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Abstract

Let [ be the length of a longest path in a 2-connected graph G and c¢ the circum-
ference - the length of a longest cycle in G. In 1952, Dirac proved that ¢ > v/2l, by
noting that ”actually ¢ > 2/, but the proof of this result, which is best possible,
is rather complicated”. Let Ly, Lo, ..., L,, be a vine on a longest path of G. In this
paper, using the parameter m, we present a more general sharp bound for the circum-
ference ¢ including the bound ¢ > 2v/1 as an immediate corollary, based on elementary
arguments.
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1. Introduction

We consider only undirected graphs with no loops or multiple edges. Let G be a 2-connected
graph. We use ¢ and [ to denote the circumference (the length of a longest cycle) and the
length (the number of edges) of a longest path of G. A good reference for any undefined
terms is [1].

In 1952, Dirac [2] proved the following.

Theorem A: [2]. In every 2-connected graph, ¢ > /2.

In the same paper [2], Dirac considered a sharp version of Theorem A by noting that
actually ¢ > 2v/1, but the proof of this result, which is best possible, is rather complicated”.
Analogous questions were studied for k-connected graphs when k£ > 3 by Bondy and Locke
([4],[5]).

In this paper, using a new parameter, we present a more general sharp bound for the
circumference ¢ in 2-connected graphs in terms of [ and the length of a vine on a longest
path of G, including the bound ¢ > 2v/1 as a corollary, based on elementary arguments. In
order to formulate this result, we need some additional definitions and notations.

The set of vertices of a graph G is denoted by V(G) and the set of edges by E(G). If Q
is a path or a cycle, then the length of ), denoted by Z(Q)’ is |E(Q)| - the number of edges

in Q. We write a cycle Q with a given orientation by @ . For z,y € V(Q), we denote by
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— —
x (Qy the subpath of @) in the chosen direction from = to y. We use P = x Py to denote a
path with end vertices  and y in the direction from x to y. We say that vertex z; precedes

— —
vertex z on @ if 2z, 25 occur on () in this order, and indicate this relationship by z; < 2.
We will write 2 < 2o when either z; = z, or z; < 2.

Let P =2 Py be a path. A vine of length m on P is a set

of internally-disjoint paths such that

D) x=x1 <2y <Yy 23 <Y 324 < . 2Ty < Ym_1 = "Ym =y on P.

The main result is the following,.

Theorem 1: Let G be a 2-connected graph. If {Li, Lo, ..., Ly} is a vine on a longest path
of G, then

21 m+1 :
P R when m s odd,

21_% + m+1

] 5, when m s even.

Equivalently, Theorem 1 can be formulated as follows, implying Dirac’s conjecture as an im-
mediate corollary.

Theorem 2: Let G be a 2-connected graph. If {Li, Lo, ..., Ly} is a vine on a longest path
of G, then

\/4l +(c—m —1)2, when m is odd,
c>

\/4l +(c—m—1)2—=1, when m is even.
Corollary 1: In every 2-connected graph, ¢ > 2v/1.

Note that if m is odd, then ¢ > 2+/1.

The following lemma guarantees the existence of at least one vine on a longest path in a
2-connected graph.
The Vine Lemma: [3|. Let G be a k-connected graph and P a path in G. Then there are
k — 1 pairwise-disjoint vines on P.

2. Proofs
Proof of Theorem 1. Let P = x?y be a longest path in G and let

be a vine of length m on P. Put
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— — —
Lz‘ = T; Lzyz (Z = 1,...,m), Al =T P.I'Q, Am = Ym—1 Pyrm
—
Ai:yi—l P$i+1 (i:2,3,...,m—1),
—
Bi:$i+1 Pyz (Z: 1,...,m—1),

Using the given vine Ly, Lo, ..., L,,, we construct a number of appropriate cycles and
obtain a lower bound for the circumference as a mean of their lengths. First, we put

Qo = G(Az U L),

i=1
j=i+1

where i € {1,2,...,(m —1)/2} when m is odd, and i € {1,2, ..., (m — 2)/2} when m is even.
Since I(L;) > 1 (i =1,2,...,m) and a; > 1, a,, > 1, we have

m m—1
c>1(Qo) :Zl )+ a1+ am + Zaizm—i—al—i—am. (1)
i=1 =2
Case 1. m is odd.
For each i € {1,2,...,(m — 1)/2}, we have
c>UQ;) =bi+bmi+ Y (a; +1(Ly))
j=it1
Z bz + bm_z‘ -+ Z a; +m — 2i. (2)
j=it1
By summing (1) and (2), we get
m—1 1 m—1
m+1 2 ja n m —|— 1 2
> ) > —_—m—2 .
y 2 LNz 2 byt 2
Since | = Y77 b + 3™ a;, we have
m+1 m+1 m? —1 (m+1)?
SR R T
implying that
2l m—+1

