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Abstract

In 1973, Chvatal introduced the concept of toughness 7 of a graph and conjec-
tured that there exists a finite constant ¢y such that every tp-tough graph (that is
T > tp) is hamiltonian. To solve this challenging problem, all efforts are directed to-
wards constructing non-hamiltonian graphs with toughness as large as possible. The
last result in this direction is due to Bauer, Broersma and Veldman, which states that
for each positive €, there exists a non-hamiltonian graph with % —e< 1L % The
following related broad-scale problem, reminding the well-known pancyclicity or hypo-
hamiltonicity, arises naturally: whedher there exists a non-hamiltonian graph with a
given toughness. We conjecture that if there exist a non-hamiltonian ¢-tough graph
then for each rational number a with 0 < a <t there exists a non-hamiltonian graph
whose toughness is exactly a. In this paper we prove this conjecture for ¢ = % — ¢ by
using a number of additional modified building blocks to construct the required graphs.

Keywords: Hamilton cycle, Toughness of graph.

1. Introduction

Only finite undirected graphs without loops or multiple edges are considered. The set of
vertices of a graph G is denoted by V(G) and the set of edges - by F(G). The order and the
independence number of G are denoted by n and «, respectively. For S a subset of V(G),
we denote by G\S the subgraph of G induced by V(G)\S. The neighborhood of a vertex
x € V(G) is denoted by N(z). A graph G is hamiltonian if G' contains a Hamilton cycle, i.e.
a cycle of length n. A good reference for any undefined terms is [5].

The concept of toughness of a graph was introduced in 1973 by Chvatal [6]. Let w(G)
denote the number of components of a graph G. A graph G is t-tough if |S| > tw(G\S5)
for every subset S of the vertex set V(G) with w(G\S) > 1. The toughness of GG, denoted
7(G), is the maximum value of ¢ for which G is t-tough (taking 7(K,,) = oo for all n > 1).
Much of the research on this subject have been inspired by the following conjecture due to
Chvatal [6].

Conjecture 1: There exists a finite constant ty such that every to-tough graph is hamil-
tonian.

To solve this challenging problem, all efforts are directed towards constructing non-
hamiltonian graphs with toughness as large as possible. In [6], Chvatal constructed an
infinite family of non-hamiltonian graphs with 7 = 2, and then Thomassen [[4], p.132] found
1 G. G. Nicoghossian (up to 1997).
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14 Non-hamiltonian Graphs with Given Toughness

non-hamiltonian graphs with 7 > 2. Later Enomoto et al. [7] have found non-hamiltonian
graphs with 7 > 2 — € for each positive €. The last result in this direction is due to Bauer,
Broersma and Veldman [2] inspired by special constructions introduced in [1] and [3].

Theorem A: For each positive € > 0, there exists a non-hamiltonian graph with % —e<
T<i

The following related broad-scale problem, reminding the well-known pancyclicity or
hypohamiltonicity, arises naturally.

Problem: Does there exist a non-hamiltonian graph with the given toughness?

The following metaconjecture seems reasonable .

Conjecture 2: If there exists a non-hamiltonian t-tough graph then for each rational
number a with 0 < a <t there exists a non-hamiltonian graph whose toughness is exactly
a.

In this paper we prove this conjecture for ¢t = % — €.

Theorem 1: For each rational number t with 0 < t < %, there exists a non-hamiltonian
graph G with 7(G) = t.

Theorem 1 provides also a complete background for further investigation towards finding
non-hamiltonian graphs with toughness at least %.

2. Preliminaries

To prove Theorem 1, we need both new and old graph constructions.

Definition 1. Let L™ be a graph obtained from Cs = wjws...wsw; by adding the edges
WaWy, Wawe, Wews and wowg. Put x = wy and y = ws. This is the well-known building block
L used to obtain (¥ — €)-tough non-hamiltonian graphs (see Figure 1 in [2]).

In this paper we will use a number of additional modified building blocks.

Definition 2: Let L® be the graph obtained from L'V by deleting the edges wyws, wows
and identifying wy with wg.

Definition 3: Let L® be the graph obtained from LY by adding a new vertex wy and
the edges wwg, Wewy.

