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Abstract

Two-stage testing of multiple hypotheses concerning Markov chain with two sep-
arate families of hypothetical transition probabilities is considered. The matrix of
reliabilities of logarithmically asymptotically optimal hypotheses testing by a pair of
stages is studied and compared with the case of similar one-stage testing. It is shown
that two-stage testing needs less operations than one-stage testing.
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1. Introduction

In this paper we study multiple hypotheses LAO two-stage testing by a sample of sequence
of experiments concerning a Markov chain. Analogous problem was formulated and solved
for the case of independent experiments in [1].

The classical problem of statistical hypotheses testing refers to two hypotheses [2]. The
procedure of statistical hypotheses detection is called a test. The probability of incorrect
acceptance of one hypothesis instead of the other is an error probability. We consider the
case of a tests sequence, where the probabilities of error decrease exponentially as 27V,
when the number of observations N (size of sample) tends to infinity. The exponent of error
probability E' we call reliability. The test is called logarithmically asymptotically optimal
(LAO) if for one of the given of reliabilities the constricted test provided the greatest value
of the other reliability. The goal of research was to find an optimal functional relation
between the error probabilities exponents of the first and the second types of error. Such
optimal tests were considered first by Hoeffding [3], examined later by Csiszar and Longo [4],
Tusnady [5], [6], Longo and Sgarro [7], Birgé [8] (he proposed the term LAO) and by many
others. Some authors for this concept of testing [6, 9, 10] applied the terms exponentially
rate optimal (ERO). Hoeffding’s result was generalized to finite Markov chain in [11].

The need of testing of more than two hypotheses in many scientific and applied fields has
increased recently. The problem of LAO testing of multiple hypotheses was investigated in

[12] and was later extended for a discrete stationary Markov source and arbitrarily varying
Markov source [13]-[20].
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64 On LAO Two-stage Testing of Multiple Hypotheses Concerning Markov Chain

Two-stage procedures of testing are useful in applications for achieving minimal economic
expenditure.

2.  Definitions and Notations

This section is dedicated to necessary notations and properties. Let X be a finite set of
states of stationary Markov chain Xy, X;, X5, ..., which is a stochastic process defined by
matrix of transition probabilities

P(X, =z|X,-1 =u) = P(z|u), z,uecX.

There exists the corresponding stationary probability distribution (PD)Q = {Q(u)}, such

that
> Qu)P(zlu) = Q(z), Y Qu
zeX ueX

Suppose L hypothetical transition probabilities G; = {G(z|u)}, z,u € X, | =1, L, with
corresponding stationary distributions Q; = {Q;(u)}, | = 1, L, are given and arranged in
two disjoint families. The first family P; includes R hypotheses and the second family Ps
includes L — R hypotheses. It is unknown which one of those distributions is realized. On
the base of the sample x = (zg, 71,...,xx) € XN of the results of N + 1 observations the
statistician is trying to make a reliable decision about real distribution.

The two-stage test on the base of the sample x we denote by ®V(x), it may be composed
by the pair of tests ¢ (x) and ¢ (x) of two consecutive stages, we write @V = (¢}, ).
The first stage for selection of a family P; or P, is a non-randomized test 7 (x). The next
stage is for making a decision in the determined family of PDs; it is made by non-randomized
test ) (x) based on the same sample x.

We define any necessary characteristics Shannon’s entropy and Kullback-Leibler’s diver-
gences for Markov chain.

The Shannon’s entropy for Markov chain is defined as follows:

Hgop(X ZQ P(z|u)log P(z|u).

1>

The conditional Kullback-Leibler divergence D(P|W|Q) of PDs @ o P
N

{Q(U)P(x|u)), ue X,xe X}and QoW = {Qu)W(x|u)), u € X,z € X} on X x X
is: Plaf)

D(QoPllQoW)=DP|W|Q) = Y Q(u) P(elu) log e

ueX , rteX

The informational divergence of PD P and PD @ on X is:

Q(ﬂﬁ)
D(Q[|Qu) erXQ & )

For proofs we will use the method of types, which is an important technical tool in Informa-
tion Theory.

Let us name the second order type of the Markov vector x the square matrix of |X|*
relative frequencies {N(u,z)N~', z,u € X} of the simultaneous appearance on the pairs of
neighbor places of the states u and z. It is clear that >, N(u,z) = N.
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Denote by T V5 the set of vectors from X! which have such a type that for the joint
PD Qo P, N(u, :c) NQ(u)P(z|u), z,ue X.

