cubes, functions, etc.) in 2}, ; will be referred
to as origin; and all structures (vertices, chains, cubes, functions, etc.) in binary cubes will be
referred to as induced.

For example, the induced binary cubes for €3 43), €(2,3.4) and €4 5 7, are given in Figure
3, (a), (b), and (c), correspondingly.

(b) (©)

Fig. 3.

2.2 The Algorithmic Framework

Let F be a monotone binary function (which should be recognized with the help of an oracle),

defined on Z, ;, and let N denote its set of units of function F.

Algorithm 1
In a theoretical level description, the algorithm implements the following steps:

1. Apply the cube-splitting on &7, and let £, +-,.€ | be the equivalence classes of the upper
homogeneous elements.
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2. Compose the corresponding induced binary cube E; for every &;.

3. Apply the Hansel’s algorithm to recognize the induced Boolean function f;, defined on E; as
follows: for every B € E;, f;(B) =1 if and only if F(b) = 1, where b is the origin of # in
Ep i (fori=1,-, |H|)

4. Transfer the recognition results into the =7} ;.

3. Implementation

3.1 Implementation details of Step 1 and Step2

We consider the lexicographic ordering of the vertices of |ﬁ |, where the smallest numerical
values of coordinates are coming first. Thus, the smallest vertex of H in this ordering is

m+1 m+1 m+1, . . . m m m . .
(= ) ) if m is odd, and it is the vertex(—,—,---,—), if m is even; the greatest
2 2 2 2° 2

2
vertex is (m,m,---,m). Henceforth, we will assume that H = {V;,V,,---,Vg} is the
lexicographically ordered set of upper homogeneous elements.

The cube splitting of Zy, ,; assumes that we compose for every vertex V; = (v;,,*+,v; ) of q
its vertical equivalence class Ey,, and the corresponding induced binary cube to this.

But at this point we do not need to compose and keep (and further to map to the binary cube)
the whole set £y ; instead, with every vertex V; = (v;,, -+, v;,) of H we will keep the following
parameters:

- the number 7y, of coordinates of V; differing from m/2, - this will determine the size of the
induced binary cube E;. When V;, that is the issue, is evident, we will just use the notion t for
this,

- the positions of coordinates differing from m/2, we denote it by the vector V., and

- the values of coordinates differing from m/2, we denote as the vector V.

7, Viz, and Vi will allow the easy reverse mapping, RM : E* — &, i.e., will allow to recover
Ev,

For example, with the vertex (2,3,4) of Z3 we keep:

- numerical value 2, - this is the number of its coordinates differing from m/2,

- indexes 2,3 - these are the coordinate indexes, where the values are differing from m/2,

- and 3,4 are the values at the coordinates 2 and 3.

&(2,3,4) is mapped into the 2-dimensional binary cube E* according to 2™ and 3" coordinates of
(2,3,4), and the accompanying vectors are V;. = (2,3) and Vi4 = (3,4).

The reverse mapping is as follows: given the pair (2,3,4) and E? or alternatively, V;., Vs and
E?. Consider an arbitrary vertex of E2, for example, let § = (1,0), then it follows that the origin
of B in £z 34y is @ = (2,3,0), because:

- the first component, missing at V;.., must be m/2, that is, a; = 2,

- the second component should not be inverted in accord to § = (1,0), and, thus, a, = 3,

- the third component should be inverted, and thus, a; =4 — 4 = 0.

In general, let (B, -+, Bx) be an arbitrary vertex of the k-dimensional binary cube E¥, and let
(vy,+++, 1) be the upper homogeneous vector of the origin of E¥, and suppose that sy, -+, s}, are
its coordinates differing from m/2. Then, the origin of (84, *-, Bx) is (a4, ***, a,), where:
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_ US]. lfﬁ] =1
5j m — v,if p; =0
a; =m/2fori # sq,-+, Sg.

forj=1,-,k (1)

3.2 Implementation Details of Step 3 and Step 4

In this part, Algorithm 1 recognizes monotone Boolean functions in the |ﬁ | number of binary
cubes of different sizes (some of the functions might be identically 0, but we do not know this
fact beforehand), by applying the Hansel’s algorithm.

