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Abstract

Algebraic representations of multidimensional recursively enumerable sets
which are expressible in formal arithmetical systems based on the
signatures ),,,0(  S , ),,,0( S , ),,0( S , where 1)(  xxS , are introduced and
investigated. The equivalence is established between the algebraic and logical
representations of multidimensional recursively enumerable sets expressible in the
mentioned systems.
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1. Introduction

In this paper algebraic representations of multidimensional recursively enumerable sets (RES)
described in some subsystems of Peano’s formal arithmetic ([1], [2], [3]) are introduced and
investigated. Similar problems concerning two-dimensional RESes are considered in [4], [5], [6].
But the structure of algebraic representations of multidimensional RESes differs from the
structure of algebraic representations of two-dimensional ones. It was necessary to introduce
essential changes in the notions used in [4], [5], [6] for the description of such algebraic
representations. However, as it will be proved below, the relations between algebraic and logical
representations of multidimensional RESes are similar to those described in [5]. Theorems 2.1,
2.2, 2.3 (see below) about such relations will be formulated in Sec.2 and proved in Sec.3.

2. Main Definitions and Results

Let us give the definitions of notions used below (cf. [7], [8]). An n-dimensional arithmetical set,
where 1n , is defined in a natural way as a set of n-tuples ),...,,( 21 nxxx , where nxxx ,...,, 21 are

1 This work was supported by State Committee of  Science, MES RA, in frame of  the research project № SCS 13-
B321.
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nonnegative integers 0, 1, 2, .... An n-dimensional arithmetical predicate is defined as a predicate
which is true on some n-dimensional arithmetical set and false out of it.

The notion of recursively enumerable set (RES) is defined as in [1]. An algebra is defined as
a “universal algebra” ([9], [10]) with a fixed set of basic elements. Thus, any algebra is described
by a main set M , by a set of operations ,..., 21 ff on M (in general not everywhere defined),
and a set of basic elements ,..., 21 aa in M ([5]). We say that an element Ma is inductively
representable in a given algebra ,...),,...;,;( 2121 aaffM if it can be obtained by the operations

,..., 21 ff from the basic elements ,..., 21 aa . The notions of a subalgebra and a proper
subalgebra of a given algebra are defined in a natural way (for example, as in [5]).

We will consider the following operations on multidimensional RESes (cf [14]).

1) The operations of union  and intersection  of RESes are defined in a usual way
(note that these operations are applied only to RESes having  equal dimensions).

2) The operation i of projection for n-dimensional RES A concerning i-th co-ordinate,
where ni 1 , is defined by the following generating rule (g.r.): if Axxx n ),...,,( 21 ,
then )(),...,,,...,,( 1121 Axxxxx inii  .

3) The operation  of Cartesian product for n-dimensional RES A and m-dimensional
RES B is defined by the following g.r.: if Axxx n ),...,,( 21 , and Byyy m ),...,,( 21 ,
then BAyyyxxx mn ),...,,,,...,,( 2121 .

4) The operation ijT of transposition of i-th and j-th co-ordinates in n-dimensional RES
A , where nji  ,1 , is defined by the following g.r.: if Axxx n ),...,,( 21 , then

)(),...,,,...,,,,...,,( 111121 ATxxxxxxxxx ijnjijiji  .
5) The operation  of transitive closure for a RES A having an even dimension 2n is

defined by the following generating rules: (a) if Axxx n ),...,,( 221 , then
Axxx n ),...,,( 221 ; (b) if Ayyyxxx nn ),...,,,,...,,( 2121 and

Azzzyyy nn ),...,,,,...,,( 2121 , then Azzzxxx nn ),...,,,,...,,( 2121 .

The following RESes are used as basic elements for the considered algebras (cf. [7]):
}0|{0  xxZ ; }1|),{(  xyyxR ; }|),,{( yxzzyxAdd  ; }|),{( yxyxQ  ;

}|),{( yxyxJ  .
Examples: RQ  ; )())(( 11 AddAdd  .