We will use the following properties of types of second order [13]-[15]: the number |7} p|
of vectors in T oop 18 the following

1 T50p| = exp{NHqop(X) +0(1)}, with o(1) -0, when N — oo, (1)

and the number of elements of sets 7! » for different PDs @ o P does not exceed (N + 1)I*F,
The probability of the vector x € XN *! of the Markov chain with transition probabilities
(G, and stationary distribution @); is defined as follows:

N
QoG (%) £ Qu(wo) [[ Ginlzn ), =TI,

n=1

QoGNA) 2 |JQoGN(x), AcxN
xeA

The probability of the vector x from Té\g p for [ =1, L, can be written also in the following
form:

QoG (x) = Qi) H Gy(z|u) QWP
= Qi(xo) eXP{NZQ P(x|u) log Gy(x|u)}

— Qi) exp{ N 5 Q) Pl [l g((””||“)) 1ogp(x|u)” (2)

= exp{-N[D(Qo PHQ o () — Hgor(X) —o(1)]},

where o(1) — 0, when N — oc.
According to (1) and (2) we obtain

Q1o GJ' (Tgep) = exp{=N[D(Q o P|Q o Gy) +o(1)]}. (3)

3. First Stage Test of Two Stages

The first stage of decision making consists in using the sample x for the selection of one
family of two of PDs by a test !’ (x), which can be defined by the division of the sample
space XN into the pair of disjoint subsets AY 2 {x : ¢V(x) = i} , i = 1,2. The set AY
consists of all vectors x for which ¢-th family P; of PDs is adopted.

In fact this is the problem of two composite hypotheses testing studied in [9, 10]. At the
same time the first stage test of two stages is connected with the identification procedure
which was considered in [21]-[26].

The test Y (x) can have two kinds of errors for the pair of hypotheses P;, i = 1,2. Let
0/2|1(g0f[ ) be the probability of the erroneous acceptance of the second family P, provided
that the first family P; is true (that is the correct PD is in the first family) and 0/1|2(g0f’ )
be the probability of the erroneous acceptance of P; provided that the second family Ps is
true. We define

/ A A
by (1) = o (ef) = max_Q, o GY(AY), (4)
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, A A
041|2(90iv) = 042|2(90iv) = ”E}iﬁ LQl o va(-AiV) (5)

The corresponding reliabilities are defined for infinite sequence ¢, of tests:
! 2 lim inf ! log oy - (™ L, j=1,2 i#£7] 6
(1) = liminf ) —= logag,;(¢1) ¢, 4,7 =12, i# . (6)

The test sequence ¢, is considered to be LAQO if for the given value of E;Tl it provides
the largest value to Eflk2 Our aim is to find the reliability function E1T2(Eéll)‘

For the given E;Tl we can define LAO test ¢t by division of X" into the following two
disjoint subsets

BY = U TQ]ZP, and BY = xV\ BY.
QoP: D(QIIQr)<co, min_D(QoPlQeGr)<Ey,

Theorem 1: For any Ey, > 0 the reliability function Eﬁ?( 51) of the LAO test for
testing many hypotheses Gy, | = 1, L, concerning Markov chains is given as follows:

/ /

Eyjy(Eojy) =  min inf  D(Qo PQoGy).
l: I=R+1,L QoP: D(Q|Qr)<o0, mln_RD(QOPHQOG,‘)SEJ1
rir=1,

Proof: From the estimations of the corresponding error probabilities using (3) it follows:

ayy (p7) = max_Q, o G (By)
< max (N4 1) max Qr 0 GN (T3 p)
rir=1,R QoP: D(QQr)<c0, min_D(QoPIQG,)>
< max max exp{—N[D(Qo P||QoG,) +o(1)]}

r: r=L.R QoP: D(Q||Qr)<co, min_D(QoP|QoGr)>Ey},
ror=1,

< exp{—N[ min min D(Qo Pl|Q o G,) +o(1)]}

r: r=1,R QoP: D(Q|Q+)<oo, min_D(QoPnQoGr)>E;T1
ror=1,

< exp{=N|Ej, +o(1)]},

For aj,(¢]) we have the following estimation:

diplpr) = max Qo GyY(By)
< (N4 max max Q1o G (T50p)
L=R+1,L QoP: D(Q|Qr)<oo, gli?_ D(QoP||QoG,,)§E;T1
< max max exp{—N[D(Qo P||QoG)) + o(1)]}
l:l=R+1,L QoP: D(Q|Qr)<oco, ‘T?—D(QOP”QOGT)SEle
= exp{—N|[ min min D(Qo P||Q o G)) +o(1)]}.
1:1=R+1,L QoP: D(Q||Qr)<co, min_D(QoP|QoG,)<E.*

