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Abstract

Algebraic representations of multidimensional recursively enumerable sets
which are expressible in forma arithmetical systems based on the
signatures(0,=,S,+), (0,=,<,S), (0,=,S), where S(x) = x+1, are introduced and
investigated. The equivalence is established between the agebraic and logica
representations of multidimensional recursively enumerable sets expressible in the
mentioned systems.

Keywords:. Predicate formula, Universal algebra, Recursively enumerable set,
Mathematical structure, Deductive system, Formal arithmetic.

1. Introduction

In this paper algebraic representations of multidimensional recursively enumerable sets (RES)
described in some subsystems of Peano’s formal arithmetic ([1], [2], [3]) are introduced and
investigated. Similar problems concerning two-dimensional RESes are considered in [4], [5], [6].
But the structure of algebraic representations of multidimensional RESes differs from the
structure of algebraic representations of two-dimensional ones. It was necessary to introduce
essential changes in the notions used in [4], [5], [6] for the description of such algebraic
representations. However, asit will be proved below, the relations between algebraic and logical
representations of multidimensional RESes are similar to those described in [5]. Theorems 2.1,
2.2, 2.3 (see below) about such relations will be formulated in Sec.2 and proved in Sec.3.

2. Main Definitions and Results

Let us give the definitions of notions used below (cf. [7], [8]). An n-dimensional arithmetical set,
where n>1, isdefined in anatural way as a set of n-tuples (x;, X,,...,X,) , where x;,X,,...,x, are
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104 On an Algebraic Classification of Multidimensional Recursively Enumerable Sets Expressible

nonnegative integers 0, 1, 2, .... An n-dimensional arithmetical predicate is defined as a predicate
which istrue on some n-dimensional arithmetical set and false out of it.

The notion of recursively enumerable set (RES) is defined asin [1]. An algebra is defined as
a “universal algebra” ([9], [10]) with afixed set of basic elements. Thus, any algebrais described
by amain set M, by a set of operations f,, f,,... on M (in general not everywhere defined),

and a set of basic elements a,,a,,... in M ([5]). We say that an element a€ M is inductively

representable in a given algebra (M; f,, f,,...;a,,8,,...) if it can be obtained by the operations
f,, f,,.. from the basic elements a,a,,... The notions of a subalgebra and a proper

subalgebra of a given algebra are defined in a natural way (for example, as in [5]).
We will consider the following operations on multidimensional RESes (cf [14]).

1) The operations of union U and intersection N of RESes are defined in a usual way
(note that these operations are applied only to RESes having equal dimensions).

2) The operation {, of projection for n-dimensional RES A concerning i-th co-ordinate,
where 1<i < n, is defined by the following generating rule (g.r.): if (X, X,,...,X;) € A,
then (X, Xy, X1, X,p0eem X ) €4, (A).

3) The operation x of Cartesian product for n-dimensional RES A and m-dimensional
RES B is defined by the following g.r.: if (X,X,,...,X,) € A, and (Y;,Y,,,Y,,) € B,
then (X, X5,y X, Y15 Yo 0o Vi) € AX B

4) The operation T; of transposition of i-th and j-th co-ordinates in n-dimensional RES

A, where 1<i,j<n, is defined by the following g.r.: if (X,X,,...,X,) € A, then
(X Xggeees X5 Xy Xiyg0ees X g0 X5 X g0 %) € T (A)

5) The operation * of transitive closure for a RES A having an even dimension 2n is
defined by the following generating rules: (a) if (X,,X,,..,X,,) € A, then
(Xys Xgyeey Xop) € ¥ A (b) if (X Xo1eeer Xy Vi Yoo V) € %A and
(Y1) Yorer Y124, 2y, Z,) € %A, then (X, Xy oo, X, 21, 25000, Z,) € %A

The following RESes are used as basic elements for the considered algebras (cf. [7]):
Zy={x|x=0; R={(xy)|y=x+L; Add={(xy,2)[z=x+y}; Q={(xy)|x<V¥};
J={(xy)[x=y}.

Examples: Q = *R; *({, (Add)) =4, (Add).

