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Abstract

We consider the properties of computably enumerable (c.e.) Turing degrees con-
taining sets, which possess the property of a T-mitotic splitting but don’t have a
wtt-mitotic splitting.

It is proved that for any noncomputable c.e. degree b there exists a degree a, such
that @ < b and a contains a simple T-mitotic set, which is not wtt-mitotic.
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1. Introduction

We shall use the notions and terminology introduced in Soare [1], Rogers [2].
Notations.

We deal with sets and functions over the nonnegative integers w = {0,1,2,...}.

Let wey = {2 : (Fk)(z =2k)}; woa = {2z : (3k)(z =2k +1)}.

Let ¢, be the e partial computable function in the standard listing (Soare [1, p. 15,
p. 25]).

If ACwand e €w,let ®4(z) = ®.(A: ) = {e}*(z) (see Soare [1, pp. 48-50]).

X4 denotes the characteristic function of A, which is often identified with A and written
simply as A(x).

Let ¢(z) | denotes that ¢(z) is defined, p(z) T denotes that ¢(z) is undefined.

W, = domgoe = {l. : 9055(1.) l}

Soe,ats—‘rl(l') l denotes 906,5—&-1(1.) l & (106,8(1.) T

x € We ars+1 denotes z € W, g9 — W 5.

In the literature, Turing reducibility is usually taken as the main reducibility. If the word
“reducibility” is used without a further explanation, it means, as a rule, Turing reducibility.
If the term “degree of unsolvability” is used without a further explanation, the T-degree is
usually meant.

Definition 1: The use function u(A;e,x,s) is 1+ (the maximum number used in computa-
tion if ®/(z) | ), and = 0, otherwise. The use function u(4;e, z) is u(A;e, z,s) if &7 (x) |
for some s, and is undefined if ®4 (z) 1.



8 On Initial Segments of Turing Degrees Containing Simple T-Mitotic but not wtt-Mitotic Sets

Definition 2: A is computable in (Turing reducible to) B, written A<;B, if A = ®F for
some e (Soare [1, p.50]).

Definition 3: A is weak truth-table reducible to B, written A <, B, if (Je) [A = F & (3
computable f) (f(x) > u(B;e,x))] (where u(B;e,x) is the use function from Definition 1)
(Rogers [2, p. 158]).

Definition 4: If A is a noncomputable computably enumerable (c.e.) set , then a splitting
of Ais a pair Ay, Ay of disjoint c.e. sets such that A; U Ay = A (Downey , Stob [3, p.4]).

Definition 5: C.e. set A is T-mitotic (wtt-mitotic), if there is a splitting Ay, Ay of A such
that Ay =7 Ay =1 A (A =i As =wie A) (Downey |, Stob [3, p. 83]).

Definition 6: (i) A set is immune, if it is infinite but contains no infinite c.e. set.
(i) A set is simple, if A is c.e. and A is immune (Soare [1, p. 78]).

Definition 7: A c.e. degree a is contiguous if for every pair A, B of c.e. setsina, A =, B
(Downey, Stob [3, p.45]).

Note that each contiguous degree, by definition, doesn’t contain T-mitotic sets, which
are not wtt-mitotic.

Lachlan proved the existence of nonmitotic c.e. set (Lachlan [4]).

Ladner proved the existence of completely mitotic c.e. degree (Ladner [5]).

Ladner and Sasso [6] proved, that for every nonzero c.e. degree b there is a nonzero c.e.
degree a < b such that a is contiguous (see also Downey, Stob [3]).

Thus, there is an infinite class of contiguous degrees, and these degrees, as we have men-
tioned, don’t contain T-mitotic sets, which are not wtt-mitotic.|

Ingrassia ([7]) proved the density of nonmitotic c.e. sets (in R) (see also Downey, Sla-
man [8]).

E. J. Griffiths ([9]) proved the following Theorem: There exists a low c.e. degree u such
that if v is a c.e. degree and u < v, then v is not completely mitotic.

2. Preliminaries, Basic Modules

Theorem 1: For any noncomputable c.e. degree b there is a degree a such that a < b and
a contains a simple T'-mitotic, but not witt-mitotic set.

Proof.  (sketch) Let h be a general computable function that maps w to w?. Let (¥;, ;)
denotes the pair (®;,, p;,) for all i, where h(i) = (ig,%1) (note that ¥, is wtt-reduction with
1;, denoting the corresponding use function).