Definition 4: Let LY be the graph obtained from the triangle wiwswsw, by adding the
vertices wy, ws and the edges wywy, wsws. Put x = wy and y = ws.

Definition 5: For each L € {LY, L®}, define the graph G(L,z,y,1,m) (I,m € N) as
follows. Take m disjoint copies Ly, Lo, ..., L, of L, with x;,y; the vertices in L; corresponding
to the vertices x andy in L (i = 1,2,...,m). Let F,, be the graph obtained from L;U...U L,,
by adding all possible edges between the pairs of vertices in Ty, ..., Tm, Y1, s Ym. Let T = K
and let G(L,x,y,l,m) be the join TV F,, of T and F,,.

The following can be checked easily.

Claim 1: The vertices x and y are not connected by a Hamilton path of L® (i =1,2,3).

The proof of the following result occurs in [1].

Claim 2: Let H be a graph and x,y two vertices of H which are not connected by a
Hamilton path of H. If m > 21+ 1 then G(H,z,y,l,m) is non-hamiltonian.

3. Proof of Theorem 1

By the definition, the toughness 7(G) is a rational number. Let ¢t be any rational number

with 0 <1 < % and let ¢ = ¢ for some integers a, b.
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Case 1: 0<g <1

Let K, be the complete bipartite graph G = (V1, Va; E) with vertex classes V; and V5
such that [Vi| = a and |V5| = b. Since § < 1, we have a(G) = b > (a + b)/2 and therefore,
K, is a non-hamiltonian graph. Clearly, 7 < |V;|/w(G\V1) = a/b. Choose S C V(G) such
that 7(G) = |S|/w(G\S). Put SNV, = S; and |S;| = s; (1 =1,2). fV\S #0 (i =1,2)
then clearly w(G\S) = 1, which is impossible by the definition. Hence, V;\'S = ) for some
ie{1,2}.

Case 1.1: i=2.

It follows that
. b+ S1

a— S1

T >

b

"

Recalling that 7 < ¢, we have b* < a?, contradicting the hypothesis ¢ < 1.
Case 1.2: i=1.

It follows that
So+a
-

71)—82

>4
=
implying immediately that 7 = ¢.
Case 2: ¢ =1
Let G be a graph obtained from Cg = v1vs...v6v; by adding a new vertex v; and the edges
v1U7, V407, Vovg. Clearly, G is not hamiltonian and 7(G) = 1.
Case 3: 1<%<%.
Case 3.1: < % — %
Let V1, V5, V3 be pairwise disjoint sets of vertices:

Vvl = {$17$27"'7$a—b+1}7 Vé = {3/173/27---73/1;}7 Vé = {21,22, ...,Zb}.

Join each z; to all the other vertices and each z; to every other z; as well as to the vertex
y; with the same subscript 7. Call the resulting graph G. Choose W C V(G) such that
7(G) = |W|/w(G\W). Put m = |W N V3|. Clearly, W is a minimal set whose removal from
G results in a graph with w(G\W) components. As W is a cutset, we have V; C W and
m > 1. From the minimality of W we easily conclude that VoMW = () and m < b— 1. Then
we have [W|=m+a—b+ 1 and w(G\W) = m + 1. Hence,

+(G) = w min m+a—b+1 a
Cw(G\W)  1gms<b-r om41 b

To see that GG is non-hamiltonian, let us assume the contrary, i.e. let C' be a Hamilton cycle
in G. Denote by F' the set of edges of C' having at least one endvertex in V5. Since V5 is
independent, we have |F'| = 2|V5|. On the other hand, there are at most 2|V;| edges in F
having one endvertex in V; and at most |V3| edges in F' having one endvertex in V3. Thus,

20 =2|Vo| = |F| <2Vi| + V3| =2(a—b+1)+b=2a—b+2.

But this is equivalent to a/b > 3/2 — 1/b, contradicting the hypothesis.

. a 3_1
Case 3.2: A

By choosing a sufficiently large ¢ € N with
a aq 3 1

— < -
b by 2 bg
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we can argue as in Case 3.1.