Let us define the algebras ©°, @,, O,, ©,.

The main set for these algebras is the set of all multidimensional RESes having the
dimensions n>1. The list of operations for all these algebras is (u,m,i,x,Tij). The lists of
basic elements are as follows (cf. [7]): (Z,,R, Add) for ®°, (Z,,R,Q) for ®,, (Z,,R,J) for
0,, (Z,,R) for ©,.

Note: The introduced algebras are different from the algebras denoted by ©°, ©,, ©,, ©, in
[5]. The algebras having these notations in [5] we will denote below by @0, C:)l, (:)2, @3.

The relations between the algebras @°, ®,, ©,, ©, and @0, @1, @2, é3 will be considered
in Sec.3.
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The notion of a predicate formula based on the logical operations &,v,>,—,V,3 (as other
notions connected with it, for example, the notion of a term) is defined in a usual way ([1], [3],
[11], see also [5]). A signature is defined in a usual way as any set of constants symbols,
functional symbols, predicate symbols. We say that a formula F (respectively, a term t)
belongs to a given signature T" (or is a formula (respectively, a term) in the signature T') if all
the constants symbols, functional symbols, predicate symbols contained in F (respectively, al
the constants symbols and functional symbols contained in t) belong to I". We will consider the
signatures (0,S,+,=), (0,=,<,S), (0,S,=), where S is an one-dimensional functional symbol;
these signatures will be denoted below respectively by N, N, Ng (cf. [7]). Note that similar
notations are used in [7] as the notations of the corresponding mathematical structures (however,
the structure corresponding to the signature (0, S,+,=) isdenoted in [7] (and in [3]) by N,). The
arithmetical interpretation of a predicate formula belonging to one of these signatures and
containing no other free variables except x;,X,,...,X, is defined in a natural way as an n-
dimensional arithmetical predicate; the functional symbol S is interpreted as the function
S(x) = x+1, and other symbols in the mentioned signatures are interpreted in a natural way.
The deductive systems of formal arithmetic in the signatures N,,, N, , Ny are defined asin ([1],
[3], [11]-[13]; see also [6]); we will denote these deductive arithmetical systems respectively by
Ded,, , Ded, , Dedg (cf. [6]). For example, the system Ded,, is equivalent to M. Presburger’s
system described in [11]-[13]. We say that formulas F and G (respectively terms t and s) are
equivalent in the framework of the corresponding deductive system if the formula
(F 2G)& (G o F) (respectively, the formula t = s) is deducible in this system. If the formulas
F and G or theterms t and s are equivalent in Ded,, (respectively, Ded, or Ded), we will
say that they are Ded,, -equivalent (respectively, Ded, -equivalent or Ded -equivalent).

All mentioned systems of formal arithmetic are complete ([3], [11]-[13]). We say that a set
I' of predicate formulas belonging to one of the mentioned signatures admits the elimination of
quantifiers (in the framework of the corresponding deductive system) if for any predicate
formula F belonging to I' aformula G belonging to I' can be constructed so that G does not
contain quantifiers and is equivalent to F in the framework of the corresponding deductive
system. The sets of al predicate formulas belonging to the signatures N, , N,, Ng admit the

elimination of quantifiers in the framework of the corresponding deductive systems Ded,, ,
Ded,, Dedg ([3], [11]-[13]). By S"(t), where n>0, and t is a term, we denote the term
S(S(...S(t)...)) , where the symbol S is repeated n times (S°(t) ist). By i we denote the term

S"(0). We say that a k-dimensional arithmetical set A is represented (or representable) by a
formula F belonging to one of the mentioned signatures and containing free variables
X, X5, %, If the following condition holds: the arithmetical interpretation of the formula

obtained by the substitution of the terms n,,n,,...,N, for the variables x, X,,...,x, in F istrueif
and only if (n,n,,...,n,) e A. We say that a k-dimensional arithmetical set A is represented (or
representable) in Ded,, (respectively, Ded, , Dedg) by aformula F in N, (respectively N, ,
Ng) if it is represented by some formula F' equivalent to Fin Ded, (respectively, Ded, ,
Dedg). For example, the (n+1)-dimensional RES {(X,,X,,... %, ¥) | X, + X, +...+ X, <y} IS
represented in Ded,, by theformula 3z(x, + X, +...+ X, +z+S(0) =y) in N, .
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A formula F inthesignature N is said to be positive if it contains no other logical symbols
except 3,&,v,— and al the symbols — of negation contained in it relate to elementary
subformul as containing no more than one variable (cf. [5], [7]).

