

Mathematical Problems of Computer Science 41, 122---130, 2014.

122

Image Denoising Using Wavelet Transform and CUDA

Hovhannes M. Bantikyan

State Engineering University of Armenia

e-mail: bantikyan@gmail.com

Abstract

The discrete wavelet transform has a huge number of applications in science,

engineering, mathematics and computer science. Most notably, it is used for signal

coding to represent a discrete signal in a more redundant form, often as a

preconditioning for data compression. Beginning in the 1990s, wavelets have been

found to be a powerful tool for removing noise from a variety of signals (denoising).

In this paper the implementation of DWT (Discrete Wavelet Transform)-based

denoising algorithm in parallel manner on Graphics Processing Unit is presented,

using the CUDA technology.

Keywords: Image denoising, Discrete Wavelet Transform, Haar wavelet,

Daubechies wavelet, Parallel computing, GPGPU, CUDA programming.

1. Introduction

The wavelet transform, originally developed as a tool for the analysis of seismic data, has been

applied in areas as diverse as signal processing, video and image coding, compression, data

mining and seismic analysis. The theory of wavelets bears a large similarity to Fourier analysis,

where a signal is approximated by superposition of sinusoidal functions. A problem, however, is

that the sinusoids have an infinite support, which makes Fourier analysis less suitable to

approximate sharp transitions in a function or signal. Wavelet analysis overcomes this problem

by using small waves, called wavelets, which have a compact support. One starts with a wavelet

prototype function, called a basic wavelet or mother wavelet. Then a wavelet basis is constructed

by translated and dilated (i.e., rescaled) versions of the basic wavelet. The fundamental idea is to

decompose a signal into components with respect to this wavelet basis, and to reconstruct the

original signal as a superposition of wavelet basis functions; therefore we speak of a

multiresolution analysis. If the shape of the wavelets resembles that of the data, the wavelet

analysis results in a sparse representation of the signal, making wavelets an interesting tool for

data compression and noise removal [1].

There is a wide range of applications in which denoising is important. Examples are medical

image analysis, data mining, radio astronomy and many more. Each application has its special

requirements. For example, noise removal in medical signals requires specific care, since

H. Bantikyan

123

denoising which involves smoothing of the noisy signal (e.g., using a low-pass filter) may cause

the loss of fine details [2].

2. Discrete Wavelet Transform

The main idea of (the first generation) wavelet decomposition for finite 1-D signals is to start

from a signal

 , with N samples (we assume that N is a power of 2). Then

we apply convolution filtering of by a low pass analysis filter H and downsample the result by

a factor of 2 to get an “approximation” signal (or “band”) of length N/2, i.e., half the initial

length. Similarly, we apply convolution filtering of by a high pass analysis filter G, followed

by downsampling, to get a detail signal (or “band”) . Then we continue with and repeat the

same steps to get further approximation and detail signals and of length N/4. This process

is continued a number of times, say J. Here J is called the number of levels or stages of the

decomposition. The explicit decomposition equations for the individual signal coefficients are:

 ∑

 ∑

 ,

where and are the coefficients of the filters H and G. Note that only the approximation

bands are successively filtered, the detail bands are left “as is”.

This process is presented graphically in Fig. 1, where the symbol 2 (enclosed by a circle)

indicates downsampling by a factor of 2. This means that after the decomposition the initial data

vector is represented by one approximation band and J detail bands , , . . . , . The

total length of these approximation and detail bands is equal to the length of the input signal

[1].

Fig. 1. Structure of the forward wavelet transform with J stages: recursively split a signal into approximation

bands and detail bands .

Signal reconstruction is performed by the inverse wavelet transform: first upsample the

approximation and detail bands at the coarsest level J, then apply synthesis filters ̃ and ̃ to

them, and add the resulting bands. (In the case of orthonormal filters, such as the Haar basis, the

synthesis filters are essentially equal to the analysis filters.) Again this is done recursively. This

process is presented graphically in Fig. 2, where the symbol 2 indicates upsampling by a factor

of 2.

Fig. 2. Structure of the inverse wavelet transform with J stages: recursively upsample, filter and add approximation

signals and detail signals .

Image Denoising Using Wavelet Transform and CUDA

124

In case of images we first apply DWT for all rows and then for all columns. In Fig. 3 DWT of

Lena image is presented.

Fig. 3. DWT of Lena image with levels J = 1 (left) and J = 2 (right).

In this paper are implemented Haar and Daubechies 2 (db2) discrete wavelet transforms. Table 1

shows filter coefficients for discrete Haar wavelet transform [9].