Case 4: ¢ = %

An example of a non-hamiltonian graph with 7 = 3/2 is obtained when in the Petersen
graph, each vertex is replaced by a triangle.

Case 5: %<%<£.

Claim 3: Forl > 2 and m > 1,

B [+ 3m
C1+2m

T (G (L(Q),x,y,l,m))
Proof. Let G = G(L®, x,y,1,m) for some [ > 2 and m > 1. Choose S C V(G) such that

5]
G\S) > 1 G) = .
S(G\S) > 1. 7(G) = =i
Obviously, V(T) € S. Define S; = SN V(L;), s; = |9, and let w; be the number of
components of L;\S; that contain neither x; nor y; (i =1,...,m). Then
T(G) _ l+z:_’?1$z Z l+z§_§1$i’
c+Y w1+ w

where

0 if z;,y; € Sforalie{l, .. m}
c= )
1 othrwise.

It is easy to see that
3
Wi S 2, Si Z iwi (Z = 1,...,m).

Then ) )
T2l+52i:1w¢: =5 +§

_3
- [ =3 N 3 _ [+ 3m.
“14+2m 2 1+42m
Set U = V(T)UU; U...UU,,, where U, is the set of vertices of L; with the degree at least
4in L; (i =1,...,m). The proof of Claim 3 is completed by observing that

Ul 1+3m
"= Sam " T

Case 5.1:b = 2k + 1 for some integer k.

Consider the graph G(L®), z,y,a — 2(b— 1), 52).
. a 7 9

Case 5.1.1: b S 1 1

By the hypothesis,

b—1 3

By Claim 2, G is not hamiltonian. Clearly b > 3, implying that m = (b — 1)/2 > 1. If
>34+ Lthenl=a—2(b—1) >2and by Claim 3, 7(G) = ¢. Now let $ < 2+ . By
choosing a sufficiently large integer ¢ with

a n 1
B 20q’

aq>§
b bg — 2
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we can argue as in the previous case.
Case 5.1.2: > % — 4%.
By choosing a sufficiently large integer ¢ with
a_ag _ 7 9

b bg — 4 4bg’
we can argue as in Case 5.1.1.
Case 5.2: b =2k for some integer k.
Consider the graph G’ obtained from G(L®,x,y, 1, m) by replacing L,, with L®.
Claim 4: Forl>2 and m > 1,

N L+3m+1
) =Sy

Proof: Choose S C V(G') such that w(G'\S) > 1 and 7(G") = |S|/w(G'\S). Obviously,
V(T) C S. Define S; = SNV (L;), s; = |S;], and let w; be the number of components of
L;\S; that contain neither x; nor y; (i = 1,...,m). Since s; > %wi (t=1,..,m—1) and
S > %wm, we have

L+3m s (L2 wi + Swn, I—iw, 3

(G > > = +—

c+ 0 wi L+>00 wi Y w2

where ¢ = 0 if z;,y;, € S for all i € {1,...,m} and ¢ = 1, otherwise. Observing also that
w; <2 (i=1,..,m—1) and w,, < 3, we obtain

(1 —2)iwz~ + %(m—i— Dwm < (1=2)2m+1)+ (m+1) <2(m+1).

But this is equivalent to
L3 -2 3
27 2(m+1) 2

[ — éwm

implying that

[—2 3 [+3m+1

GY> —— == ———.
@)z s T2 T 2D
Set U = V(T)UU; U...UU,,, where U, is the set of vertices of L; with the degree at least

4in L; (i =1,...,m). The proof of Claim 4 is completed by observing that

| I+3m+1

@S S T 2ma

Consider the graph G’ with m = g —land !l =a— gb + 2. Clearly m = g —1>1and

l=a—3b+2>2 ByClaim4, 7(G") = 4. If £ < I —3 then m > 2/ + 1, and by Claim 2,

47

G’ is not hamiltonian. Otherwise, by choosing a sufficiently large ¢ with
o _og 1 3
b bg —4 b

we can argue as in the previous case.

