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Abstract

Let D be a strongly connected directed graph of order n > 4 which satisfies the
following condition (*): for every pair of non-adjacent vertices x,y with a common
in-neighbour d(z) + d(y) > 2n — 1 and min{d(z),d(y)} > n—1. In [2] (J. of Graph
Theory 22 (2) (1996) 181-187)) J. Bang-Jensen, G. Gutin and H. Li proved that D is
Hamiltonian. In [9] it was shown that if D satisfies the condition (*) and the minimum
semi-degree of D at least two, then either D contains a pre-Hamiltonian cycle (i.e., a
cycle of length n — 1) or n is even and D is isomorphic to complete bipartite digraph
(or to complete bipartite digraph minus one arc) with equal partite sets. In this paper
we show that if the minimum out-degree of D at least two and the minimum in-degree
of D at least three, then D contains also a Hamiltonian bypass, (i.e., a subdigraph is
obtained from a Hamiltonian cycle by reversing exactly one arc).
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1. Introduction

The directed graph (digraph) D is Hamiltonian if it contains a Hamiltonian cycle, i.e., a
cycle that includes every vertex of D. A Hamiltonian bypass in D is a subdigraph obtained
from a Hamiltonian cycle by reversing exactly one arc. We recall the following well-known
degree conditions (Theorems 1-5) that guarantee that a digraph is Hamiltonian.
Theorem 1: (Nash-Williams [14]). Let D be a digraph of order n such that for every vertex
x, d"(x) >n/2 and d”(x) > n/2, then D is Hamiltonian.
Theorem 2: (Ghouila-Houri [12]). Let D be a strong digraph of order n. If d(z) > n for
all vertices x € V(D), then D is Hamiltonian.
Theorem 3: (Woodall [16]). Let D be a digraph of order n > 2. If d*(x) +d (y) > n for
all pairs of vertices x and y such that there is no arc from x toy, then D is Hamiltonian.
Theorem 4: (Meyniel [13]). Let D be a strong digraph of ordern > 2. If d(x)+d(y) > 2n—1
for all pairs of non-adjacent vertices in D, then D is Hamiltonian.

It is easy to see that Meyniel’s theorem is a common generalization of Ghouila-Houri’s
and Woodall’s theorems. For a short proof of Theorem 1.3, see [5].

C. Thomassen [15] (for n = 2k+1) and S. Darbinyan [6] (for n = 2k) proved the following:
Theorem 5: [15, 6]. If D is a digraph of order n > 5 with minimum degree at least n—1 and
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with minimum semi-degree at least n/2 — 1, then D is Hamiltonian (unless some extremal
cases which are characterized).

In view of the next theorems we need the following definitions.

Definition 1: Let Dy denote any digraph of order n > 5, n odd, such that V(Dy) = AU B,
where AN B =0, A is an independent set with (n + 1)/2 vertices, B is a set of (n —1)/2
vertices inducing any arbitrary subdigraph, and Dqy has (n+1)(n —1)/2 arcs between A and
B. Note that Dy has no Hamiltonian bypass.

Definition 2: For any k € [1,n — 2] let Dy denote a digraph of order n > 4, obtained from
K, and K} | by identifying a vertex of the first with a vertex of the second. Note that D,
has no Hamiltonian bypass.

Definition 3: By T'(5) we denote a tournament of order 5 with vertex set V(T'(5)) =
{x1, 29,23, 24,9y} and arc set A(T(5)) = {xzin/i € [1,3]} U {zyx1, 21y, 23y, Yo,
YTy, 1123, Tax4}. T'(5) has no Hamiltonian bypass.

In [4] it was proved that if a digraph D satisfies the condition of Nash-Williams’ or
Ghouila-Houri’s or Woodall’s theorem, then D contains a Hamiltonian bypass. In [4] the
following theorem was also proved:

Theorem 6: (Benhocine [4]). Every strongly 2-connected digraph of order n and with mini-
mum degree at least n—1 contains a Hamiltonian bypass, unless D is isomorphic to a digraph
of type Dy.

In [7] the first author proved the following theorem:

Theorem 7: (Darbinyan [7]).Let D be a strong digraph of ordern > 3. Ifd(x)+d(y) > 2n—2
for all pairs of non-adjacent vertices in D, then D contains a Hamiltonian bypass unless it
is isomorphic to a digraph of the set DyU{ D1, Ts, Cs}, where Cs is a directed cycle of length
3.