Table 1. Filter coefficients of Discrete Haar wavelet

Decomposition

low-pass filter h0 = 0.7071067812 h1 = 0.7071067812

high-pass filter g0 = -0.7071067812 g1 = 0.7071067812

Reconstruction

low-pass filter h0 = 0.7071067812 h1 = 0.7071067812

high-pass filter g0 = 0.7071067812 g1 = -0.7071067812

Table 2 shows filter coefficients for discrete Daubechies 2 wavelet transform [9].

Table 2. Filter coefficients of Discrete Daubechies 2 (db2) wavelet

Decomposition

low-pass filter h0 = -0.1294095226 h1 = 0.2241438680 h2 = 0.8365163037 h3 = 0.4829629131

high-pass filter g0 = -0.4829629131 g1 = 0.8365163037 g2 = -0.2241438680 g3 = -0.1294095226

Reconstruction

low-pass filter h0 = 0.4829629131 h1 = 0.8365163037 h2 = 0.2241438680 h3 = -0.1294095226

high-pass filter g0 = -0.1294095226 g1 = -0.2241438680 g2 = 0.8365163037 g3 = -0.4829629131

3. Wavelet Thresholding

Consider an image of size N×N. Assume that it is corrupted by independent and identically

distributed (i.i.d) zero mean, white Gaussian noise with standard deviation σ. The corrupted

image, denoted by , is given as follows:

H. Bantikyan

125

 (1)

The orthogonality of DWT (assuming that orthogonal wavelets are used with periodic boundary

conditions) leads to the feature that white noise is transformed into white noise. After applying

the two-dimensional orthogonal discrete wavelet transform (DWT) to (1), we have

 (2)

where , , and , i, j = 1, 2, ···, N. Since

DWT is an orthogonal transform, is also an i.i.d Gaussian random variable, i.e., is N (0,

σ
2
) [3]. The coefficients of the wavelet transform are usually sparse. That is, most of the

coefficients in a noiseless wavelet transform are effectively zero. Therefore, we may reformulate

the problem of recovering f as one of recovering the coefficients of f which are relatively

"stronger" than the Gaussian white noise background. That is, the coefficients with small

magnitude can be considered as pure noise and should be set to zero. The approach, in which

each coefficient is compared with a threshold in order to decide whether it constitutes a desirable

part of the original signal or not, is called wavelet thresholding. The thresholding of the wavelet

coefficients is usually applied only to the detail coefficients of y rather than to the

approximation coefficients , since the latter ones represent 'low-frequency' terms that usually

contain important components of the signal, and are less affected by the noise. The thresholding

extracts the significant coefficients by setting to zero the coefficients the absolute value of which

is below a certain threshold level, which is to be denoted by λ.

The thresholded wavelet coefficients are obtained using either a hard or a soft thresholding rule

given respectively by:

 () {

 | |

 | |

 () {

 | |

The hard thresholding rule is usually referred to simply as wavelet thresholding, whereas the soft

thresholding rule is usually referred to as a wavelet shrinkage, since it "shrinks" the coefficients

with high amplitude towards zero. The thresholding rules are depicted in Fig. 4.

Fig. 4. Thresholding, λ=3.

Image Denoising Using Wavelet Transform and CUDA

126

Most of the algorithms using the thresholding approach try to estimate the optimal value of λ.

However, the first step in these algorithms usually involves the estimation of the noise level σ.

Assuming simply that σ is proportional to the standard deviation of the coefficients is clearly not

a good estimator, unless f is reasonably flat. A popular estimate of the noise level σ was

proposed by Donoho and Johnstone [5]. This is based on the last level of the detail coefficients,

according to the median absolute deviation:

 ̂
 {| |}

 (3)

where n is the number of coefficients in subband and the factor in the denominator is the

scale factor which depends on the distribution of , and is equal to 0.6745 for a normally

distributed data. Setting for all levels simply to the universal bound √ , where s is the

size of the image equal to , provides good results. This method was proposed by Donoho and

Johnstone in [5] and is known as VisuShrink.

4. Parallel Implementation and Results

GPU can process large volume data in parallel when working in single instruction multiple data

(SIMD) mode. In November 2006, the Compute Unified Device Architecture (CUDA) which is

specialized in compute intensive highly parallel computation is unveiled by NVIDIA. A CUDA-

capable GPU is referred to as a device and the CPU - as a host. Thread is the finest grain unit of

parallelism in CUDA [8].