Case 6: 1 —e<%<2



18 Non-hamiltonian Graphs with Given Toughness

Let m = m; + my > 2 + 1 and let G” be the graph obtained from G(LW, z,y,1,m) by
replacing L; with L (i = m; 4+ 1,m; +2,...,m). By Claim 2, G” is not hamiltonian.
Claim 5:Forl>2, m>1 and my > 1 — 2,

7(G") =

Proof: Choose S C V(G”) such that 7(G”) = |S|/w(G"\S). Obviously, V(T') C S.
Define S; = SNV (L;), s; = |S;|, and let w; be the number of components of L;\S; that contain
neither z; nor y; (i = 1,...,m). Since s; > 2w; (i = 1,...,m1) and s; > 3w; (i =my+1,...,m),
we have

l+3m2
2m2+ 1

7(G") >

c—l—Zmlwi - 1—1—22’;1%
43w - § 30+ T w) _ 2+ T w =3 3
L4+ 370 wi 214+ W) 2

where ¢ = 0 if z;,y; € S for all i € {1,...,m} and ¢ = 1, otherwise. Observing that w; < 2
(t=1,...,m), we obtain

mi

2[-3 Z W; — 2m2—2l+4)2w1 §4lm2—6m2
i=mi+1 i=1
But this is equivalent to
20+ > wi — 3 20— 3 3

3
o>t
21+ X" wi) 27 22my+1) 2

implying that
21 —3 3 [+ 3msy
G// > - = =
&) 2 o T2 21
Set U =V(T)UU, U...UU,, where Uj; is the set of vertices of L; with the degree at least 4
in L; (i =1,...,m). The proof of Claim 5 is completed by observing that

D(O\D)  2ma+ 1

Case 6.1: b= 2k + 1 for some integer k.
Consider the graph G” with my = %t and l=a— 3(b—1).

7(G") <

Case 6.1.1: 2%—1—2%.
Since ¢ 7 < 2, W e hav
b—1 3
mQ:T>a——(b—1)—2:l—2.

Next, since ¢ > 2 4 & we have | = a — (b — 1) > 2. By Claim 5, 7(G") = £.

Case 6.1.2: ¢ < 3 4 .
By choosing a sufficiently large integer ¢ with

aaq31

b bq_2+2—bq
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we can argue as in Case 6.1.1.
Case 6.2: b =2k for some integer k.
Consider the graph G" obtained from G” by replacing L,, with L),
Claim 6: For [ > 2, m > 1 and my > [ — 2,

[+ 3ms+1

(G///) 2(m2 - 1)

Proof: Choose S C V(G") such that 7(G") = |S|/w(G"\S). Obviously, V(T') C S.
Define S; = SNV (L;), s; = |S;|, and let w; be the number of components of L;\S; that contain
neither z; nor y; (i = 1,...,m). Since s; > 2w; (i = 1,...,my), s; > %wi (t=mi+1,..,m—1)
and s, > %wm, we have

l + 2’757;11 S'L + Z’L m1+1 S’L + Sm

TG/” >
(¢7) = c+ Y w
l—i—ZZ wit s Zz mlei—i—%wm
- 1+307" wi
l+ Zz lwl wm+(3zz 1w1+ Zz m1+1)
1437 wi
l—|— Zz L wp — —wm 3
1—1—2”11% 2’

where ¢ = 0 if z;,y; € S for all i € {1,...,m} and ¢ = 1, otherwise. Observing that w; < 2
(t=1,...,m—1) and w,, < 3, we obtain

m 1 mi
(-2 > wi—i—g(mg—i-l)wm—(mg—l—i-?))Zwi§l+2lm2+2.
i=mi+1 i=1

But this is equivalent to

[—2 3

l+ Zz lwz Ewm Lo
2(ma +1) | 2

1 + 3w

+2>
5 =

implying that

> -2 42 3 [+ 3my + 1

Set U =V (T)U U, U...UU,, where Uj is the set of vertices of L; with the degree at least 4
in L; (i =1,...,m). The proof of Claim 6 is completed by observing that

(G///)

W(G\U) — 2(ma+1)

(G///)

Consider the graph G" with msy = g —land!=a— gb + 2.