Also at this step, we will not deal with the binary cubes themselves, and we will be using
the chain algebras, and therefore, we have to map (by the reverse mapping) all induced structures
(vertices, functions, chains, etc.) into their origins in =}, ;.

For example, consider some monotone Boolean function f; on a k-dimensional binary
cube. If we obtain the value f;() on some vertex 8 (in the process of the Hansel’s algorithm),
and know its origin upper homogeneous vertex (vq,:+,v,) and also its coordinates differing
from m/2 (let they be sq, -+, Si ), then we can set that F(@) = fl(ﬁ ), where the coordinate values
of @ are defined in accord to (1).

Similarly, we can map chains from the induced binary cubes into the =, , ;.

For example, the maximum length chain <(000), (100), (110), (111)> in the cube in
Figure 2 (a) (which is induced to €3 43)), is mapped to the origin chain <(101), (301), (341),
(343)>in =2, ;.

Upon receipt of the oracle’s response for a given vertex of the binary cube - the response
is mapped into the origin vertex of =, ;. Certainly, the response value could also be extended
by the monotonicity property to the other relevant vertices of Z7;.;. But in this research we
prefer and emphasize the opportunity of the parallel implementation of the recognition
algorithms in all the induced binary cubes, and so we keep them as separate nonintersecting
processes.

4. Small Number of Units

Note that Algorithm 1 is worth applying when a large number of unit vertices of the monotone
function appear in the upper homogeneous area H.

However, in some cases, mostly coming from applications, the function to be recognized has
a small number of unit vertices in the upper area H, or its complement has a small number of
zero vertices in the lower homogeneous area H. In the latter case we can recognize the
complement of the monotone function. For this reason, the following points will be taken into
account:

- &y, can be defined for each vertex of H (obviously we will obtain the same set). In the
example given in Figure 2 the highlighted sets of H will demonstrate €101 €21,0) and
€(0,2,2)> as well.

- The mapping M: €y, — E * will be defined as follows: for every vertex (ay,++,a,) of &y,
let (as,,-,as,) denote its subsequence with all coordinates differing from m/2. Identify
(as,, -, as,) with the binary sequence f = (B, -+, By) of length k such that ; = 1 if and
only if as; < m/2. The vertex of &, with all coordinate values < m/2 is mapped into the
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vertex (1,++-,1) of E¥, - this is on the n-th layer; the vertex of Ey, with all coordinate values
< m/2 is mapped into the vertex (0, +-,0) of E¥, - this is on the 0-th layer; and, in general,
all vertices of &,, which have [ coordinates < m/2 (consequently, m — [ coordinates >
m/2) are mapped into the vertices of I-th layer of EX.

- The reverse mapping: RM: E; — &y, will be implemented as follows: let (8y,--, Bi) be an
arbitrary vertex of the k-dimensional binary cube E¥, and let (vy,---,v,) be the lower

homogeneous vector of the origin of EX, where sy, -, s;, are coordinates differing from m/
2.

Then the origin of (B4, -+, Bx) is (aq,-*+, ay), where:
Usj lf ,8] =0 ]
asf_{m—vsjifﬁj=1 forj=1,--,k 2)

a; =m/2fori # sq,, Sg.

4.1 Constraints

Consider the application, which is the generalized model of the known association rule mining -
in case where in addition to the presence or absence of elements in itemsets, the number of their
repetitions is also included. The details are given in [7]. Here we highlight the following
constraints/restrictions that may appear with this problem. In terminology of supermarket basket
analysis, here we distinguish two postulations: some item exists in the current basket, and
second, which is the actual number of that item in the basket.

Let a; be the repetition number of the i-th element, fori = 1, -+, n.

(1) the classic case is the (0,1) vector of item indicators in baskets, basket inventory.

(2) aq + -+ a, < r, - the summary number of elements’ repetitions (the basket volume) is
restricted by 7,

(3) a; < 1y, -the repetition number of each q; is restricted by 77, the item purchase restriction.

In these cases, the problem deals with the recognition of monotone functions, where:
(2) the zeros of the function appear in lower layers of the multivalued grid,
(3) the zeros of the function appear in some homogeneous bottom area of the grid.

In both cases it is more efficient to use the second algorithmic scheme of [6].
The idea is as follows. Let F be a monotone function defined on Z%, ;. First we note that Np N A
satisfies the monotonicity property, i.e., for arbitrary a, b of H, ifa = b then F(a) = F(b).