Thousands of threads are able to run concurrently on the device. Threads are grouped into the

warps. Size of a warp is usually 32 threads. Warp is the smallest unit that can be processed by

multiprocessors. Warps scheduled across processors of one multiprocessor are coupled into the

thread blocks. Block is a unit of the resource assignment. Typical size of a thread block depends

on the particular application what the optimal size of a thread block is to ensure the best

utilization of the device. Thread blocks form a grid. Grid can be viewed as a 1-dimensional, 2-

dimensional or 3-dimensional array. Fig. 5 is depicting the described hierarchy.

Fig.5. NVIDIA CUDA programming model [8]

H. Bantikyan

127

 First we briefly describe the process to obtain denoised image using 2D-DWT thresholding.

Each image is processed as follows:

1. Perform multiscale decomposition on the image corrupted by Gaussian noise. The 2-D

orthogonal wavelet transform DWT on a noisy image y is performed up to J
th

 level to

generate several subbands.

2. Compute threshold λ at subband (using equation 3).

3. For each subband (except the low pass residual), apply λ and then use the soft or hard

thresholding method to the noisy coefficients to get the noiseless wavelet coefficients.

4. Finally take the inverse wavelet transform of the resultant image obtained in step 3 in order

to obtain a denoised image.

Fig.6. 2D DWT parallel implementation.

Fig. 6 shows how we launch a kernel for DWT. Let’s consider an image with size MxN. Number

of blocks will be M and number on threads in each block will be N/2. We will have MxN/2

threads working parallel. Each thread will perform k
th

G and H filter operation. Threads of each

block calculate DWT of one row. This single kernel launch will result DWT of all rows of

matrix. Then we transpose the matrix, and now by launching the kernel we will get DWT of all

columns of matrix. At last we again transpose the matrix.

If we compare the proposed CUDA version of the DWT with a sequential CPU

implementation, we can see a large speedup for large images. Table 3 shows the execution time

of DWT on CPU and GPU. Experiments are performed on CPU: Intel(R) Core(TM) i3-2100

3,10GHz, and GPU: GeForce GT 630, max threads per block: 1024, max blocks in kernel

launch: 65,535. We take into account the time needed to copy data and results to and from the

GPU.

Table 3. Haar DWT J=1 execution time on CPU and GPU

Image size 512x512 1024x1024 2048x2048

Sequential on CPU 47ms 218ms 1020ms

Parallel on GPU 16ms 46ms 210ms

To compute the threshold λ we need to estimate σ in HHJ subband. σ estimation is required to

calculate median on HHJ subband, and for that task we implement the parallel merge sort

algorithm (Fig. 7).

Image Denoising Using Wavelet Transform and CUDA

128

Fig.7. Merge sort parallel implementation

This algorithm performs in steps. In each step CUDA kernel runs N/2
J-1

threads to

perform merge operation. To go to the next step we have to wait until the calculation in current

step is finished (we call CUDA function __syncthreads).

After computing threshold we perform thresholding operation to all high pass subbands. We

choose either hard or soft thresholding method. At last we perform inverse DWT to thresholded.

Fig. 8 shows an example of a noisy and denoised image.

Fig.8. Lena original image (left), noisy with variance 0.01 (middle), denoised with Haar DWT J=2 (right).

In Table 4 some experimental results are presented for DWT thresholding for different levels.

Here we show PSNR of original and denoised images. Haar and Daubechies 2 (db2) wavelets are

used, and tested on noisy images with variance 0.01 (PSNR = 18) and 0.04 (PSNR = 14). Second

row in this table corresponds to Fig. 8.

Table 4. PSNR of original and denoised images

Wavelet Level Variance = 0.01 Variance = 0.04

Haar 1 23.1161 20.2064

Haar 2 22.9204 23.7507

Haar 3 21.8677 22.8585

Daubechies 2 1 22.5815 19.7278

Daubechies 2 2 23.3683 23.8697

Daubechies 2 3 21.5698 23.4152

H. Bantikyan

129

5. Conclusion

In this paper we have presented and evaluated an implementation of the 2D discrete wavelet

transform and wavelet thresholding for CUDA-enabled devices. A brief introduction to the

wavelet transform and thresholding has been provided prior to explaining our parallelization

strategy. We have compared the proposed CUDA version of the DWT with a sequential

implementation. We have computed PSNRs of denoised images for different transformation

levels based on VisuShrink algorithm. As we can see, we gain in performance using parallel

GPU algorithm. Parallelizing the sequential and simple algorithms will be beneficial to control

code complexity and minimize execution time of the process.