Case 6.2.1: ¢ <2-—
By the hypothesm, 3~ 12> (a —3p+ 2) —2=1-2. Next, since ¢ >I —¢>3
we have [ = %b +2>2. By Claim 6, T(G”/) _

H @I»—-

a
b-
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Case 6.2.2: ¢ >2— %

By choosing a sufficiently large integer ¢ with § = Z—Z <2-— é, we can argue as in Case
6.2.1.

Case T: 2<%<%

Case 7.1: b =2k + 1 for some integer k.

. a 9_ 1
Case 7.1.1: <5 — 4.

Take the graph G (L(l),x,y,a —2b+ 2, b;Ql) Since § > 2, we have [ = a — 20 +2 > 2.

Next, the hypothesis § < % — i—}) is equivalent to
b—1
m2722(a—2b+2)+1:2l+1.

By Claim 1, G (L(l),x,y, a—2b+2, %) is not hamiltonian. The toughness
T (G (L(l),x,y,a —2b+ 2, b;Ql)) can be determined exactly as in the proof of Theorem A

2], ) l
-1 +4m a
T(G(L LT, Y, A b+ 2, 5 >>_2m+1 2

. a 9 __ 11
Case 7.1.2: P> 1o

By choosing a sufficiently large integer ¢ with

11
4bq’

a 9

- <z
bg b~ 4
we can argue as in Case 7.1.1.

Case 7.2: b= 2k for some positive integer k.

Take the graph G”” obtained from G (L(l), x,y,a—2b+ 2, 3) by replacing L, with L.
Since ¢ > 2, we have [ = a — 2b + 2 > 2. We have also m = g > 1, since b > 3.

Claim 7: Forl > 2 and m > 1,

_l+4m—2
a om ’

T (G////)

Proof: Choose S C V(G") such that 7(G") = |S|/w(G"\S). Obviously, V(T') C S.
Define S; = SN V(L;), s; = |S;|, and let w; be the number of components of L;\S; that
contain neither x; nor y; (i =1,...,m). Since s; > 2w; (i =1,....m), w; <2 (i =1,....m—1)
and w,, < 1, we have

_ l+zzri1$i > l+22£1wz‘

TG/”/
(G™) cHYM w1+ w;
-2 -2 dm — 2
o +22l_+2:l+ m ’
I+ w m 2m

where ¢ = 0 if z;,y; € S for all i € {1,...,m} and ¢ = 1, otherwise. Set U = V(T) UU; U
... UUp, where U; is the set of vertices of L; with the degree at least 4 in L; (i = 1,...,m).
The proof of Claim 7 is completed by observing that

" |U| [+4m —2
< = .
&N = T om -

. 9 3
Case 7.2.1: <i—3
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By the hypothesis,

b
m-l=g-122a-2+2)+1=20+1

By Claim 2, G" is not hamiltonian and by Claim 7, 7 (G"") = ¢

a
a 9 3 b’
Case 7.2.2: >3

By choosing a sufficiently large integer ¢ with

aqg a _9 3
— =< ——
bg b~ 4 3bg
we can argue as in Case 7.2.1. Theorem 1 is proved. [
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Spjwo Ynpumnipjudp ny hwdhpumnbGyub qpudblbtin
d. LhynnnujwaG