Theorem 2.1: A multidimensional RES is inductively representable in the algebra ®°
(respectively ©,, ©,) if and only if it isrepresented in Ded,, (respectively, Ded, , Dedg) by a
formulain N, (respectively, N, , Ng).

Theorem 2.2: A multidimensional RES is inductively representable in the algebra @, if and
onlyif itisrepresented in Dedg by a positive formulain Ng.

Theorem 2.3: Every next algebra in the sequence ©°, ©,, ©,, ©, is a proper subalgebra of

the preceding one.

Theorems 2.1 and 2.2 are formulated (without proofs and in some other terms) in [7].

3. Proofsof Theorems

In this section the proofs of Theorems 2.1, 2.2, 2.3 will be given.
We will consider the following sets. By V we denote the set of al non-negative integers

0,1,2,..., by V¥ we denote the set of all k-tuples (x,,X,,...,X,) where k>1, and al x are non-
negative integers. By O we denote the 1-dimensional empty set, by O we denote the k-
dimensional empty set. By E and & we denote the sets E={(XVIX=¥ gng
Q ={(x X<} opviougy, al these sets are represented in the following deductive
systems V' in Deds by the formula X=X, V in  Deds by the formula
(X =% &% =% &..& X, = %), O in Deds by the formula X=S(X) O in Deds by the
formula (2 = S(4) & X, = S(%;) & ... & X, = S(Xk)), E in Deds by the formulaX=Y, Q in
Ded, by theformula X< ¥)V (x=Y)

Lemma 3.1 Thesets V. VS O O E Q Q J ge inductively representable in the
following algebras: the sets V, V¥, O, O E in all algebras ©°, ©1, ©2, O3 the sets
Q inthealgebras ©” and 1, theset J - inthe algebras ©°, ©1, ©2,

The proof is given by the following equalities:
v=l, (R); V¥ =V xV x...xV, where the symbol V is repeated k times;, O={, (RN T,(R));
0" =0x0x...x0, where the symbol O is repeated k times; E ={, (RxV)N(V xT,(R)));
Q =QUE; Q ={, (Add); Q={, (QxV)n(VxR); I=QuUT,(Q).

Corollary: Every next algebra in the sequence ®°, ©,, ©,, ©, is a subalgebra of the

preceding one.
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Lemma 3.2: Any RES inductively representable in ©° (respectively, ©,, ©®,) can be
represented in Ded,, (respectively, Ded, , Dedg) by aformulain N, (respectively, N, Ng).

Proof: The basic sets for ®° are represented by the formulas x=0, y=S(x), z=X+Y;
similarly, the basic setsfor ®, are represented by the formulas x=0, y = S(x), x< y; for ©, -
by the formulas x=0, y=S(x), —(x=Yy). If arithmetical sets A and B having equal

dimensions are represented by formulas F and G, then the sets AUB and AnB are
represented by the formulas (F vG) and (F & G). If an n-dimensional arithmetical set A is

represented by a formula F containing free variables x,,X,,..., X, then the set . (A), where
1<i<n, is represented by the formula 3x (F). If an n-dimensional arithmetical set A is
represented by a formula F containing only free variables x,, x,,...,X,, and an m-dimensional
arithmetical set B is represented by aformula G containing only free variables v,,VY,,..., ¥,

then the set Ax B isrepresented by the formula F & G', where the formula G’ is obtained from
G by the substitution of variables X, ;, X, 5. Xp.n fOF Vi, Voo Y, iN G . If @n n-dimensional

arithmetical set A isrepresented by aformula F containing free variables x,, x,,..., X, then the
formula T, (A), where 1<i,j<n, is represented by a formula F’ obtained from F by a
corresponding replacement of free variables. This completes the proof.