References

[1] W. J. van der Laan, C. J. Andrei and J. B. T. M. Roerdink, “Accelerating wavelet lifting on

graphics hardware using CUDA”, Parallel and Distributed Systems, IEEE Transactions,

vol. 22, pp. 132--146, 2011.

[2] (2012) R. Cohen, “Signal denoising using wavelets”, [Online]. Available:

http://tx.technion.ac.il/~rc/

[3] H. Om and M. Biswas, “A new image denoising scheme using soft-thresholding”, Journal

of Signal and Information Processing, vol. 3, pp. 360--363, 2012.

[4] P. Porwik and A. Lisowska, “The Haar–wavelet transform in digital image processing: its

status and achievements”, Machine Graphics and Vision, vol. 13, pp.79--98, 2004.

[5] D. L. Donoho and J. M. Johnstone, “Ideal spatial adaptation by wavelet shrinkage”,

Biometrika, vol. 81, pp. 425--455, 1994.

[6] I. W. Selesnick, Wavelet Transforms - A Quick Study, Physics Today magazine, September

27, 2007.

[7] (2012) NVIDIA CUDA C Programming Guide, NVIDIA Corp, [Online]. Available:

www.nvidia.com

[8] J. Sanders and E. Kandrot, CUDA by Example, Addison-Wesley, 2010.

[9] “Wavelet Properties Browser”, [Online]. Available: http://wavelets.pybytes.com/

Submitted 20.12.2013, accepted 05.03.2014.

Image Denoising Using Wavelet Transform and CUDA

130

ä³ïÏ»ñáõÙ ³ÕÙáõÏÇ Ñ»é³óáõÙ í»ÛíÉ»Ã Ó¨³÷áËáõÃÛ³Ý ¨ CUDA

ï»ËÝáÉá·Ç³ÛÇ Ïիñ³éÙ³Ùµ

Ð. ´³ÝïÇÏÛ³Ý

²Ù÷á÷áõÙ

¸ÇëÏñ»ï í»ÛíÉ»Ã Ó¨³÷áËáõÃÛáõÝÝ áõÝի Ù»Í Ãíáí ÏÇñ³éáõÃÛáõÝÝ»ñ

×³ñï³ñ³·ÇïáõÃÛ³Ý, Ù³Ã»Ù³ïÇÏ³ÛÇ ¨ Ñ³Ù³Ï³ñ·ã³ÛÇÝ ·ÇïáõÃÛáõÝÝ»ñÇ

µÝ³·³í³éÝ»ñáõÙ: Ð³×³Ë ³ÛÝ û·ï³·áñÍíáõÙ ¿ Ãí³ÛÇÝ ³½¹³Ýß³ÝÁ ³í»ÉóáõÏ³ÛÇÝ

ï»ëùáí Ý»ñÏ³Û³óÝ»Éáõ ¨ ïíÛ³ÉÝ»ñÇ ë»ÕÙÙ³ÝÁ Ý³Ë³å³ïñ³ëï»Éáõ Ñ³Ù³ñ: 1990-

³Ï³ÝÝ»ñÇó ի վեր í»ÛíÉ»ÃÝ»ñÁ ëÏë»óÇÝ û·ï³·áñÍí»É áñå»ë ï³ñ³ï»ë³Ï

³½¹³Ýß³ÝÝ»ñáõÙ ³ÕÙáõÏÇ Ñ»é³óÙ³Ý ·áñÍÇù: Ðá¹í³ÍáõÙ Ý»ñÏ³Û³óí³Í ¿ ³ÕÙáõÏÇ

Ñ»é³óÙ³Ý ³É·áñÇÃÙª ÑÇÙÝí³Í ¹ÇëÏñ»ï í»ÛíÉ»Ã Ó¨³÷áËáõÃÛ³Ý íñ³, ¨ ½áõ·³Ñ»é³óí³Í

CUDA ï»ËÝáÉá·Ç³ÛÇ ÙÇçáóáí:

Шумоподавление изображения с использованием вейвлет

преобразования и CUDA

О. Бантикян

Аннотация

Дискретное вейвлет преобразование имеет огромное количество применений в науке,

инженерии, математике и информатике. В частности, он используется для кодирования

сигнала, для представления дискретного сигнала в более избыточной форме, в качестве

предварительной подготовки для сжатия данных. Начиная с 1990-х годов, вейвлеты стали

применяться как мощный инструмент для удаления шума из различных сигналов. В

данной статье представлена реализация алгоритма шумоподавления на основе

дискретного вейвлет преобразования, параллельно использующая технологию CUDA.

