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Abstract

In 1981, the third author proved that each 2-connected graph G with 6 > (n+k)/3 is
hamiltonian and each 3-connected graph contains a cycle of length at least min{n, 3§ —
k}, where n denotes the order, 0 - the minimum degree and « - the connectivity of G.
Short proofs of these two results were given by Haggkvist and Yamashita, respectively,
occupying more than three pages for actual proofs altogether. Here we give much
simpler and shorter proofs actually occupying the two-thirds of a page.
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Let G be a finite undirected graph without loops or multiple edges. A good reference for any
undefined terms is [1]. We reserve n, §, £ and ¢ to denote the order (the number of vertices),
minimum degree, connectivity and circumference (the length of a longest cycle) of G. The
vertices and edges can be interpreted as simple cycles of lengths 1 and 2, respectively. A
cycle C' in G is called a Hamilton cycle if |C| = n and is called a dominating if G\C' is
edgeless.

In 1952, Dirac [2] proved that each graph with 6 > n/2 is hamiltonian (i.e. has a Hamilton
cycle) and in each 2-connected graph, ¢ > min{n,2d}.

In 1981, the third author [5] was able to obtain two analogous Dirac-type results involving
connectivity .

Theorem 1 [5]: Every 2-connected graph with § > (n + k)/3 is hamiltonian.

Theorem 2 [5]: In every 3-connected graph, ¢ > min{n,30 — x}.

The original proofs [5] of Theorems 1 and 2 are somewhat lengthy and complicated.
Short proofs of these two results were given by Haggkvist [3] and Yamashita [7], respectively,
occupying more than three pages for actual proofs altogether.

In this note we present much simpler and shorter proofs of theorems 1 and 2 (actual proofs
on about 2/3 page) based mainly on standard arguments and the following two theorems.

Theorem 3 [4]: Let G be a 2-connected graph with 6 > (n+ 2)/3. Then every longest
cycle in G is a dominating cycle.

Theorem 4 [6]: Let G be a 3-connected graph. Then either ¢ > 36 — 3 or every longest
cycle in G is a dominating cycle.

The set of vertices of a graph G is denoted by V(G) and the set of edges - by E(G).
For S a subset of V(G), we denote by G\S the maximum subgraph of G with vertex set
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V(G)\S. For a subgraph H of G we use G\ H short for G\V(H). We denote by N(z) the
neig_h)borhood of a vertex x in a graph G._)We write a cycle C' of G with a given orientation
by C. For z,y € V(C), we denote by x C'y the subpath of C' in the chosen direction from
x to y. For z € V(C'), we denote the successor of z on c by 2T and the predecessor by x~.
For X C V(C), we define X = {z"|z € X}.

Lemma 1: Let G be a 2-connected graph and S - a minimum cut-set in G. If every
longest cycle in G is a dominating cycle, then either ¢ > 30 — k + 1 or there exists a longest
cycle C with S C V(C).

Proof: Choose a longest cycle C' in G such that |V(C) N S| is as great as possible.
Assume the converse, that is S Z V(C) and =z € S\V(C). Since C' is dominating, N(z) C
V(C). Let &,...,& be the elements of N(z), occurring on C' in a consecutive order. Put
M, = {fﬂV(fj?f;ﬁﬂS # (0} and My = N(z)\M;. Since x € S, we have |M;]| < k—1 and
|Ms| = |N(x)| — |M;| > § — k+ 1. Further, since C' is extreme and |V (C') N.S| is maximum,
N(@)N Nt (@)NMy+t =0 and ¢ > |N(2)| +|N*(2)]+ My | = 2|N(2)|+ | M| > 35 —k+ 1.
=