Now we will give the proof of the statement opposite to the statement of Lemma 3.2.
In what follows any term in N, having the form (x+ x+...+ x) , where the variable x is

repeated k times, will be shortly denoted by kx. The notation kx will denote the term O when
k=0; it will denotetheterm x when k =1.

We will consider below the following sets.

(1) Theset Z, , where k isaconstant, k > 0; it is a one-dimensional set containing only the

number k.
(2) The set W, , where k is aconstant, k > 0; it is a one-dimensional set containing all the
numbers x such that x > K.
(3) Theset R, where k isaconstant, k > 1; it isatwo-dimensional set {(x,y) | y = S*(X)}.
(4) The set EAdd,, where k is a constant, k>0; it is a two-dimensional set

{(xy)ly=kg.
(5) The set Ligxp (k,,k,,....k,,q), where n>1, and kK,,...,K,,q are constants, k, >0,
k, >0, k,>0, q=0; it is an  (n+l)-dimensional set

{0 X0 X0, V) TR X+ KX, 4o+ K X+ = Y}
(6) The set Congr, (X,y), where k is a constant, k>2; it is a two-dimensional set

{(x ) [(x=y)(modk)} .

Clearly, all these sets are represented by formulas in the following deductive systems. Z, is
represented by the formula (x=k) in Ded,, Ded,, Deds; W, is represented by the formula
3z(x = S*"'(2)) in Dedy, Ded,, Deds; R, is represented by the formula y = S*(x) in Ded,,
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Ded,, Deds; EAdd, is represented by the formula y =kx in Dedy; Linexp(k, Kk, ,...,K,,q) is
represented in Dedy by the formula kX, + K, X, +...+K,X, +q = y; Congr, (X, y), where k > 2
isrepresented in Dedy by the formula 3z((x+ kz=y) v (y + kz = X)) .

Lemma 3.3: The sets Z, , where k > 0, the sets W, , where k > 0, the sets R, , where k > 1, the
sets EAdd, , where k >0, the sets Linexp(k, .k, ,...,k,,q), where n>1, k >0 for 1<i<n,
g=0, the sets Congr, (X, y), where k>2 are inductively representable in the following
algebras. Z,, W, and R in ©°, ©,, ©,, ©,; EAdd,, Linexpk,.k,,..k,,q) and
Congr,(x,y) in ©°,

The proof is given by the following equalities (note that the sets Z, and R are included as basic
elementsin al the algebras ©°, ©,, ©,, 0,):

Z =4 (ZxV) R Wy =4, (R); W, =4, (W xV)NR); R =R;

Rex =b, (RexV) N (V xR)); EAdd, =V xZ,;

EAdd, , =¥, (}, ((EAdd, xV?) " (V x Add) " T,,(ExV?)));

Linexp(k,q) =¥, (V, ((EAdd, xV?) N (V2 x Z,xV)n(V x Add)));

Lirexp(ky, Ky ek [, @) =y (o (T s (LITBXP(K, Ky K, @)XV AV X EAG V) N(V™ x Ad)));
Congr, =¥, (¥, ((EAdd, xV?) " (V x Add))) UT, (¥, (¥, ((Eadd, xV?) n (V x Add)))) .

Lemma 3.4: Any term in N, is Ded,-equivalent to a term having the form
kX +K,X, +...+K,X, + 7, where q is a nonnegative integer constant. Any formula in N, is

Ded,, -equivalent to a formula which can be obtained by & and v from subformulas having the
formt<sor (t=s)(modk),wheret and s areterms, and k isan integer constant, k > 2.

This Lemmais proved (in other terms) in [3], [4], [11] (cf. [6], Lemma4.1).

Lemma 3.5: Any RESrepresented in Ded,, by aformulain N, isinductively representablein
the algebra ©°.