21
rr=1,R

Now let us prove the inverse inequality for of,(¢1"):
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diplpy) =  max QoGP (BY)
II=R+1,L
> max max Qo GN(Top)
l:1=R+1,L QoP: D(Q||Qr)<oo, ‘rwrii?_RD(QoPHQoG,,)gE;Tl
= max max exp{—N[D(Qo P||QoGy) + o(1)]}

11=R+1,L QoP: D(Q|Qr)<oo, min_D(QoPnQoGT)gE;T1
rr=1,R
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= exp{—N|[ min min D(Q o P||Q o Gy) 4+ o(1)]}.

1:1=R+1,L QoP: D(Q||Qr) <00, mi@(QoPHQoGT)gE;Tl
rr=1,R

According to the definitions of the corresponding reliabilities we obtain the proof of the

theorem.

4. Second Stage Test of Two Stages

After selecting a family of PDs from the two, it is necessary to detect one PD in this family.
If the first family of PDs is accepted, we consider the test ) (x) which can be defined by

the division of the sample space B; to R disjoint subsets

CYE{x:pd(x)=r}, r=TR

Let a;’h, (goév ) be the probability of the erroneous acceptance at the second stage of the test,

in which PD G| is accepted when G, is true:

of, (¢§) 2 QoG (CY), r=T R I=TL

The probability to reject G, when it is true, is

o, (¢)) 2 Qo GN(C)) = ILZ#T of, (#)) + Qo GN(BY), r=TR

The corresponding reliabilities for the second stage of the test are defined as:

l/|/r(902) = hNHi}O%f {_Nlog&%r (902 )}7 r= 1737 [ = 17L

Using the properties of types the following equalities are derived for each r = 1, R:

A . 1
B, 2 lim {-Flog[@r oGN]
= inf D(Qo P||QoG,).

QoP: D(Q[Qr)<o0, min_D(QoP|QoGy)>Eyr,
r,or=1,

From (7)-(9) it follows that

min £y, (¢2), E2I|r] , r=1R.

" (p2) = min [ in
I=1,R
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Remark 1: If at the first stage the first family of PDs is accepted, when our decision
in the first stage is true, but we have an error in the second stage, the reliabilities of the
corresponding error probabilities are l/|/r7 r,l = 1, R. When our wrong decision comes from
the first stage, the corresponding reliabilities are El’l’r, I=1,R,r=R+1,L.

In this case the reliability matrix for the second stage of the test E”(¢p,) is the following:

" " "
1)1 E2|1 ce R|1
14 14 14
1)2 22 v R|2
1! 1 1
1R 20R - R|R
1 1 1!
E1|R+1 E2|R+1 ce R|R+1
1 El// 1!
1|R+2 2R+2 - R|R+2
1 1 1
1L 2L - RIL |

If the second family of PDs is accepted, then the test ¢ (x) is a division of the sample
space Ay to L — R disjoint subsets. The definitions of error probabilities and the correspond-
ing reliabilities are similar to the above considered case.

Using the properties of types (like in the proof of Theorem 1) the following equalities are
derived for each | = R+ 1, L:

N 1
Bl 2 tim {-5log[@io G 8]
= inf D(Q o P||Q o G)). (10)
QoP: D(Q|IQr)<co, min_D(QoPl|QeGr)<Ey,

Remark 2: If at the first stage, the second family of PDs is accepted, when our decision
in the first stage is true, but we have an error in the second stage, the reliabilities of the

corresponding error probabilities are l/|/r7 r,l = R+ 1,1. When our wrong decision comes

from the first stage, the corresponding reliabilities are El’|’r, I=R+1,],r=1R.
In this case the reliability matrix for the second stage of the test E”(¢,) is the following:

1 1 1
ER+1|1 ER+2|1 e EL|1
1 1 1
R+1|2 R+2|2 L2
1 " "
ER+1|R ER+2|R e EL|R
" El// 1
R+1|R+1 R+2|R+1 - - L|R+1
" 1 1
R+1|R+2 TR+2|R+2 - L|R+2
" 1 1
R+1|L R¥2|L -+ LIL |