Let us define the algebras 0 , 1 , 2 , 3 .
The main set for these algebras is the set of all multidimensional RESes having the
dimensions 1n . The list of operations for all these algebras is ),,,,( ijT . The lists of

basic elements are as follows (cf. [7]): ),,( 0 AddRZ for 0 , ),,( 0 QRZ for 1 , ),,( 0 JRZ for

2 , ),( 0 RZ for 3 .
Note: The introduced algebras are different from the algebras denoted by 0 , 1 , 2 , 3 in

[5]. The algebras having these notations in [5] we will denote below by 0

~ , 1

~ , 2

~ , 3

~ .

The relations between the algebras 0 , 1 , 2 , 3 and 0

~ , 1

~ , 2

~ , 3

~ will be considered
in Sec.3.
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The notion of a predicate formula based on the logical operations  ,,,,&, (as other
notions connected with it, for example, the notion of a term) is defined in a usual way ([1], [3],
[11], see also [5]). A signature is defined in a usual way as any set of constants symbols,
functional symbols, predicate symbols. We say that a formula F (respectively, a term t )
belongs to a given signature  (or is a formula (respectively, a term) in the signature  ) if all
the constants symbols, functional symbols, predicate symbols contained in F (respectively, all
the constants symbols and functional symbols contained in t ) belong to  . We will consider the
signatures ),,,0( S , ),,,0( S , ),,0( S , where S is an one-dimensional functional symbol;

these signatures will be denoted below respectively by HN , LN , SN (cf. [7]). Note that similar
notations are used in [7] as the notations of the corresponding mathematical structures (however,
the structure corresponding to the signature ),,,0( S is denoted in [7] (and in [3]) by AN ). The
arithmetical interpretation of a predicate formula belonging to one of these signatures and
containing no other free variables except nxxx ,...,, 21 is defined in a natural way as an n-

dimensional arithmetical predicate; the functional symbol S is interpreted as the function
1)(  xxS , and other symbols in the mentioned signatures are interpreted in a natural way.

The deductive systems of formal arithmetic in the signatures HN , LN , SN are defined as in ([1],
[3], [11]-[13]; see also [6]); we will denote these deductive arithmetical systems respectively by

HDed , LDed , SDed (cf. [6]). For example, the system HDed is equivalent to M. Presburger’s
system described in [11]-[13]. We say that formulas F and G (respectively terms t and s ) are
equivalent in the framework of the corresponding deductive system if the formula

)(&)( FGGF  (respectively, the formula st  ) is deducible in this system. If the formulas

F and G or the terms t and s are equivalent in HDed (respectively, LDed or SDed ), we will

say that they are HDed -equivalent (respectively, LDed -equivalent or SDed -equivalent).
All mentioned systems of formal arithmetic are complete ([3], [11]-[13]). We say that a set

 of predicate formulas belonging to one of the mentioned signatures admits the elimination of
quantifiers (in the framework of the corresponding deductive system) if for any predicate
formula F belonging to  a formula G belonging to Г can be constructed so that G does not
contain quantifiers and is equivalent to F in the framework of the corresponding deductive
system. The sets of all predicate formulas belonging to the signatures HN , LN , SN admit the

elimination of quantifiers in the framework of the corresponding deductive systems HDed ,

LDed , SDed ([3], [11]-[13]). By )(tS n , where 0n , and t is a term, we denote the term

)...))((...( tSSS , where the symbol S is repeated n times ( )(0 tS is t ). By n we denote the term

)0(nS . We say that a k-dimensional arithmetical set A is represented (or representable) by a
formula F belonging to one of the mentioned signatures and containing free variables

kxxx ,...,, 21 , if the following condition holds: the arithmetical interpretation of the formula

obtained by the substitution of the terms knnn ,...,, 21 for the variables kxxx ,...,, 21 in F is true if

and only if Annn k ),...,,( 21 . We say that a k-dimensional arithmetical set A is represented (or

representable) in HDed (respectively, LDed , SDed ) by a formula F in HN (respectively LN ,