Algorithm 2
1. Firstly identify the part of the monotone function belonging to H by one of the known
resources of identification of monotone functions, and thus, reduce the size of the multi-

valued grid. As a result we obtain N N H.

2. Apply the cube-splitting according to N N H, that considers the vertical equivalence
classes E;,+,.€ yng only for the vertices of Ny N H.

3. Implement 2-4 Steps of Algorithm 1.

The algorithm can easily be adjusted for the identification of the complement of F in =}, .
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4.2 Resources

To implement Step 1 of Algorithm 2 we have the following resources of identification of
monotone functions in A.

a)  The first resource is the known algorithm by V. Alexeyev [2]. We notice that applying
the algorithm to identification of monotone functions on H (mstead of £}, ,1) is a significant
reduction of the work. The complexity of the algorithm U, on H will be:

T(Uo) < IMy] + |log2(3)] - Iy,
where M; and N; are the middle layers of A, defined accordingly.

b)  The second resource that we may use, is - applying the cube-splitting itself for identifying

the function on H. We define the upper homogeneous area H of H,: this is the set of all elements
of Z} ., with all coordinate values = 3m/4; then
1. Apply the cube-splitting on H and find &;,-,.€ 7> equivalence classes according to the

elements of H.

2. Compose the corresponding induced binary cube E; for every &;.

3. Apply the Hansel’s algorithm to recognize the induced Boolean function f;, defined on
E; as follows: for every § € E;, f;(f) =1 if and only if F(b) = 1, where b is the

origin of B in H (fori =1, - |ﬁ|)
4. Transfer the recogmtlon results to H.
At this point we find Nz N H, and then continue with:
5. Apply the cube-splitting according to N N H, that is find the vertical equivalence
classes &, :+,.€|npnp| only for the vertices of Np N H.
6. Implement 2-4 Steps of Algorithm 1.

¢) The cube-splitting can be applied recursively.
The following resource is also worth mentioning that can be used in all cases/algorithms. This is
the growing technique [8] in monotone Boolean function recognition and chain computation
algebra [9].

5. Conclusion

The problem of query based algorithmic recognition of monotone binary functions defined in
multi-valued grids is known as a hard problem. It was investigated by V. Korobkov, V.
Alekseev, A.Serjantov, and others. It is known a chain-split type algorithm developed by V.
Alekseev, where the complexity estimates were given in terms of sizes of the middle layers of
the grid. A novel method of identification of monotone binary functions based on the partitioning
of the grid into discrete structures isomorphic to binary cubes was proposed in our recent work,
where a theoretical level description of two algorithmic schemes was introduced. This paper
provides the implementation details of the algorithms, as well as focuses on the recognition of
monotone binary functions with a small number of units /or zeros/ distributed in homogeneous
areas of the grid.
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AHHOTaANUA

HoBrrit m0o1X01 MOHOTOHHOTO PaclO3HABAHUS Ha OCHOBE Pa30MEHNs MHOTO3HAYHOM PeIIeTKH
Ha JIUCKPETHBIE CTPYKTYpPHI, N30MOp(pHbIe OMHApHBIM KyOaMm (MeTon “KyOudyeckoro pa3oueHus’)
NPEJIOKEH B CEPUH MOCIEIHUX paboT, e Ha TEOPETHUYECKOM YpPOBHE JAHO OMHCAHMUE IBYX
QITOPUTMOB /AITOPUTMUYECKUX CXeM/ pelieHus 3aayd. B gaHHOW craThe NpPUBOIUTCA
noIpoOHOE OMHMCAHME JieTallell pealn3aluy 3TUX aJITOPUTMOB, a TAK)KE pacCMaTPUBAETCS cllydai
pacro3HaBaHusi MOHOTOHHON (YHKUIMHU ¢ HEOOJBIIMM YHWCIOM €AMHHUII, YTO CBSI3aHO C PSJIOM
MPAKTUYECKUX TPUIIOKEHUH.

KiawueBble cj10Ba: pacrno3HaBaHHE MOHOTOHHOM (DYHKIIMM, MHOTO3HA4yHas peIIeTKa,
KyOndeckoe pa3OneHHE.
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