In the following theorems we show the optimal dependence of reliabilities.
Theorem 3: If in the first stage the first family of PDs of Markov chain is accepted,

then for the given positive and finite values EY,, Eys, ..., Ef_y gy, satisfying the following
compatibility conditions

O < E1/|1 < mﬁ [D(Qr o GT’HQT’ o Gl)] )
r=2,R
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0< E”

rlr 1<i<r

min D(Q; 0 Gf|Q, 0 G,), Ej,], 2<r<R-1,

< min[min E}*
r<I<R

l|r>

there exists a LAO sequence of tests 3, the elements of reliability matriz E"(¢3) = {Ejfi}
of which are positive and given as follows:

Er2E,, r=T,R—1, (11)

Epyp= inf DQoP|QoG,), I=T,R—1, r#1l, r=1,L, (12)
QoPeRg/

E}kﬂR = min l}%EﬁR(Q@?%EQﬂR ) (13)

where forl =1, R —1,

R £{QoP: min D(QoP|QoG) < By, D(QoP|QeGr) < Eff, D(@Q) < 0}, (14)

RILE{QoP: min D(Qo Pl|Q o G) < Ejy,, D(QoP|QoGy) > Eyjy, l=1,R—1}, (15)

When even one of the compatibility conditions is violated, then at least one element of
the matriz E"(p3) is equal to 0.

Theorem 4: If in the first stage the second family of PDs of Markov chain is accepted,
then for the given positive and finite values E% y g 1, Egiopyas - EL_1yn-1 salisfying the
following compatibility conditions

r=R+2,L

" : : oo 1T
0 < £y, < min Rl?i?qE”r’ rrglgnLD(Ql 0 G1]|Qr 0 G,), By, |, R+2<r<L-1

there exists a LAO sequence of tests %, the elements of reliability matriz E"(p3)} of which
are positive and formulated as follows:

B, £ E),,r=R+1,L—1, (16)
Ep= inf DQoP|QoG,), =R+ LL—1,1#r r=11L, (17)
" QoPeR)
Ejjp =min | min_Ej;(¢a), B3y |, (18)
I=R,L—-1

where forl =R+ 1,L —1,

Ri £{QoP: min D(QoP|QoG,) > By, D(QoP|QoGi) < Efy, D(QQ) < o0}, (19)

Ry 2 {QoP: min D(QoP|QoG,) > Eyy, D(QoPQoGr) = Efy, | = BT T,L—R—T}.
r=1,R

(20)

When even one of the compatibility conditions is violated, then at least one element of

the matriz E(v}) is equal to 0.
The proofs of Theorems 3 and 4 are similar to the proof of Theorem 1 from [15].
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5. Comparison of Reliabilities of Two-stage Test With Reliabilities of One-
stage Test

In this section we will compare the reliabilities of one stage test considered in [15] and those
of the two-stage test defined in this paper.
From the results of the first and the second stages we can obtain the final reliabilities

"

E (@), 1 = 1, L. From Remarks 1 and 2 it follows, that when compatibility conditions in
Theorems 1, 3 and 4, are satisfied then El/i;(cb) = El/[r, l1=1,L.

For comparison we will take equal diagonal elements £y, = Ejj, | = 1,L —1 of the
reliability matrices of one-stage and two-stage cases.

The corresponding elements of the columnr =1, R — 1JR + 1, L — 1 of one-stage matrix
and two-stage matrix are equal. The elements of those columns are functions of diagonal
elements of the corresponding columns and formulas of those functions are the same for the
one-stage and two stage tests. When we give the same values to diagonal elements of the
reliability matrices of two-stage and one-stage cases, the values of those functions are equal.

The elements of R-th and S-th columns of two-stage reliabilities matrix can be smaller
or greater than the corresponding elements of one-stage matrix.

The number of operations for realization of two-stage LAO test is less than that of one-
stage LAO test.

6. Conclusion

In this paper we considered two-stage multihypotheses testing has any advantage for Markov
chain. In this testing the sample set is divided into R+2 or L— R+2 subsets, so the procedure
of two-stage testing is shorter, than one-stage testing, in which the sample space was divided
into L disjoint subsets. We also show, that the number of preliminary given elements of the
reliabilities matrix in two-stage and one-stage tests would be the same but the procedure of
calculations for the first one would be shorter.

Asin [1] we can also consider the two-stage LAO test by the pair of samples x = (x1,%3) €
XN, X1 = (.1'1,.1'2, R ,.I'Nl), X1 € XNl, X9 = (.I'N1+1,.I'N1+2, R ,.I'N), Xg € XNQ, N = N1+N2,
AN = XN x X2, The first stage using the sample x; selects one of the families P; or P,
after that using the sample x5 the second stage selects one PD in this family.

