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Abstract

The aim of this paper is to newly generalize the classical Neyman-Pearson Lemma
to the case of more than two simple hypotheses.
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1. Introduction

The Neyman-Pearson lemma is the foundation of the mathematical theory of statistical
hypothesis testing.

We call the statistical hypothesis each supposition statement which must be verified con-
cerning the probability distribution of an observable random object. The task of statistician
is to construct an algorithm (test) for effective detection of the hypothesis which is realized.
The decision must be made on the base of vector of results of N independent identically dis-
tributed experiments, called a sample and denoted by x = (1, ey Ty ..., TN ), the elements
of XN, where X is the space of possible results of each experiment.

The principle of Neyman-Pearson plays a central role in both the theory and practice of
statistics.

There exists a vast literature where the theory of the hypothesis testing and the Neyman-
Pearson lemma are expounded in detail [1]-[10]. The paradigm of Neyman-Pearson is fre-
quently used in different applications [11]-[13]. But the most part of these texts is dedicated
to the case of two hypotheses.

The possibility of extension of Fundamental Lemma to the case of multiple hypotheses
is mentioned in [3]. Since the testing of hypothesis is actual in applications we present our
version of the Lemma for the case of three, or more hypotheses.

The idea of this study was formulated in [4].

2. Problem Statement and Result Formulation

Let P(X) be the space of all probability distributions (PDs) on X. Let X be RV taking
values in X with one of M continuous PDs G,, € P(X), m = 1, M. Let the sample x =
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(X1, .o Ty oy TN ), T € X, m = 1, N, be a vector of results of N independent observations
of X.

Based on data sample a statistician makes a decision which of the proposed hypotheses
H, :G=0G,, m=1M,is correct.

The procedure of decision making is a non-randomized test ¢y (x), it can be defined
by division of the sample space XY on M disjoint subsets A,,, m = 1, M. The set A,,,
m =1, M, consists of vectors x for which the hypothesis H,, is adopted.

We study the probabilities of the erroneous acceptance of hypothesis H; provided that
H,, is true

A _
A (pn) = G (A) = 3 Gpx), ml=1M, m#L.
X: XEA;
If the hypothesis H,, is true, but it is not accepted then the probability of error is the

following:

A
Ul (Pn) = Y (o) =1 = Gr(An), m=T1,M.
l:l#m
For the given preassigned values 0 < oy, @59, ..., 3y -1 < 1 we choose numbers 71,

T, ..., Thy—1 and sets A,,,, m = 1, M, such that

* {x - min (g;g; gj&) > Tl} 1= GY(AD) = afy,

r =T N {x . min (gig; gj&) > TQ}, 1 — GY(A3) = oy,

P —Iﬁm%m...mA*M_Qm{x

and
=N —(ATUA UL UAL, ) = AN AN N AL,

The corresponding error probabilities are denoted by
(o), myl=1,M — 1.

Theorem: The test determined by the sets Aj, A;, ..... , Al s optimal in the sense that,
for each other test defined by the set By, Bs, ...., By with the corresponding error probabilities
Bl|m7 m,l = 17M7

if Bip < iy, then max(Bip, Bus, - Bijar) = max(ajjy, ajjg, - Ajar),

if 52|2 < 04§|27 then max(52|3,52|4, ---752|M) > max(oz§|3,a§|4, '---704§|M)7

. * *
and if Pr—v—1 < Qyqpnors then By—im = oy_q -

For simplicity of formulations we present the proof of the Theorem for M = 3.
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In that case for the given values 0 < o, a5, < 1 and chosen numbers T; and 75 sets
Ax..m =1,3, are the following:

= {x . min (g:g; g;g;) > Tl}, 1 -GN (A} = o,

ST} 1= G ) = o
and

=AY = (AU 4.
The corresponding error probabilities are denoted by

A (on), m,1=1,3.

We must prove that the test determined by the sets Aj, A5 and Aj is optimal in the sense
that, for each other test defined by the sets B;, By and B3 with the corresponding error
probabilities By, m,l = 1,3, if fip < af);, then max(By, fi3) > max(ajy, ajp3), and if
Bajp < @) then fys > args.

Proof: Let ® 4. and ®z,, be the indicator functions of the decision regions Ay and B,,.
For all x = (1, Ty, ...,zx) € XV, the following inequality is correct

(D4 (%) — D5, (%)) (G (x) — max (T3 Ga(x), Ty Ga (x))) = 0.
Multiplying and then summing over XV we obtain
D 4+ (x)G1(x) — P s (x) max(T1Ga(x), T1G3(x))
—Pp, (x)G1(x) + Pp, (x) max(T1Ga(x), T1G3(x)) > 0,
> [@a(0)Gi(x) = Dz (x) max(TyGa(x), Ty Gs(x))

x: x€XN

=05, (x)G1(x) + g, (x) max(T'G2(x), T1G3(x))] > 0,
> [Gi(x) = Tymax(Gy(x),G3(x))] — Y [Gi(x) — Ty max(Gy(x), Gs(x))] > 0,

x: xE.AT x: XEB
l—ajy, —Th max(afp, Oéﬁs) — (1 = Byp) + Ty max(Byp, B1j3) > 0,
—Bip + ag)y < Ti[—max(aj)y, ajj3) + max (B2, Bis)]-

We see now that from fy; < afy, it follows that max(S1)2, B13) > max(aj,, aj)3).
The proof of the other case is similar. The following inequality takes place for all x € X'V

(D.45(x) — i, (%)) (Ga(x) — TaGa(x)) > 0.
Multiplying and after that summing over X we get
D 43 (x)Ga(x) — Py (%) T2G3(x) — P, (x) Ga(x) + P, (%) T2G3(x) = 0,

Z [CI)A; (X)GQ(X) — CI)_A; (X)TQGg(X)) — CI)BQ (X)GQ(X) + CI)BQ (X)TQGg(X)} Z 0,

x: x€XN
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Y [Ga(x) —ToGs(x)] = Y [Ga(x) — ToGs(x)] > 0,

x: x€A3 x: XEBy
1 —ag, — Toags — (1= Baje) + Tafop3 > 0,

—Ba2 + agp < Ta(B53 — agz)-

It is clear that if fyp < of,, then a3 > ajs.
The theorem is proved.

3. Conclusion

In this paper we generalized Neyman-Pearson criterion of optimality for many continuous
hypotheses. When distributions of X are discrete the Lemma can be reformulated with use
of randomization as it is noted in [3], [4] and [7].

Bayesian testing was considered for the case of two and more hypotheses in [4], [5].
It is desirable have intention to consider multyhypotheses Bayesian testing for the model
consisting of many objects.
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UhjdwG-NhpunGh uyqpnilpp puqidwyh Jupywoltph
nbunwynpdwl Yytpwpbpyjug

G. Qwpnipynibyub b @. {wynpjwul
Udthnthnid

Uju wpfuwnwlpnid Gepyuyugquo tLtijdwG-MhpunGh nuuwywi (tidwjh pnhwipugnidp
tpyniuhg wytih JupluoGtph Jupwptipyuy:

O npunnune HelimaHa-ITupcoHa npu npoBepke
MHOTHUX TUIIOTE3

E. Apytionan u I'1. Akonsan

AnHoTanuys

LleAb HacTOSAIEN CTAaThU HPEACTAaBUTH HOBOE ODOOOIIeHHEe KAACCUYECKOU /\eMMbI
Hetimana-ITupcona aast 6oaee yeM ABYX THIIOTES.



