Mathematical Problems of Computer Science 41, 131---134, 2014.

A Method of Constructing and Using the Tree of Possible
Transformations from UNL to the Natural Language

Levon R. Hakobyan

Institute for Informatics and Automation Problems of NAS RA
e-mail: levon.r.hakobyan@gmail.com

Abstract

An approach to improving the transformation process from UNL to natura
language is described. We introduce the tree of possible transformations, which lets us
generate al the possible transformation paths for the current sentence and rule set. The
implementation of the algorithm in UNDL Platform is described.

Keywords: UNL, Machine trandations, Transformation rules, Grammar.

1. Introduction

Some new methods for improving the transformation rules from UNL to natural language are
described.

The sentences in Universal Networking Language (UNL) contain some semantical information
which is usually represented in different natural languages. Such semantical information is
formalized in UNL by a structure of an oriented linked graph [1]. The information usually
contained in a sentence on a natural language is transformed in UNL using oriented binary
labeled links (which are treated as “relations’ between nodes or nodes). Nodes are represented
by “Universal Words”, or simply “UW”; they express the corresponding concepts. The
semantics of the sentence in UNL is expressed also by the so-called “attributes” which contain
some information about modality of the used concepts.

We will consider one of the main systems for the UNL processing, namely, the UNDL
Platform. It has been developed by UNDL Foundation in recent years[2].

The terms “analysis” and “generation” we will use as the names of the transformation process,
respectively, from a natural language to UNL, and from UNL to the natural language. These
processes are implemented in UNDL Platform respectively by IAN and EUGEN projects[2].

The current transformation algorithm applies a sequence of the rules to the current sentence.
This sequence is created by using some kind of priorities. But other rules could be used for the
current sequence.

So, we need some tools which let us find the most appropriate sequence of the rules to be
applied to the sentence. In the existing transformation algorithms it is not easy to understand
which rules sequence should be used.

131

132 A Method of Constructing and Using the Tree of Possible Transformations from UNL

To solve this problem we suggest extending the existing algorithms by adding functionality for
the construction of the tree of possible transformations, also known as the tree of possible paths
of transformation.

In this article we describe the tree of possible paths of transformation and its implementation in
UNDL Platform system.

In the first part we give a short description of the transformation process done by the generator,
and the description of the tree of possible paths of the transformation.

In the second part we give agorithms for the construction of the tree and information about
classes and methods, used in the implementation in the UNDL Platform environment.

Our approach is developed for transformations from UNL to the natural language. But it could
be used also for transformations from natural language to UNL, with some modifications.

2. The Treeof Possible Transformations

Transformations in the UNDL Platform system are implemented by consequently applying
transformation rules on the UNL sentence. In case of the analyzer, in the result of this process
the linear structure is transformed into a semantic graph. In case of the generator, the semantic
graph istransformed into a linear structure.

In the process of the generation when a given UNL sentence is transformed to a sentence in
the natural language the given dictionary and the set of transformation rules are used.

Any transformation rule has the form (a,), where a is a predicate (i.e. condition which can be
true or false for a given current sentence), and [is an algorithm defining the transformation of
the considered current sentence. We assume that some number P such that 0 < P < 255 is
attached to any transformation rule; this number is called “priority coefficient”. If there are
several rules which can be applied to a considered sentence then the rule having the greatest
priority coefficient is chosen.

The process of transformation includes a finite number of steps. On any step only one
transformation rule can be applied. The process is assumed to be completed when thereis no rule
which can be applied to the considered sentence; this sentence is admitted as the result of the
process.

By changing the priorities, we can obtain more than one sequence of applicable rules. Using
this we can construct the tree of possible paths of transformation. Node in this tree is a structure
which contains, besides other additional data, a UNL sentence and a rule, by applying which the
sentence was obtai ned.

In the tree every sub node contains, besides other additional data, a corresponding rule and a
UNL sentence, which was obtained by applying the rule to the UNL sentence of the parent node.

In root node the rule should be null, and the sentence should be original to be transformed. The
leaves obtained after the construction of the tree, will store all possible transformation results.

3. The Construction of the Tree

Aswe know, UNDL Platform is a web application. Computational time is very important for us,
because it is bounded by server response time.

Vertices of the tree are implemented by the objects of the TreeNode class. The objects of this
class contain, besides some basic and additional data about the vertex, links to a parent and the
children of the vertex. Every object of the TreeNode class has its unique ID which lets us operate
with such kind of objects; even then they are identical by other parameters.

L. Hakobyan 133

The tree is stored in the Tree class. Static object of that class is created for every web request.
The Tree class contains, besides some other data and methods, a Layers object which is
implemented by the hash-table. The key in that hash-table is an Integer which shows the number
of the layer in the tree. And its value is a linked list which stores links to vertices of the current
layer, which are implemented by the objects of the TreeNode class.