Acknowledgement

This work was supported in part by SCS of MES of RA under Thematic Program No SCS
13-1A295.

References

[1] E. Haroutunian, P. Hakobyan and F. Hormozi nejad, “On Two-stage LAO testing of
multiple hypotheses for the families of distributions”, International Journal of Ststistics
and Econometrics Methods, vol. 2, no. 2, pp. 127-156, 2013.

2] E. L. Lehmann and J. P. Romano, Testing Statistical Hypotheses, Third Edition.
Springer, New York, 2005.



3]

[4]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

E. Haroutunian, P. Hakobyan and A. Yesayan 71

W. Hoeffding, “Asymptotically optimal tests for multinomial distributions”, Annals of
Mathematical Statistics. vol. 36, pp. 369-401, 1965.

[. Csiszar and G. Longo, “On the error exponent for source coding and for testing
simple statistical hypotheses”, Studia Scientiarum Mathematicarum Hungarica, vol. 6,
pp. 181-191, 1971.

G. Tusnady, “On asymptotically optimal tests”, Annals of Statatistics, vol. 5, no. 2,
pp- 385-393, 1977.

G. Tusnéddy, “Testing statistical hypotheses (an information theoretic approach)”,
Preprint of the Mathematical Institute of the Hungarian Academy of Sciences, Bu-
dapest (Part 1, 1979, Part 2, 1982).

G. Longo and A. Sgarro, “The error exponent for the testing of simple statistical
hypotheses: A combinatorial approach”, Journal of Combinatorics, Information and
System Sciences, vol. 5, no. 1, pp. 58-67, 1980.

L. Birgé, “Vitesses maximals de d¢roissence des erreurs et tests optimaux associes”, Z.
Wahrsch. Verw. Gebiete, vol. 55, pp. 261-273, 1981.

M. Feder and N. Merhav, “Universal composit hypothesis testing: a competititve
minimax approach”, IEEE Transactions on Information Theory, vol. 48, no. 6, pp.
1504-1517, 2002.

E. Levitan and N. Merhav, “ A competitive Neyman-Pearson approach to universal
hypothesis testing with applications”, IEEE Transactions on Information Theory, vol.
48, no. 8, pp. 2215-2229, 2002.

S. Natarajan, “Large deviations, hypotheses testing, and source coding for finite
Markov chains,” IEEFE Transactions on Information Theory, vol. 31, no. 3, pp. 360-365,
1985.

E. A. Haroutunian, “Logarithmically asymptotically optimal testing of multiple statis-
tical hypotheses,” Problems of Control and Information Theory, vol. 19, no. 5-6, pp.
413-421, 1990.

E. Haroutunian, M. Haroutunian and A. Harutyunyan, “Reliability Criteria in In-
formation Theory and in Statistical Hypothesis Testing”, Foundations and Trends in
Communications and Information Theory, vol. 4, no. 2-3, 2008.

E. A. Haroutunian, “ Many statistical hypotheses: interdependence of optimal test’s
error probabilities exponents” (in Russian), Abstract of the report on the 3rd All-Union
school-seminar, “Program-algorithmical software for applied multi-variate statistical
analysis”, Tsakhkadzor, Part 2, pp. 177-178, 1988.

E. Haroutunian, “On asymptotically optimal criteria for Markov chains”, (in Russian),
First World Congress of Bernoulli Society, vol. 2, no. 3, pp. 153-156, 1989.

E. A. Haroutunian, “Asymptotically optimal testing of many statistical hypotheses
concerning Markov Chain” (in Russian), 5-th International Vilnius Conferance on
Probability Theory and Mathem. Statistics, vol. 1, (A-L), pp. 202-203, 1989.

E. Haroutunian, “Reliability in multiple hypotheses testing and identification prob-
lem”, in Data Fusion for Situation Monitoring, Incident Detection, Alert and Respons
Management, NATO Science Series: Computer and System Sciences, IOS Press, vol.
198, pp. 189201, 2005.

E. Haroutunian and P. Hakobyan, “On multiple hypotheses testing for many indepen-
dent objects”, VII International School-seminar “Multidementional statistical analysis
and econometrics”, pp. 78,79, Tsakhadzor, 2008.