Udthnthnid

Qpuwdh Ynpunipjuwl 7 plnipwqgphsp Ghpdniot) b loquumwn 1973-h6: Cun lvjwwnmwih
Junpywoh, qnynipjnil niGh wyGwhuh o Ytpgwynp phy, np judwjwywi to-Yngwm gpud (hGip
GpwGwynid k, np 7 > ¢ ) hwdhjnnGywG t: Uju dwpnmwhpwytpwjhb fjulnpp nuodwb pninp
owliptpp U mbuGhyw6 ninyuo GG wnwybjuwagniy Ynpunipym G niGtgnn ny hwdhjmnbjwG
gnudltinh yunmgdwlp, wlinbtubny wybh guop Ynpunmipjwb gpudplbpp: Uju ninnmpjunip
unwgywo YytnohlG wprynilpp, npp unwgl] 66 Awumbpp, Apntpudwl L Lhndwlnp, wlngmd
L, np quiwjuwyul npuiwl ¢ pyh hwdwp gnympymG niGh ny hwdhjnnGywb qpuwd, nph
Ynpuinipjnilp qulymi & § —& < 7 < 2 uwhdwGbpnud: <bnlywy wybh pngpyniG fuGnhpp
hp nqpwopny hhpkglnud £ yulghyhynipjwl L hhynhwihpunGyul qpudltph qnympjul
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fuGnhpGtpp. gnympynil niGh, wpynp ny hwihpnnGyul qpud npjuwo Ynpunmmpjudp: Cun
utp yunplwoh, tpt gnymipjniG niGh ny hwdhjmnGyuG t-ynpn qpudp, wuyu (0, ¢] hGnbtpdwihG
wwwnlwlng juiwjuyul ¢ nwghnlw] pyh hwiwnp gnynipynil niGh ny hwdhpunnGyub gpud,
nph YnpunipymGnp ninhn k: bbphuw wpuwnwlipmyd wju Jupuop wywgnigymy k (0, %)
dhowyuwyphG ywwulwlinng juiwjwulwli nwghnGw] pyh hwiwp: Nwhwioud qnuplbipn
Jwnnigbim hwdwnp oquuuwgnpoyty GG dh pwpp Gnp JunniguwopwjhG dshwynpbtp, npnlp
nwpptinymd G0 gpujulmpjul dke hwymbh dhwynplGbphg:

HeraMuAbTOHOBEIE I'padhl C 3aAaHHOU JKECTKOCTBIO
K. Hukorocsau

AnHoTanuys

ITouatue >xectroctu T7(G) rpada G ObIAO BBepeHO XBaTaroM B 1973 roay.
[To m3BecTHOM rUNOTe3e XBATaAd, CYUIECTBYeT KOHEUYHOE UYHUCAO f; Takoe, 4YTO
Ka’KABIM to-’)KeCTKuU rpad (3To o3HavaeT, 4To 7 > t3) TaMHUABTOHOB. A
pelleHns 3TOM CTUMYAUPYIOIIEW IIPOOAEMBI BCEe YCHUAMSA KOHIIEHTPUPOBAAMCH Ha
IIOCTPOEHUE HETaMUABTOHOBBIX I'Pad)OB C MAKCHUMAABHOU JKECTKOCTBIO, HE YAEAds
BHUMAaHUg Ha rpadbl C HU3KOU >KECTKOCTbIO.  [lochepHM pe3yAabTaT B 3TOM
HAIIpAaBA€HUH, KOTODPBIM NOAyuuAu bayep, bpoepcma m BeabpMaH, yTBep’KAQeT,
YTO AAS KAKAOTO IOAOJKUTEABHOTO YMCAA £, CYIIECTBYeT HETaMHABTOHOB rpad c
JKECTKOCTBIO % —e< 1< %. [Top0OHO 3apauaM IAHIUKAWYHOCTH M CYIIECTBOBAHUSA
TMIIOTaMUABTOHOBBIX I'PAadOB, MBI pacCMarpruBaeM OOAee eMKYIO 3aAa4y: CYIIeCTBYeT
AW HEraMUABTOHOB Ipad C 3aAQHHOU JKeCTKOCThIO. [lo Hamieu rumorese, ecAu
CYLLECTBYeT HEeraMUABTOHOB t-)KECTKUM rpad, TO AAS AIOOOTO PAIfMOHAABHOIO YHCAQ
a n3 uHTepBara (0,t], cylecTByeT HETaMUABTOHOB Ipad, KeCTKOCThH KOTOPOTO paBHa
a. B paHHOU paboTe MBI AOKA3bIBA€M 3Ty THMIIOTE3Y AAS AOOOrO PAljMOHAABHOTO
gymcAa u3 uHrepsana (0, %). AAs ToCcTpoeHUusA TpeOyeMBIX Irpa)OB OBbIAU MCIIOAB30BAHBI

HeKOTOphbIe HOBbIE AOIIOAHUTEABHBIE KOHCTPYKTHUBHBIC OAOKH.