>

“m+1 + 2
Case 2. m is even.
As in Case 1, for each i € {1,2,..., (m — 2)/2},

m—i

j=i+1



Zh. Nikoghosyan 17

By summing (1), (3) and 3¢ > bm, we get

m 1 m—1 m m2_2
2 2 i=1 i=1 i=0
m—2
2 2
:l—i-@m—ZZi:l—i-M,
2 = 4
implying that
9] — 1
c> : 2 m+1.
“m+1 2

Case 2.2. 1(c+1) <D

m|3

Put

:m+2
Further, for each i € {1,2, ..., mT_Q}, we put
R; = Bzn UB;U (A; ULy,
j=i+1
=ma
Then clearly,
¢ 2 I(Ro) =by + > (a; ULL)) 2 by + > ai+ 3, (4)

ijm;—Q

“ m
>bn+ Y a4+ (5)

° i:m+2 2

Furthermore, for each i € {1,2, ..., T_Q},
¢ > UR;) =bz + b+ Y (a; +1(Ly))
j=itl

me—i—bi—i-m—z, (6)
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m—i

¢ > U(Ryei) = bz + by + > (a5 +1(Ly))

. 2
j:%

4 )
implying that

2 _ _1
. 21 (m+2)"—6 _ 2

5 m+1
“m+1 2(m+1) m+1 2
=

Theorem 1 is proved.

Proof of Theorem 2. By (1), ¢ > m+a; +as > m+2. Let ¢ = m+y+ 2 for some integer
y > 0. By substituting m = ¢ — y — 2 in Theorem 1, we get

c> \/4l—|—(y+1)2: \/4l—|—(c—m—1)2
when m is odd; and

c> \/4l—|-y2 = \/4l+(c—m—2)2
when m is even. Theorem 2 is proved. [

To show the sharpness of the bounds in Theorems 1 and 2, let P = x?y be a path and
let

be a vine on P. Put

Lz‘ = .I'zf:yz (Z = 1, ...,m), Al = .1'1?1'2, Am = ym—lﬁyma
— — .
Ai:yi—lpl.i—‘rl (i:2,3,...,m—1), Bz:$z+lpyz (Z: 1,...,m—1),

Let y > 0 by an integer and
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If m is odd, then it is easy to see that

2l m+1 5
c:m+y+2:m+1+ 5 :\/4l—|—(c—m—1).
If m is even, we put by, o = & + mTJ“Q, implying that
20—-1 m+1
_ 9 — 2 = /4] —m—=1)2 —1.
c=m+y+ m+1+ 5 \/ +(c—m—1)

Thus, the bounds in Theorems 1 and 2 are best possible.
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¢ > 2¢/1 qGwhwnwywlp plunid t npytu wishpwlywl htnlbwlp hpdGuwd ns pupy
nuunnnipjniGGtph ypw:
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AnHoTanuys

[Tycts | oO03HaUYaeT AAMHY AAMHHeMIIeN 1menu rpaga G, a ¢ o603HavYaeT AAUHY
MUHHEHUIIero ImrAa. B 1952r. Aupak aAoKasaa, 4To ¢ > V21, ormeTuB, uTO "B
caMOM AeAe WMeeT MecCTo ¢ > 2v/1, 4To VAYYILIUTE HEBO3MOJKHO, HO AOKA3aTEeABCTBO
5TOU OIIEHKH AOCTAaTOYHO CAOXKHO". Ilycte Ly, Lo, ..., L,, - TAIOLL HA AAWHHEUIIEU
nenu rpada G. B HacTosdliei paboTe MTPUBOAUTCS HOBas Ooaee oOIasi OIEeHKA,
OTKYAQ BBITEKAET CIIPABEAANBOCTD OLIEHKU ¢ > 2v/1 Kak HEIIOCPEACTBEHHOE CAEACTBUE,
OCHOBaAHHOE Ha DAIMEHTApPHBIX COOOpa >KeHUN.

KaroueBrie caoOBa: AAMHHEMIINM ITUKA, AMAMHHHEMIIasa Ieldb, AAMHA AAMHHEMIIeTo
ITMKAQ, IIATOIII.



