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Abstract 
In this report there are presented some primary results obtained in 

Digital Signal and Image Processing laboratory of the Institute for 
Informatics and Automation Problems of  NAS RA. 

 
 

Fast Discrete Orthogonal Transforms: The computation of unitary transforms is a complicated 
and time-consuming task. However, it would not be possible to use the orthogonal transforms in 
signal and image processing applications without effective algorithms to calculate them. Note 
that both complexity issues–efficient software and circuit implementations are the heart of the 
most applications. An important question in many applications is how to achieve the highest 
computation efficiency of the discrete orthogonal transforms (DOT) [1]. The suitability of 
unitary transforms in each of the above applications depends on the properties of their basis 
functions as well as on the existence of fast algorithms, including parallel ones. A fast DOT is an 
efficient algorithm to compute the DOT and its inverse with an essentially smaller number of 
operations than direct matrix multiplication. 
Recall that the DOT of the sequence )(nf  is given by  
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where ]}[{ kn  is an orthogonal system. It follows that the determination of each Y[k] requires N 

multiplication and N – 1 addition. Because we have to evaluate Y[k] for ,1,0  Nk  it follows 
that the direct determination of DFT requires N(N – 1) operations, which means that the number 
of multiplication and additions/subtractions is proportional to 2N , i.e., the complexity of DFT is 

).( 2NO  
General Concept in Design of the Fast DOT Algorithms: A fast transform fTN  may be 
achieved by factoring the transform matrix NT  by the multiplication of k sparse matrices. 
Typically, nN 2  and ,1212 FFFFT nnn   where iF  are very sparse matrices so that the 

complexity of multiplying by iF  is ),(NO .,1 ni    
Fast Fourier Transform: Particularly, the Fourier matrix NF  of order nN 2  can be 
represented as ,112211 BABABABF nnnN   where rA  and iA  are sparse matrices of the 
following form 
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Fourier transform has the complexity )log( 2 NNO . 
The nN 2 -point Fourier transform of a },,,{ 110  Nxxxx   with assumption ]1[]1[  Nxx  
can be represented as (see also [2,3]) 
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By introducing the notations ;1,0,]4[][ 2
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N  FFT can be realized as follows 
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The number of operations for a realization of FFT given below 
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Fast Hadamard Transform: The Hadamard matrix NH  of order nN 2  can be factorized as 
follows: ,121 FFFFH nnN   where    .,,2,1,222 1 niIHIF inii    It is not difficult to 

show that nN 2 -point fast Hadamard transform (FHT) has the complexity )log( 2 NNO  (Note 
that FHT requires only the additions and subtraction operations). Later, in [4] were developed 
more general FHT which have the complexity  1log 2  k

nnknD  with assumption that 
Hadamard matrix nH of order n has the following representation 

kkn AvAvAvH  2211  

where iv  are k-size (-1,+1) mutualy orthogonal vectors, and kjA j ,1,    are nk
n   size  (0,-1,+1) 

matrices with the following conditions 
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A-S theorem and its generalization: In 1981 Agaian and Sarukhanyan [5] have offered a 
construction method of Hadamard matrix (H-matrix) of order mn/2 proceeding from existence 
H-matrices of order m and n (see Figure below).  

 
Later, this result has been named by multiplicative theorem A-S (the multiplicative theorem of 
Agaian-Sarukhanyan) [6]. In the same place, the existence of H-matrix of order mnpq/16 is 
proved based on A-S theorem. Further, by using of the Multiplicative method there have been 
developed methods of construction hybrid orthogonal matrices and corresponding fast transform 
algorithms. Last years A-S methodwas successfully applied at construction of Lapped transforms 
and Filter Banks, and also at construction Antipodal Paraunitary matrices and their application in 
orthogonal frequency division multiplexing (OFDM) systems [7, 8]. 
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