SN ) if it is represented by some formula F  equivalent to F in HDed (respectively, LDed ,

SDed ). For example, the (n+1)-dimensional RES }...|),,...,,{( 2121 yxxxyxxx nn  is

represented in HDed by the formula ))0(...( 21 ySzxxxz n  in HN .
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A formula F in the signature SN is said to be positive if it contains no other logical symbols

except  ,,&, and all the symbols  of negation contained in it relate to elementary
subformulas containing no more than one variable (cf. [5], [7]).
Theorem 2.1: A multidimensional RES is inductively representable in the algebra 0
(respectively 1 , 2 ) if and only if it is represented in HDed (respectively, LDed , SDed ) by a

formula in HN (respectively, LN , SN ).

Theorem 2.2: A multidimensional RES is inductively representable in the algebra 3 if and

only if it is represented in SDed by a positive formula in SN .

Theorem 2.3: Every next algebra in the sequence 0 , 1 , 2 , 3 is a proper subalgebra of
the preceding one.

Theorems 2.1 and 2.2 are formulated (without proofs and in some other terms) in [7].

3. Proofs of Theorems

In this section the proofs of Theorems 2.1, 2.2, 2.3 will be given.
We will consider the following sets. By V we denote the set of all non-negative integers

0,1,2,..., by kV we denote the set of all k-tuples ),...,,( 21 kxxx where 1k , and all ix are non-

negative integers. By O we denote the 1-dimensional empty set, by
kO we denote the k-

dimensional empty set. By E and 1Q we denote the sets }|),{( yxyxE  and
}|),{(1 yxyxQ  . Obviously, all these sets are represented in the following deductive

systems: V in DedS by the formula xx  ,
kV in DedS by the formula

)&...&&( 2211 kk xxxxxx  , O in DedS by the formula )(xSx  ,
kO in DedS by the

formula ))(&...&)(&)(( 2211 kk xSxxSxxSx  , E in DedS by the formula yx  , 1Q in

DedL by the formula )()( yxyx  .

Lemma 3.1: The sets V ,
kV , O ,

kO , E , 1Q , Q , J are inductively representable in the

following algebras: the sets V ,
kV , O ,

kO , E in all algebras
0 , 1 , 2 , 3 , the sets 1Q ,

Q - in the algebras
0 and 1 , the set J - in the algebras

0 , 1 , 2 .

The proof is given by the following equalities:
)(2 RV  ; VVVV k  ... , where the symbol V is repeated k times; ))(( 121 RTRO  ;

OOOO k  ... , where the symbol O is repeated k times; )))(()(( 122 RTVVRE  ;

EQQ 1 ; )(11 AddQ  ; ))()(( 12 RVVQQ  ; )(12 QTQJ  .

Corollary: Every next algebra in the sequence 0 , 1 , 2 , 3 is a subalgebra of the
preceding one.
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Lemma 3.2: Any RES inductively representable in 0 (respectively, 1 , 2 ) can be

represented in HDed (respectively, LDed , SDed ) by a formula in HN (respectively, LN , SN ).

Proof: The basic sets for 0 are represented by the formulas 0x , )(xSy  , yxz  ;

similarly, the basic sets for 1 are represented by the formulas 0x , )(xSy  , yx  ; for 2 -
by the formulas 0x , )(xSy  , )( yx  . If arithmetical sets A and B having equal
dimensions are represented by formulas F and G , then the sets BA and BA are
represented by the formulas )( GF  and )&( GF . If an n-dimensional arithmetical set A is

represented by a formula F containing free variables nxxx ,...,, 21 , then the set )(Ai , where

ni 1 , is represented by the formula )(Fxi . If an n-dimensional arithmetical set A is

represented by a formula F containing only free variables nxxx ,...,, 21 , and an m-dimensional

arithmetical set B is represented by a formula G containing only free variables myyy ,...,, 21 ,

then the set BA is represented by the formula GF & , where the formula G is obtained from
G by the substitution of variables mnnn xxx  ,...,, 21 for myyy ,...,, 21 in G . If an n-dimensional

arithmetical set A is represented by a formula F containing free variables nxxx ,...,, 21 , then the

formula )(ATij , where nji  ,1 , is represented by a formula F  obtained from F by a

corresponding replacement of free variables. This completes the proof.