Proof: Let F be aformulain N, . Let us denote by x,X,,...,X, the list of al free variables

contained in F . Using Lemma 3.4 we conclude that there exists a formula F’which is Ded,, -

equivalent to F and can be obtained by & and v from subformulas having the form t <s or
(t=s)(modk), where t and s have the form described in Lemma 3.4. Without loss of

generality we can suppose that the list of variablesin all mentioned terms t and s coincides with
the list x;,X,,..., X, (indeed, if some variable x, is missing in a corresponding sum, then we can
add to this sum the summand 0- x; ; the order of summands in all considered sums can be unified
using the operation T; ). We see that the formula F is Ded,, -equivalent to some formula which
can be obtained by & and v from the formulas having the form t <s or (t =s)(modk) in
which al the terms t and s have the form k x +Kk,x, +...+ K X, + @, where k >0 for
1<i<n, and g>0. n-dimensional sets represented by the formulas of such kind can be
described in ®° by the following expressions: the set represented by the formula having the
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form t<s - by the expression of the form
Von (o ((Linexp(Ky, Ky e Ke, @)X V) AT,y o (Linexp(k; , Ky, K2, Q) < V) A (V" % Q)));
the set represented by the formula having the form (t = s)(modk) - by the expression of the form
bt (s (LINEXD(K, K 1o Ky 0 XV) O T, (LiNSKD(K, K, K, 4 07) X V) A (V7 x Congr, )

Thus, any n-dimensional set represented by the formula F can be described in ®° applying the
operations N and U to the expressions having the forms mentioned above.
This compl etes the proof.

Lemma 3.6: Any termin N, hastheform S*(x) or S*(0), where x isavariable. Any formula
in N, is Ded, -equivalent to a formula which can be obtained by & and v from subformulas
having theform (t < s), where t and s areterms.

This Lemmais proved (in other terms) in [3], [5], [11] (cf. [6], Lemma 4.2).

Lemma 3.7: Any RESrepresented in Ded, by someformulain N, isinductively representable
inthe algebra O, .

Proof: Let F beaformulain N, . Let usdenote by x,,X,,...,x, thelist of al free variablesin
F . We suppose that n> 2 (thecase n< 2 isconsidered in asimilar way). Using Lemma 3.6 we
conclude that F is Ded, -equivalent to some formula F’ which can be obtained by & and v
from subformulas of the form (t < s), where t and s are terms. Let us consider the case when t
and s contain only the variables x, and x, (the general case is reduced to the mentioned one
using the operation T, ). We will denote the variables x, and x, by x and y. Using Lemma 3.6
we see that in the subformula (t < s) the term t has one of the forms S*(x), S*(y), S*(0),
where k > 0; theterm s has one of theforms S'(x), S'(y), S'(0), where | > 0. Thus, there are
9 possible forms of the subformula (t <s). If (t <s) has the form S*(x) < S'(y), then the n-
dimensional set represented by this formulaiis ¥, (R, xV) N (V xQ))xV"™? when k > 1; it is
4, (QxV) N T (VxR_))xV™?, when k<1, and QxV"? when k=1. If (t<s) hasthe
form S*(x) < S'(x), then the n-dimensional set represented by this formulais O" when k > 1,
and is V" when k<I. If (t<s) has the form S*(x) < S'(0), then the n-dimensional set
represented by this formulais O" when k>1, andis (Z,uZ, U..uZ , ,)xV"" when k<.
The remaining forms of the formula (t <s) are considered in a similar way. Thus, the n-
dimensional RES represented by the formula F in Ded, is obtained by v and n from sets

inductively representablein @, .
This compl etes the proof.

Lemma 3.8: Any termin N hastheform S*(x) or S*(0), where x isavariable. Any formula
in Ng is Dedg-equivalent to a formula which can be obtained by & and v from subformulas
having theform (t =s) or —(t=s),wheret and s areterms.

This Lemmais actually proved (in other terms) in [3], [11] (cf. [5], Lemma 3.8).
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Lemma 3.9: Any RESrepresented in Dedg by formula in Ny is inductively representable in
the algebra ©,.