It is known (Ladner [10]) that the computably enumerable set A is T-mitotic, < A is
T-autoreducible, and similarly, the computably enumerable set A is wtt-mitotic, < A is
wtt-autoreducible (Downey, Stob [3], see also Trakhtenbrot [11]).

Therefore, in order to achieve non-wtt-mitoticity, it is enough for us to achieve non-wtt-
autoreducibility.

Thus, to prove our theorem, it is necessary to construct such a c.e. set A, so that the
following requirements are met.
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Re: (3a) = (Ve(AU{z}; 2) = A(x)), if (V2 < y)(¢e(2) 1).

P. : (W, is infinite) = (Fz)(z € W, & = € A).

Note that satisfying the R, requirement (for all ) provides the infinity of the set A.

Order the requirements in the following priority ranking: Ry, Py, R1, Pi,... , R,, B,, ...
Let I(e,s) = max{z : (Vy <) (Ve (A U{y}: y) = Aly) & (V2 < 2) (Ve(2) 1))}

The main strategy for satisfying R, is the following: we select a number (the so-called
follower) x (which should be accompanied by two more elements x—2 and x—1, and possibly,
the third - 2; an exact definition of the attendant numbers of the follower =, namely (x — 2),
(x — 1), z, will be given hereinafter), we wait until I(e,s) > x and enumerate x in Ay, if
(Vz < x)(es(2) 1), setting r(e, s+ 1)=u(z, e, s), where u(x, e, s) = u(V, s(As U{z}; )).
An B-permitting procedure is introduced in order to provide A<;B (where B is a c.e. set
from degree b).

To satisfy the requirement of R, at each stage, we have a finite set of followers z; 5, < ... <
T, In this construction, a modification of the B-permitting method is used. We treat the
interval [0, ..., i] as allowing for z; ,.

To satisfy the requirement of P, at each stage, we have a finite set of followers y; ,, < ... <
Yn,s- For requirement F,, the usual B-permitting method is used.

The construction will be such that if eventually we have V(A U{z}; ) = A(z) & . is a
total function, then it will be possible to compute B.

The ground of satisfactions for requirements of R, and P, will be given below.

2.1 Basic Module for R,

The followers x; 4, ..., x, s satisfy the following rules below.

Appointment. If x; 5 is currently defined and ;11 5 is not, then if I(e, s) > x5, declare z; ¢ as
active, and set ;41541 = pz(z > s+2 & (k) (2 = 2k)). Set 7(e, s +1) = max(u(xys, €, ) :
k <1i). To get an idea of the restriction function 7 (e, s), we give its definition, although it is
not used in the basic module.

We say that z; s is superactive, if x; s — 2 and z; s — 1 belong to A;.

Permission. If x; s is active and ¢ € By, s, then if

(i) (34 > 1) [x;s is superactive & x; s ¢ Asl, let jo = pz [v.s is superactive & z; 5 ¢ Asl.
Then we enumerate the numbers z;, s, Z;,, s into As11 (where 2, s = Ve (z5,.5)). Cancel
Ty, for all (k > jo). We will do the same with the accompanying elements of the
corresponding followers.

(ii) if (i) and (=3 j) [x;s € As] does not hold, then we enumerate the numbers x; s—2, x; s—1
into Agy1. Cancel zy 5, for all (k > 4). We will do the same with the accompanying
elements of the corresponding followers.

For any ¢ such that the follower z; ; is not canceled at the end of the part “permission” of the
basic module and is active, let’s set z; 11 = z; ;. We will do the same with the accompanying
elements of the corresponding followers.

The “cancellation” rule, which is present in the proof of Theorem 4.8 (Downey, Sla-
man [8]), in this case it will be necessary to note the effect of the requirements of R; and P;
(where j < e) on satisfying the requirement R., but not to describe the basic module itself
for R..
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2.2 Basic Module for P.

The followers y; s, ..., Yn,s satisty the following rules below.
Appointment. 1If y; s is currently defined and y;1 ;s is not, then if (32) (2 € Wz > y; ),
declare y; s as active, and set y; 11511 = pz(z > s & (k) (2 = 2k)).
Permission. If y; s is active and @ € B, s, then enumerate the numbers y; 5, v; s + 1, z and
z+ 1 into Agy.

The “cancellation” rule, which is present in the proof of Theorem 4.8 (Downey, Sla-
man [8]), in this case it will be necessary to note the effect of the requirements of R; (where
j < e) on satisfying the requirement P,, but not to describe the basic module itself for P..