Now we will give the proof of the statement opposite to the statement of Lemma 3.2.
In what follows any term in HN having the form )...( xxx  , where the variable x is

repeated k times, will be shortly denoted by kx . The notation kx will denote the term 0 when
0k ; it will denote the term x when 1k .

We will consider below the following sets.

(1) The set kZ , where k is a constant, 0k ; it is a one-dimensional set containing only the

number k .
(2) The set kW , where k is a constant, 0k ; it is a one-dimensional set containing all the

numbers x such that kx  .
(3) The set kR , where k is a constant, 1k ; it is a two-dimensional set )}(|),{( xSyyx k .

(4) The set kEAdd , where k is a constant, 0k ; it is a two-dimensional set

}|),{( kxyyx  .

(5) The set ),,...,,( 21 qkkkLin n
exp , where 1n , and qkkk n ,,...,, 21 are constants, 01 k ,

02 k , ..., 0nk , 0q ; it is an (n+1)-dimensional set

}...|),,...,,{( 221121 yqxkxkxkyxxx nnn  .

(6) The set ),( yxCongrk , where k is a constant, 2k ; it is a two-dimensional set

)})(mod(|),{( kyxyx  .

Clearly, all these sets are represented by formulas in the following deductive systems: kZ is

represented by the formula )( kx  in DedH, DedL, DedS; kW is represented by the formula

))(( 1 zSxz k in DedH, DedL, DedS; kR is represented by the formula )(xSy k in DedH,
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DedL, DedS; kEAdd is represented by the formula kxy  in DedH; q),k,...,k,Linexp(k n21 is

represented in DedH by the formula yqxkxkxk nn  ...2211 ; ),( yxCongrk , where 2k

is represented in DedH by the formula ))()(( xkzyykzxz  .

Lemma 3.3: The sets kZ , where 0k , the sets kW , where 0k , the sets kR , where 1k , the

sets kEAdd , where 0k , the sets q),k,...,k,Linexp(k n21 , where 1n , 0ik for ni 1 ,

0q , the sets ),( yxCongrk , where 2k are inductively representable in the following

algebras: kZ , kW and kR in 0 , 1 , 2 , 3 ; kEAdd , q),k,...,k,Linexp(k n21 and

),( yxCongrk in 0 .

The proof is given by the following equalities (note that the sets 0Z and R are included as basic

elements in all the algebras 0 , 1 , 2 , 3 ):

))((11 RVZZ kk  ; )(10 RW  ; ))((11 RVWW kk  ; RR 1 ;

))()((21 RVVRR kk  ; 00 ZVEAdd  ;

)))()()((( 2
23

2
111 VETAddVVEAddEAdd kk  ;

)))()()(((),( 22
22 AddVVZVVEAddqkexpLin qk  ;

)))()()),,...,((((),,,...,,( 123
213,12221 AddVVEAddVVqkkkLinTqlkkkLin n

l
n

nnnnnn  
 expexp ;

))))()(((()))()((( 2
1112

2
11 AddVVEaddTAddVVEAddCongr kkk  .

Lemma 3.4: Any term in HN is HDed -equivalent to a term having the form

qxkxkxk nn  ...2211 , where q is a nonnegative integer constant. Any formula in HN is

HDed -equivalent to a formula which can be obtained by & and  from subformulas having the
form st  or ))(mod( kst  , where t and s are terms, and k is an integer constant, 2k .