Proof: The proof is similar to that of Lemma 3.7. Let F be aformulain Ng. Let us denote by
X5 %o,y X, thelist of all free variables contained in F . We suppose (as in the proof of Lemma
3.7) that n> 2. Using Lemma 3.8 we conclude that F isDed -equivalent to some formula F’'
which can be obtained by & and v from subformulas having theforms (t =s) and —(t =s). As

in the proof of Lemma 3.7 we consider the case when t and s contain only variables x;, and X, ;
we will denote these variables by x and y. Using Lemma 3.8 we see that in the subformulas
(t=s) and —(t = s) the term t has one of the forms S*(x), S*(y), S*(0), where k > 0; the
term s has one of theforms S'(x), S'(y), S'(0), where | > 0. Thus, there are 9 possible forms
of the subformula (t = s) and 9 possible forms of the subformula —(t = s) .

If (t=s) hastheform S*(x) = S'(y), then the n-dimensional set represented by this formula is
R xV"? when k>1;itis T,(R_)xV"> when k<I,and ExV"? when k =1.

The n-dimensional set represented by the formula —(S*(x) = S'(y)) is ¥, (R, xV) N (V x J))
when k> 1 ,itis T,(, (R_, xV)N(VxJ))) when k<I,and JxV"? when k =1 .

The n-dimensional set represented by the formula S(x) = S'(x) is O" when k=1 ; itis V"
when k=1.

The n-dimensional set represented by the formula —(S*(x) = S'(x)) isV" when k =1 ; itis O"
when k=1.

The n-dimensional set represented by the formula S*(x)=S'(0) is O" when k>1; it is
Z,  xV"  when k<I.

The n-dimensional set represented by the formula —(S*(x) = S'(0)) is V" when k>1; it is
(Z,vZ, 0. UZ, , ,UW )XV when k<I; and W, xV"'when k=1. The remaining
forms of the formulas (t = s) and —(t = s) are considered in asimilar way.

Thus, the n-dimensional RES represented by the formula F is obtained by w and n from sets
inductively representablein @, .

This completes the proof.

The proof of Theorem 2.1 is obtained now using Lemmas 3.2, 3.5, 3.7, 3.9.

Lemma 3.10: The set of positive formulas in Ng admits the elimination of quantifiers in the
framework of Dedy .

The proof follows from the considerations in [3], because it is easily seen that the method of
elimination of quantifiersin Ng described in [3] gives for any positive formula F in Ng some

positive formula G suchthat G does not contain quantifiers and isDed -equivalent to F .

Lemma 3.11: Any positive formula in Ng is Dedg-equivalent to a formula which can be
obtained by & and v from subformulas having the form (t=s) or —(t=s), wheret and s
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are terms of the form S*(x) or S*(0), and any subformula of the form —(t =s) contains no
mor e than one variable.

The proof is easily obtained using Lemmas 3.8 and 3.10.

Lemma 3.12: Any RES inductively representable in ®, can be represented in Dedg by a
positive formulain Ng.

Proof: The basic setsin ®, are represented in N by the positive formulas x=0 and y = S(Xx) .
It is easily seen that the transformation of formulas generated in the proof of Lemma 3.2 by the
operations U,N,x, ¥, ,T; gives positive formula being applied to positive formulas.

This compl etes the proof.

Lemma 3.13: Any RES represented in Dedg by a positive formula in Ng is inductively
representable in the algebra ©,.

Proof: Let F be a positive formula in Ng. Let us denote by X, X,,...,X, the list of al free

e Xy
variables in F . Similarly to the proof of Lemmas 3.7 and 3.9 we suppose that n>1. Using
Lemma 3.11 we conclude that F is Dedg-equivalent to a positive formula which can be

obtained by & and v from positive subformulas of the form (t =s) or —(t=s), wheret and s
aretermsin Ng. It iseasily seen that any n-dimensional set represented by aformula of the form
(t=1s) is described by the expressions considered in the proof of Lemma 3.9. Now let us
consider the sets represented by subformulas of the form —(t = s) . Let usrecall that any positive
formula of the form —(t = s) contains no more than one variable. The single variable contained

in —(t=s) we denote by x and suppose that it coincides with the variable x, in the list
X, %o,y X, (the general case is considered similarly). Then the formula —(t = s) has the form

—(S*(x) = S'(0)), where k>0, | >0. But the inductive representations of the set represented
by this formula in ®, are described in the proof of Lemma 3.9; it is easily seen that these
representations are also representations in ®,. Thus, the n-dimensional RES represented by the
formula F isobtained by U and n from setsinductively representablein @, .