72 On LAO Two-stage Testing of Multiple Hypotheses Concerning Markov Chain

[19] E. Haroutunian and N. Grigoryan, “On reliability approach for testing of many dis-
tributions for pair of Markov chains”, Transactions of IIAP NAS RA, Mathematical
Problems of Computer Science, vol. 29, pp. 99-96, 2007.

[20] E. Haroutunian and N. Grigoryan, “On arbitrarily varying Markov source coding and
hypothesis LAO testing by non-informed statistician”, Proc. of IEFEE Internatioan
Symposium Information Theory, Seoul, South Korea, pp. 981-985, 2009.

[21] R. F. Ahlswede and E. A. Haroutunian, “ On logarithmically asymptotically optimal
testing of hypotheses and identification”, Lecture Notes in Computer Science, wvol.
4123, “General Theory of Information Transfer and Combinatorics”, Springer Verlag,
pp. 462— 478, 2006.

[22] E. A. Haroutunian and P. M. Hakobyan, “Remarks about reliable identification of
probability distributions of two independent objects”, Transactions of IIAP of NAS
of RA, Mathematical Problems of Computer Science. vol. 33, pp. 91-94, 2010

(23] E. A. Haroutunian, A. O. Yessayan and P. M. Hakobyan, “On reliability approach
to multiple hypotheses testing and identification of probability distributions of two
stochastically coupled objects”, International Journal “Informations Theories and Ap-
plications”, vol. 17, no. 3, pp. 259288, 2010.

[24] E. A. Haroutunian and A. O. Yessayan, “On reliability approach to multiple hypotheses
testing and to identification of probability distributions of two stochastically related
objects”, Proc. of IEEE Internation Sympos. Information Theory, Seint-Peterburg,
Russia, pp. 2671-2675, 2011.

[25] E. A. Haroutunian and L. Navaei, “On optimal identification of Markov chain distribu-
tions subject to the reliability criterion”, Transactions of IIAP NAS RA, Mathematical
Problems of Computer Science, vol. 32, pp.66-70, 2009.

[26] L. Navaei, “On reliable identification of two independent Markov chain distributions”,
Transactions of [IAP NAS RA, Mathematical Problems of Computer Science, vol. 32,
pp.74-77, 20009.

Submitted 12.01.2014, accepted 07.03.2014.

Uwnynfjuh pnpwjh Jtpwptipju puqdwyh JupyuoGtph
tinythny LUO wmbumwynpnid

G. QwpmipniGyub, ®©. {wlynpjub L U. Guwjwul
Udthnthnid

SQhunwpyytp E owlgmiwjhlG pwfumiGtph  Gpynt pGuwGhpGtpny  plnipwgpynn
Uwnpynyyul npwjh yYbpwpbtpywp pwqiuyh yhdwjwgpuyuwl jupyuoltph unniqiw
gnpoplpwgn: MumdGwuhpyty £ Gpym thnybtph nquphpinptl wuhdmnunnpbl owyunhdwy
ntunwynpiwl vfuwGtph hntuwwhmpymGGtph Jwunphgp b wjG hwdtdwnmyt) £ dhwthny
wmbtiunh hntuwhnpjuwl dwwnphgh htim: 8nyyg L wmpyt, np Gpithny mtunp ywhwbonmu L

wytith phy gnponnnipjnil, pwl Yhwihniy mbuwmp:
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O aAByxatannHOM NAO TeCTUPOBAHUM MHOTUX T'HMIIOTE3
OTHOCUTEABHO MapKOBCKOH Lienu

E. Apyttonas, I'l. Akonan u A. Ecagn

AnHoTanus

PaCCMOTpeHO TeCTUpOBaHUKE LIelIn MapKOBa XapaKTepH3YIOHJ;eI>JICH ABYMS1 ceMeucT-
BaMM BO3MOJXHEIX ITepeXOAHBIX BepOHTHOCTefI. ManI/IIJ;a HaAe}KHOCTefI AOFOpI/ICbMI/I-
YEeCKHM AaCUMIITOTUYEeCKU OIITHUMAABHOTIO TeCTHUPOBAHMWA B ABd J3Tdlld H3y4dY€Hd WU
CpaBHeEHa CO CAy4YdaeM AdHAAOTUYHOI'O OAHOIJTAIITHOI'O TeCTHUPOBAHUAA. IToxkazaHo, 4TO
ABYX9TallHOe TeCTUPOBaHUE Tpe6yeT MeHIIIbe Ooliepaliliy, 4eM OAHOJTAITHOeE.