This Lemma is proved (in other terms) in [3], [4], [11] (cf. [6], Lemma 4.1).

Lemma 3.5: Any RES represented in HDed by a formula in HN is inductively representable in

the algebra 0 .

Proof: Let F be a formula in HN . Let us denote by nxxx ,...,, 21 the list of all free variables

contained in F . Using Lemma 3.4 we conclude that there exists a formula F which is HDed -
equivalent to F and can be obtained by & and  from subformulas having the form st  or

))(mod( kst  , where t and s have the form described in Lemma 3.4. Without loss of
generality we can suppose that the list of variables in all mentioned terms t and s coincides with
the list nxxx ,...,, 21 (indeed, if some variable ix is missing in a corresponding sum, then we can

add to this sum the summand ix0 ; the order of summands in all considered sums can be unified

using the operation ijT ). We see that the formula F is HDed -equivalent to some formula which

can be obtained by & and  from the formulas having the form st  or ))(mod( kst  in

which all the terms t and s have the form qxkxkxk nn  ...2211 , where 0ik for

ni 1 , and 0q . n-dimensional sets represented by the formulas of such kind can be

described in 0 by the following expressions: the set represented by the formula having the
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form st  - by the expression of the form

)))()),,...,,(()),,...,,(((( ""
2

"
12,1

''
2

'
121 QVVqkkkexpLinTVqkkkexpLin n

nnnnnn   ;

the set represented by the formula having the form ))(mod( kst  - by the expression of the form

)))()),,...,,(()),,...,,(((( 212,12121 k
n

nnnnnn CongrVVqkkkexpLinTVqkkkexpLin   .

Thus, any n-dimensional set represented by the formula F can be described in 0 applying the
operations  and  to the expressions having the forms mentioned above.
This completes the proof.

Lemma 3.6: Any term in LN has the form )(xS k or )0(kS , where x is a variable. Any formula

in LN is LDed -equivalent to a formula which can be obtained by & and  from subformulas
having the form )( st  , where t and s are terms.

This Lemma is proved (in other terms) in [3], [5], [11] (cf. [6], Lemma 4.2).

Lemma 3.7: Any RES represented in LDed by some formula in LN is inductively representable

in the algebra 1 .

Proof: Let F be a formula in LN . Let us denote by nxxx ,...,, 21 the list of all free variables in

F . We suppose that 2n (the case 2n is considered in a similar way). Using Lemma 3.6 we
conclude that F is LDed -equivalent to some formula F  which can be obtained by & and 
from subformulas of the form )( st  , where t and s are terms. Let us consider the case when t

and s contain only the variables 1x and 2x (the general case is reduced to the mentioned one

using the operation ijT ). We will denote the variables 1x and 2x by x and y . Using Lemma 3.6

we see that in the subformula )( st  the term t has one of the forms )(xS k , )(yS k , )0(kS ,

where 0k ; the term s has one of the forms )(xS l , )(yS l , )0(lS , where 0l . Thus, there are

9 possible forms of the subformula )( st  . If )( st  has the form )()( ySxS lk  , then the n-

dimensional set represented by this formula is 2
1 ))()(( 

  n
lk VQVVR when lk  ; it is

2
233 ))()(( 

  n
kl VRVTVQ , when lk  , and 2 nVQ when lk  .  If )( st  has the

form )()( xSxS lk  , then the n-dimensional set represented by this formula is nO when lk  ,

and is nV when lk  . If )( st  has the form )0()( lk SxS  , then the n-dimensional set

represented by this formula is nO when lk  , and is 1
110 )...( 
  n

kl VZZZ when lk  .

The remaining forms of the formula )( st  are considered in a similar way. Thus, the n-

dimensional RES represented by the formula F in LDed is obtained by  and  from sets

inductively representable in 1 .
This completes the proof.