This completes the proof.

The proof of Theorem 2.2 is obtained now using Lemmas 3.12 and 3.13.

Lemma 3.14: Any multidimensional RES is inductively representable in (?)O (respectively, (51,
éz, (:)3) if and only if it is two-dimensional and is inductively representable in @,
(respectively, ©,, ©,, 0,).

Proof: Let usrecall that we denote by @o, él, éz, G~)3 the algebras denoted in [5] by ©,, ©,,
®,, O,. As it is proved in [5], (in other terms) a two-dimensional RES is inductively
representable in (?)O (respectively, (:)1, (:)2) if and only if it is represented in Ded,
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(respectively, Ded, , Dedg) by aformulain N, (respectively, N, Ng); a two-dimensional
RES is inductively representable in @3 if and only if it is represented in Dedg by a positive
formula in Ng. Now the statement of Lemma 3.14 is obtained using Theorems 2.1 and 2.2

proved above.
Proof of Theorem 2.3: As it is proved in [5], there exists a two-dimensional RES A

(respectively, A,, A;) which isinductively representable in @)1 (respectively, éz, (:)3) but not

in @0 (respectively, (:)1, (:)2). The statement of Theorem 2.3 is now obtained using Lemma
3.14.

Let us note that the list of operations in the algebras ©,, ©,, ©,, ©, is similar to that
considered in [14]. Let us note that if we add the operation of transitive closure to this list then
any multidimensional RES will be inductively representable in the extended algebra ®,. Such

statement is proved in [15] (see [15], Lemma l).
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Quuyjtugdws puwpwbwljut hwdwljupgipnud wpnwhwjnkih

puqUuswth wianpunupd pyupltih paqunipniuutph npny
hwtpwhwoduljuwb puuuljupgldui duuht

U. Uwlunijjut
Udthnthnd

Uwhdwtymd b hbnwgnundmud tu (0,=,S+), (0,=<,5), (0,=S) (apntn S(x) =x+1)
uhquwwnnipwiubph Ypw hhdtqusd dhwjtwgus pywpwinipjut hwdwlwupgbph dbe
wpunwhwjnkih puquuswth wunpunupd pYunlbih puqunipiniutiiph
hwipwhwoqulwt tkpjuyugnidubpp: Zwunwwnynd £ hwdwpdbpnipmit tpdws
nhywh  winpunyupd  pdupylth pwqUnmipmitubph hwbpwhwydujut b
npudwpwbwub tipjuyugnidutph dhol:

O6 anrebpanveckoil k1accuPUKAIUU MHOTOMEPHBIX PEKYPCHUBHO
II€PEeYHCITIMBIX MHOXECTB, BEIPa3UMBIX B (POPMaIBHBIX
apuMeTHUeCKHUX CrcTeMax
C. Manykau

Ansoranus

Beogatca 1 wuccrnefyrotcs  anrebpanmyeckme MpeAcTaBNeHUs MHOTOMEPHbIX  PeKypCUBHO
MepeYncnMMbIX MHOXECTB, KOTOpPble BbIpa3uMbl B CUCTeMax (OPMasIbHON apudMeTrKK,
OCHOBaHHbIX Ha curHatypax (0,=,S+), (0,=<,S), (0,=S), rme S(x)=x+1.
YCTaHaB/MBAeTCA  3KBMBAMIEHTHOCTb  MeXAy — anrebpavyecKumv 1 JIOTUHECKUMU
MPeLCTaB/EHNAMN MHOTOMEPHbIX PEKYPCUBHO MEpPeuncIMMbIX  MHOXECTB, BbIpasuMbIX B
YKa3aHHbIX CUCTeMAX.