3. Verification of Lemmas

Lemma 1: Suppose that 1. is total and (Vx) (V. (AU{z}; x) |).
Then (Fy) = ((Y.(AU{y}; v) = A(y)). Thus, the requirement R, is satisfied.

Proof. Suppose otherwise. We show that B is computable.

Note that since we only consider the satisfaction of the basis module for R, (that is, we
do not take into account the effect of the requirements R; and P; (where j < e) on the
satisfaction of the requirement R.), it is obvious that conditions (i), ..., (iv) are met.

(i) All the z; ¢ eventually become permanently defined, that is lim,z; s = x; exists with

(ii) Once zy, is defined at stage t, (Vs > t) (u(xy,e,t) = u(zy, e, s) = ule, zx)).
(i) (Vi) (xi41 > max{u(e,zx) : k<i}).
(iv) It can be effectively recognized, when (i) occurs.
Two cases are possible:
(a) (3m) (Vk>m) [z, —2 ¢ A
(b) (Vm) (3k>m) [z, —2 € Al

For both cases ((a) and (b)), it will be proved that B is computable (and thus, the
assumption that Lemmal is false will lead to a contradiction with the supposition of non-
computability of B).

Now, if (a) holds, we prove that B is computable.

If conditions (i), ..., (iv) are satisfied, we show how to compute B (that is, the charac-
teristic function of the set B; remind that we often identify the set B with its characteristic
function).

Let f ||  denotes the restriction of f to arguments y < x, and A || x denotes x4 || .

Let so be such a stage that B || m+1= By, || m+1and A || 21 = Asy || T

Let ¢ € w and ¢ > m. Effectively compute a stage s so that x4, is defined, that is
Tgi1 = Tgt1,s (0 that case, in fact, s > s).

Then z, is active, z, € A and since x4, is the final value of the ¢ + 1-th follower, the
computations of u (x;, e, s) are true for all j < gq.

In this case ¢ € B & ¢ € B;, because otherwise it would lead to the fact that x, — 2
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would have entered the set, contrary to our assumption that case (a) holds.

Now suppose that case (b) holds. Let us prove that in this case also B is computable.

If conditions (i), ..., (iv) are fulfilled, we show how to compute B.

Let g € w. Effectively compute such a stage s and a number p so that p = puz (z > q &
T,—2 € A& Tyl = xz—&-l,s)'

Then z, is active, x, ¢ A, and since x,.; is the final value of the p + 1-th follower, then
u(z;, e, s) computations are true for all j < p. In this case ¢ € B < ¢ € Bs, since otherwise
(that is, if ¢ enters B after the stage s) this will lead to the entry p into A and satisfaction
of the requirement R,, which will contradict the initial assumption that Lemma 1 is false.

Lemma 1 is prooved.

Lemma 2: Suppose that W, is an infinite set. Then (3z) (z € W, & z € A). Thus, the
requirement P, is satisfied.

Proof. Suppose otherwise.
We show that B is computable.
Let 7(e) = lims 7 (e, s).
Although the use of this function in the description of the basis module for P, is not necessary,
an indication of this function clearly shows the effect of the requirements R; (where j < e)
on the satisfaction of the requirements P, when constructing the set A.
Let ¢y be such that (Vs > to) 7(e, s) = 7(e).
Then it is obvious, that all the y; ; become permanently defined (i.e., Vi3 (t > to) (Vs) (yir =
Yis = yi)) with y; & A.
In fact, if there existed k such that y; € A, then, by construction, there would exist z such
that z € W, N A.
Assuming the opposite of the statement of the proposition, we show how B can be computed.
Let ¢ € w. Find t > ¢, such that y, is permanently defined. Then q € B & ¢q € B, since
otherwise ¢'s entry into B would meet P,.

Lemma 2 is prooved.

4. Conclusion

Note that the coherence of constructions to satisfy the requirements R, and P. (for all e) is
not difficult, since satisfying the requirements R. and P. (for all e) requires a finite number
of steps. We also note that the indicated method of constructing the set A (based on the
constructions for the basic modules) will result in the set AN w,, being T-equivalent to the
set AN wod.

These remarks allow us to complete the proof of the theorem. W

Note that it follows from the above theorem that below any noncomputable c.e. degree
there is an infinite number of noncomputable c.e. degrees with the abovementioned property
(since the degree a (mentioned in the theorem), containing a simple set, is a noncomputable
c.e. degree).
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