Lemma 3.8: Any term in SN has the form )(xS k or )0(kS , where x is a variable. Any formula

in SN is SDed -equivalent to a formula which can be obtained by & and  from subformulas

having the form )( st  or )( st  , where t and s are terms.

This Lemma is actually proved (in other terms) in [3], [11] (cf. [5], Lemma 3.8).
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Lemma 3.9: Any RES represented in SDed by formula in SN is inductively representable in

the algebra 2 .

Proof: The proof is similar to that of Lemma 3.7. Let F be a formula in SN . Let us denote by

nxxx ,...,, 21 the list of all free variables contained in F . We suppose (as in the proof of Lemma

3.7) that 2n . Using Lemma 3.8 we conclude that F is SDed -equivalent to some formula F 
which can be obtained by & and  from subformulas having the forms )( st  and )( st  . As

in the proof of Lemma 3.7 we consider the case when t and s contain only variables 1x and 2x ;
we will denote these variables by x and y . Using Lemma 3.8 we see that in the subformulas

)( st  and )( st  the term t has one of the forms )(xS k , )(yS k , )0(kS , where 0k ; the

term s has one of the forms )(xS l , )(yS l , )0(lS , where 0l . Thus, there are 9 possible forms
of the subformula )( st  and 9 possible forms of the subformula )( st  .

If )( st  has the form )()( ySxS lk  , then the n-dimensional set represented by this formula is
2

 
n

lk VR when lk  ; it is 2
12 )( 

 
n

kl VRT when lk  , and 2 nVE when lk  .

The n-dimensional set represented by the formula ))()(( ySxS lk  is ))()((2 JVVR lk  

when lk  , it is )))()((( 212 JVVRT kl   when lk  , and 2 nVJ when lk  .

The n-dimensional set represented by the formula )()( xSxS lk  is nO when lk  ; it is nV
when lk  .
The n-dimensional set represented by the formula ))()(( xSxS lk  is nV when lk  ; it is nO
when lk  .
The n-dimensional set represented by the formula )0()( lk SxS  is nO when lk  ; it is

1
 

n
kl VZ when lk  .

The n-dimensional set represented by the formula ))0()(( lk SxS  is nV when lk  ; it is
1

110 )...( 
  n

klkl VWZZZ when lk  ; and 1
0

 nVW when lk  . The remaining

forms of the formulas )( st  and )( st  are considered in a similar way.
Thus, the n-dimensional RES represented by the formula F is obtained by  and  from sets
inductively representable in 2 .
This completes the proof.

The proof of Theorem 2.1 is obtained now using Lemmas 3.2, 3.5, 3.7, 3.9.

Lemma 3.10: The set of positive formulas in SN admits the elimination of quantifiers in the

framework of SDed .

The proof follows from the considerations in [3], because it is easily seen that the method of
elimination of quantifiers in SN described in [3] gives for any positive formula F in SN some

positive formula G such that G does not contain quantifiers and is SDed -equivalent to F .

Lemma 3.11: Any positive formula in SN is SDed -equivalent to a formula which can be

obtained  by & and  from subformulas having the form )( st  or )( st  , where t and s
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are terms of the form )(xS k or )0(kS , and any subformula of the form )( st  contains no
more than one variable.

The proof is easily obtained using Lemmas 3.8 and 3.10.

Lemma 3.12: Any RES inductively representable in 3 can be represented in SDed by a

positive formula in SN .

Proof: The basic sets in 3 are represented in SN by the positive formulas 0x and )(xSy  .
It is easily seen that the transformation of formulas generated in the proof of Lemma 3.2 by the
operations iji T,,,,  gives positive formula being applied to positive formulas.

This completes the proof.

Lemma 3.13: Any RES represented in SDed by a positive formula in SN is inductively

representable in the algebra 3 .