This solution lets us have an access to vertices in the tree in two ways: first by the original way
by recursive searching from root vertex, and second by accessing it by using the index and other
parameters.

The second method lets us access to vertices faster.

In this article we describe two methods for the implementation of the tree in the UNDL
Platform environment.

The first method is a depth-first search.

In the UNDL Platform a functionality was implemented, which lets us apply rules with the
corresponding indices by passing a sequence of that indices. In the transformation process on
each step, other rules which could be applied on this step, besides the applied rule, are registered
by activating the corresponding feature.

This lets us get the first transformation path, and some free vertices after the first call of the
transformation function. A free vertex is a vertex from which the construction of the tree could
be continued.

After that, aloop is used to get the next free vertex. For that vertex the corresponding sequence
of indices are constructed. This sequence is a path from the root to the current free vertex. After
that, a function of transformation with this sequence is called. The loop continues as long as
there are free verticesin the tree.

The second method for the construction of the tree of possible transformation is based on the
breadth-first search.

There is a great probability of occurring of equal sentences in different vertices of the same
layer, because on every transformation path the same subset of the rules could be applied in
another sequence.

This lets us group equal vertices and continue the construction of the tree only for one vertex
from agroup. In thisway, we can avoid analyzing some paths in the tree which leads to the same
results and reduces the computational time.

In the current implementation, the breadth-first search is used up to some predefined layer in
the tree. After that, the depth-first search is used for the corresponding vertices.

4. Conclusion

In this article we introduce the tree of possible transformations and describe its implementation
in the UNDL Platform system. The tree of possible transformations lets us obtain all possible
transformation results for the current sentence and rule set as the leaves of the tree. This lets the
user compare these results with reference trandation. Algorithms for the evaluation of
tranglations like BLEU and METEOR can be used to compare transformation results. The most
appropriate transformation path can be found by using these tools. This feature can be used as a
tool for automated editing.

The experiments showed that the tree of possible transformations of the comparatively simple
sentence (containing no more than 5 UWSs) can be constructed by the corresponding programs
using Test Drive Corpus in reasonable time and corresponding results set will contain no more
than 130 possible transformations.

134 A Method of Constructing and Using the Tree of Possible Transformations from UNL

The main problem of using the methods described above is a computational complexity
because of a huge amount of vertices on testing on real examples. This also leads to the problem
of great amount of information, which makes the working process uncomfortable for the user.

Therefore, further researches should be done to make the algorithm work faster and to create
an effective method for the users to deal with data which are generated in the result of the
algorithm.

References

[1] H. Uchida, M. Zhu, and T. Della Senta, A gift for a millennium, IASUNU, 1999.
[2] UNDL Foundation web site, [Online]. Available: http://www.undlfoundation.org/.
[3] DeConverter Specification Version 2.6, UNL Center /UNDL Foundation 2002
UNL Center, Enconverter Specifications, Version 3.3 Tokyo, 2001

Submitted 24.12.2013, accepted 02. 03. 2014.

UNL 1tkquhg ntyh ptwjut {kqnt nputiudnpldugdutn
httwpwynp ninhubph Swnh jurmgdwi dkpnnp

L. Zulnpjut
Udthnihnud

znnJuénid uupugpus E UNL 1kqhg nhuyh ptwfui (Egnt nputubnplugduie
gnpdpupwugh pupbjuyuwi dbpnnp: Lhpjujugws £ mputubnplwugdus htwpuynp
ninhubph dwrp, npp pny] £ mmwjhu uvnwbwy pnnp htwpuwygnp tnpuudnpdugdw
ninhubpp wfjuy twpwnguunipyuit b Yuwbnuubph fodph hwdwp: Zonpguénid
ujupugpduws k bwlb hwdwywwnwupwt wignphpdutph hpuljwiugnidp UNDL Platform
hwdwljupgnid:

MeToz NOCTPOEHUS U UCMONb30BaHUA epeBa BO3MOXXHbLIX HarnpaB/1eHWUi
TpaHcdopmauum ¢ a3bika UNL Ha eCcTeCTBEeHHbIN 3bIK

J1. AKonsH

AHHOTauma

OnuvcbiBaeTcs NOAX0A K YAYYLWEHWO npouecca TpaHcgopmaumm ¢ sa3bika UNL Ha
ECTECTBEHHbIV A3blK. [laeTca MeTof MOCTPOEHUS AepeBa BO3MOXHbIX NyTel TpaHchopmauuu,
KOTOPbIA MO3BONSET TEHEPMPOBaTb BCEBO3MOXKHbIE MyTW TpaHcopmauuyu Ans AaHHOro
npeanoXxeHns 1 Habopa npasus. OnuncaHa Takxe peannsaums COOTBETCTBYIOLMX anNropuTMOB B
cucteme UNDL Platform.