Proof of Theorem 2: Let G be a 3-connected graph, S be a minimum cut-set in G
and let Hy, ..., H, be the connected components of G\S. The result holds immediately if
¢ > 30 — 3, since 30 — 3 > 30 — k. Otherwise, by Theorem 4, every longest cycle in G is a
dominating cycle. If S € V(C') for each longest cycle C' then by Lemma 1, ¢ > 3§ — k + 1.
Let C be a longest cycle with S C V(C). If V(G\C) = () then |C| = n and we are done. Let
x € V(G\C). Assume w.lo.g. that x € V(H;). Put Y; = N(x) U N*(z). Clearly |Y1| > 26
and it remains to find a subset Y3 in V(C') such that Y;NY; = () and |Y3| > §—k. Abbreviate,
Vi = V(Hy)US. Suppose first that Y1 C V. If V(Hy) C V(C), then take Yo = V(Ha)
since |V (Hsy)| > § — k + 1. Otherwise, there exist y € V(H,\C) with N(y) C V(C) (since
C' is dominating) and we can take Yo = N(y)\S. Now let Y7  Vi. Assume w.lo.g. that
Y1 NV (H,) # 0. Since N(z) C V;, we can choose z € Nt (z)NV (H,). If N(z) C V(C), then
take Yo = N(2)\S, since N (z) is an independent set of vertices (by standard arguments) and
therefore, N(z) N N*(z) = (. Otherwise, choose w € N(z)\V(C). Clearly N(w) C V(C),
w € V(Hy) and N(w) N N*(x) = {z}. Then by taking Y2 = (N(w)\{z})\(S\{z7}) we
complete the proof. [ |

Proof of Theorem 1: Assume the converse, that is ¢ is a non-hamiltonian 2-connected
graph with 0 > (n++x)/3. Let S be a minimum cut-set in G. Since § > (n+k)/3 > (n+2)/3,
by Theorem 3, every longest cycle in G is a dominating cycle. Further, since ¢ <n < 30 — k&,
by Lemma 1, G contains a longest cycle C' with S C V(C'). As in the proof of Theorem 2,
¢ > 36 — K, contradicting the fact that 6 > (n + x)/3. [
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JuuyuwlgJwonipjul ywpwitinpny “+hpwljjuwl mtuph
tnynt ptinptidGtph wwpq wywugniyglbp

4. UnutivywG, U, ‘Ghynnnuywl L d. GhynnnujwG
Udthnthnid

Gppnpn htinhGuyp 1981-h6 wwywugnighy £, np juiwjuyui 2-juyulyguo qpudp 6 >
(n+ k) /3 wquyiwlh nhypnid hwdhjmnGyua £, huly juiwjwiui 3-juywlgud qpud niGh
wnluql min{n, 30 — £} Gpyunpnipjwb ghyy, npntn 7-p gpubh ququpltph pwGwya t, o -
G° GJuquqgnyyG wunmhdwlp, huy -G JuyuyguompniGp: <wqyhupp L 3wdw)hnwd,
hwiwwwunwufuwlwpwp, qquihnptl Ypdwwnty GG wju tpym ptnptdGhph GwuGwlywd
wwuwgnygltpp® tptp toh vwhdwGGbpnd: Lhpjw wfuwwmwlpnid plnhwlnipp 2/3 toh
uwhdwGGbpmy Gepyuwjugymy GG Jwwm wybih upd L wwnpg wuyugniygltp:

IIpocTEIe AOKa3aTeABCTBA ABYX TeopeM AUPAKCKOI'O TUIIA
C IIapaMeTpPOM CBSI3HOCTHU

K. MocecsH, M. Hukorocsa n >K. Hukorocsua

AnHoTanus

Tpetuit aBTop B 1981 roay A0Kasan, 4TO Ka’KABIY 2-CBA3HBIN rpad IpU YCAOBUM § >
(n+kK)/3 TaAMUABTOHOB, & KaXKABIYA 3-CBSI3HBIHN Ir'pad ANGO FaMUABTOHOB AUGO COAEPIKUT
IIUKA AAVHBI IIO MeHblllell Mepe 30 — k , rae n 0O0O3HauaeT YMCAO BepLIWH rpada,
)- MUHHUMaAbHas CTeIlleHb U k - CBA3HOCTb. XAarBUCT U SIMalINTa, COOTBETCTBEHHO,
3HAQUUTEABHO COKPATUAY OPUTMHAABHBIE AOKA3aTEeAbCTBA ITHUX TeOpeM B PaMKax Tpex
cTpaHull. B HacTogiiel cTaTbe B paMKax 2/3 CTpaHMUI] IIpepAaraloTcsa HOBBIE Ooaee
KOPOTKHE U IIPOCTBIe AOKA3aTeAbCTBaA.