For n > 3 and k € [2,n], D(n, k) denotes the digraph of order n obtained from a directed
cycle C of length n by reversing exactly & — 1 consecutive arcs. The first author [7, 8] has
studied the problem of the existence of D(n,3) in digraphs with the condition of Meyniel’s
theorem and in oriented graphs with large in-degrees and out-degrees.

Theorem 8: (Darbinyan [7]). Let D be a strong digraph of order n > 4. If d(x) + d(y) >
2n — 1 for all pairs of non-adjacent vertices in D, then D contains a D(n,3).

Theorem 9: (Darbinyan [8]). Let D be an oriented graph of order n > 10. If the minimum
in-degree and out-degree of D at least (n — 3)/2, then D contains a D(n,3).

Each of Theorems 1-5 imposes a degree condition on all pairs of non-adjacent vertices (or
on all vertices). The following theorem (as well as Theorems 13 and 14) imposes a degree
condition only for some pairs of non-adjacent vertices.

Theorem 10: [2] (Bang-Jensen, Gutin, H.Li [2]). Let D be a strong digraph of ordern > 2.
Suppose that

min{d(z),d(y)} >n—1 and d(z)+d(y) >2n—1 (%)

for every pair of non-adjacent vertices x,y with a common in-neighbour, then D is Hamil-
tonian.

In [9] the following results were obtained:
Theorem 11: [9]. Let D be a strong digraph of order n > 3 with the minimum semi-degree
of D at least two. Suppose that D satisfies the condition (*). Then either D contains a
pre-Hamiltonian cycle or n is even and D is isomorphic to the complete bipartite digraph

or to the complete bipartite digraph minus one arc with partite sets of cardinalities n/2 and
n/2.
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In this paper using Theorem 11 we prove the following:
Theorem 12: (Main Result). Let D be a strong digraph of order n > 4 with the minimum
out-degree at least two and with minimum in-degree at least three. Suppose that

min{d(z),d(y)} >n—1 and d(z)+d(y) >2n—1 (%)

for every pair of non-adjacent vertices z,y with a common in-neighbour. Then D contains
a Hamiltonian bypass.

2. Terminology and Notations

We shall assume that the reader is familiar with the standard terminology on the directed
graphs (digraphs) and refer the reader to [1] for terminology not discussed here. In this
paper we consider finite digraphs without loops and multiple arcs. For a digraph D, we
denote by V(D) the vertex set of D and by A(D) the set of arcs in D. The order of D
is the number of its vertices. Often we will write D instead of A(D) and V(D). The arc
of a digraph D directed from z to y is denoted by xzy or x — y. If x,y, 2 are distinct
vertices in D, then x — y — 2 denotes that zy and yz € D. Two distinct vertices x and
y are adjacent if zy € A(D) or yz € A(D) (or both). By a(z,y) we denote the number
of arcs with end vertices x and y, in particular, a(z,y) means that the vertices x and y
are non-adjacent. For disjoint subsets A and B of V(D) we define A(A — B) as the set
{zy € A(D)/x € A,y € B} and A(A,B) = A(A — B)UA(B — A). If z € V(D) and
A = {z} we write x instead of {z}. If A and B are two distinct subsets of V(D) such that
every vertex of A dominates every vertex of B, then we say that A dominates B, denoted
by A — B. The out-neighborhood of a vertex z is the set N*(z) = {y € V(D)/xy € A(D)}
and N~ (z) = {y € V(D) /yx € A(D)} is the in-neighborhood of z. Similarly, if A C V(D),
then N*(z,A) = {y € AJzy € A(D)} and N~ (z,A) = {y € A/yx € A(D)}. The out-
degree of x is d¥(xz) = |[N*(z)| and d~(x) = |N~(x)| is the in-degree of x. Similarly,
dt(z,A) = |[NT(x, A)] and d~ (z, A) = [N~ (x, A)|. The degree of the vertex z in D is defined
as d(x) = d*(x) + d (x) (similarly, d(z, A) = d*(z, A) + d (x, A)). The path (respectively,
the cycle) consisting of the distinct vertices xq, s, ..., 2, ( m > 2) and the arcs x;z;1,
i € [1,m — 1] (respectively, x;z;11, ¢ € [I,m — 1], and z,,21), is denoted by z1zs- -z,
(respectively, by z1x9 - - zx1). We say that z125 -« - 2, is a path from z; to z,, or is an
(21, T )-path. For a cycle Cy := x5 - - - k27 of length k, the subscripts considered modulo
k,i.e., x; = x4 for every s and i such that i = s (mod k). If P is a path containing a subpath
from x to y we let P[z,y| denote that subpath. Similarly, if C'is a cycle containing vertices z
and y, C[z, y] denotes the subpath of C' from z to y. For an undirected graph G, we denote
by G* the symmetric digraph obtained from G by replacing every edge xy with the pair xy,
yx of arcs. K, denotes the complete bipartite graph with partite sets of cardinalities p and
q. For integers a and b, a < b, let [a, b] denote the set of all integers which are not less than
a and are not greater than b. By D(n;2) = [zyx,;x125. .. x,] is denoted the Hamiltonian
bypass obtained from a Hamiltonian cycle x5 ... x,z; by reversing the arc x,x;.