Proof: Let F be a positive formula in SN . Let us denote by nxxx ,...,, 21 the list of all free

variables in F . Similarly to the proof of Lemmas 3.7 and 3.9 we suppose that 1n . Using
Lemma 3.11 we conclude that F is SDed -equivalent to a positive formula which can be

obtained by & and  from positive subformulas of the form )( st  or )( st  , where t and s

are terms in SN . It is easily seen that any n-dimensional set represented by a formula of the form

)( st  is described by the expressions considered in the proof of Lemma 3.9. Now let us
consider the sets represented by subformulas of the form )( st  . Let us recall that any positive
formula of the form )( st  contains no more than one variable. The single variable contained

in )( st  we denote by x and suppose that it coincides with the variable 1x in the list

nxxx ,...,, 21 (the general case is considered similarly). Then the formula )( st  has the form

))0()(( lk SxS  , where 0k , 0l . But the inductive representations of the set represented

by this formula in 2 are described in the proof of Lemma 3.9; it is easily seen that these

representations are also representations in 3 . Thus, the n-dimensional RES represented by the

formula F is obtained by  and  from sets inductively representable in 3 .
This completes the proof.

The proof of Theorem 2.2 is obtained now using Lemmas 3.12 and 3.13.

Lemma 3.14: Any multidimensional RES is inductively representable in 0

~ (respectively, 1

~ ,

2

~ , 3

~ ) if and only if it is two-dimensional and is inductively representable in 0
(respectively, 1 , 2 , 3 ).

Proof: Let us recall that we denote by 0

~ , 1

~ , 2

~ , 3

~ the algebras denoted in [5] by 0 , 1 ,

2 , 3 . As it is proved in [5], (in other terms) a two-dimensional RES is inductively

representable in 0

~ (respectively, 1

~ , 2

~ ) if and only if it is represented in HDed
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(respectively, LDed , SDed ) by a formula in HN (respectively, LN , SN ); a two-dimensional

RES is inductively representable in 3

~ if and only if it is represented in SDed by a positive

formula in SN . Now the statement of Lemma 3.14 is obtained using Theorems 2.1 and 2.2
proved above.
Proof of Theorem 2.3: As it is proved in [5], there exists a two-dimensional RES 1A

(respectively, 2A , 3A ) which is inductively representable in 1

~ (respectively, 2

~ , 3

~ ) but not

in 0

~ (respectively, 1

~ , 2

~ ). The statement of Theorem 2.3 is now obtained using Lemma
3.14.

Let us note that the list of operations in the algebras 0 , 1 , 2 , 3 is similar to that
considered in [14]. Let us note that if we add the operation of transitive closure to this list then
any multidimensional RES will be inductively representable in the extended algebra 3 . Such
statement is proved in [15] (see [15], Lemma 1).
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Ձևայնացված թվաբանական համակարգերում արտահայտելի
բազմաչափ անդրադարձ թվարկելի բազմությունների որոշ

հանրահաշվական դասակարգման մասին

Ս. Մանուկյան

Ամփոփում

Սահմանվում և հետազոտվում են ),,,0(  S , ),,,0( S , ),,0( S (որտեղ 1)(  xxS )
սիգնատուրաների վրա հիմնված ձևայնացված թվաբանության համակարգերի մեջ
արտահայտելի բազմաչափ անդրադարձ թվարկելի բազմությունների
հանրահաշվական ներկայացումները: Հաստատվում է համարժեքություն նշված
տիպի անդրադարձ թվարկելի բազմությունների հանրահաշվական և
տրամաբանական ներկայացումների միջև:

Об алгебраической классификации многомерных рекурсивно
перечислимых множеств, выразимых в формальных

арифметических системах

С. Манукян

Аннотация

Вводятся и исследуются алгебраические представления многомерных рекурсивно
перечислимых множеств, которые выразимы в системах формальной арифметики,
основанных на сигнатурах ),,,0(  S , ),,,0( S , ),,0( S , где 1)(  xxS .
Устанавливается эквивалентность между алгебраическими и логическими
представлениями многомерных рекурсивно перечислимых множеств, выразимых в
указанных системах.