3. Preliminaries

The following well-known simple Lemmas 1 and 2 are the basis of our results and other
theorems on directed cycles and paths in digraphs. They will be used extensively in the
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proof of our result.

Lemma 1: [11].Let D be a digraph of order n > 3 containing a cycle Cp,, m € [2,n — 1].
Let x be a vertex not contained in this cycle. If d(x,Cy,) > m+ 1, then D contains a cycle
Cy, for all k € [2,m + 1].

The following lemma is a slight modification of a lemma by Bondy and Thomassen [5].
Lemma 2: Let D be a digraph of order n > 3 containing a path P := xix9...2,,, m €
2,n — 1] and let x be a vertex not contained in this path. If one of the following conditions
holds:

(i) d(x, P) > m + 2;

(ii) d(x, P) > m+1 and xxy ¢ D or x,x1 ¢ D;

(iii) d(x, P) > m, zx; ¢ D and z,,x ¢ D,

then there is an i € [1,m — 1] such that x;x,xx;11 € D (the arc x;x;41 is a partner of
x), i.e., D contains a path 1% ... T;xTiy1 ... Ty of length m (we say that x can be inserted
into P or the path 12y ... T;xTiy1 ... Ty, 1S extended from P with x).

Definition 4: ([1], [2]). Let Q = 11y> ... ys be a path in a digraph D (possibly, s = 1) and
let P=mxxy...2, t > 2, be a path in D — V(Q). Q has a partner on P if there is an arc
(the partner of Q) x;x;11 such that x;y1,yszi41 € D. In this case the path Q) can be inserted
into P to give a new (1, x¢)-path with vertex set V(P)UV(Q). The path Q has a collection
of partners on P if there are integers 11, = 1 < iy < -+- < i, = 5 + 1 such that, for every
k=2,3,...,m the subpath Q[yi,_,,Yi,—1] has a partner on P.

Lemma 3: ([1], [2], Multi-Insertion Lemma). Let Q = y1ys...ys be a path in a digraph D
(possibly, s =1) and let P = x1xo ... 24, t > 2, be a path in D —V(Q). If Q has a collection
of partners on P, then there is an (1, x:)-path with vertez set V(P) U V(Q).

The following lemma is obvious.

Lemma 4: Let D be a digraph of order n > 3 and let C' := x5 ... 2,121 be an arbitrary
cycle of length n — 1 in D and let y be the vertex not on C. If D contains no Hamiltonian
bypass, then

(i) d*(y,{x;, xii1}) <1 and d” (y,{z;, xi1}) < 1 foralli € [1,n —1];

(1) d*(y) < (n—1)/2, d"(y) < (n—1)/2 and d(y) < n —1;

(11) if xry, yxr1 € D, then x;1x; & D for all x; # xy.

Let D be a digraph of order n > 3 and let C),,_; be a cycle of length n — 1 in D. If for the
vertex y ¢ C,_1, d(y) > n, then we say that C,_; is a good cycle. Notice that, by Lemma
4(ii), if a digraph D contains a good cycle, then D also contains a Hamiltonian bypass.

We now need to state and prove some general lemmas.

Lemma 5: Let D be a digraph of order n > 6 with minimum semi-degree at least two
satisfying the condition (*). Let C := x1xo...x, 111 be an arbitrary cycle of length n — 1
in D and let y be the vertex not on C. Then for any i € [1,n — 1] the following holds:

(i) If yz; ¢ D and x;_sx; ¢ D, then x; has a partner on Clz;y1,x; o] or d(z;) >n — 1.

(i) If yx; ¢ D and d(z;) < n — 2, then x; has a partner on C|x;i1,z;—2] or there is a
vertex xy € Clx;41, %2 such that {xy, xpi1,...,xi 0} — x;.

(iii) If yr; € D, x;—0x; ¢ D and d~(z;) > 3, then x; has a partner on Clx;i1,x;_1] or
d(z;) >n—1.

Proof: (i) The proof is by contradiction. Assume that x; has no partner on C[z;41, ;2]
and d(z;) <n— 2. Since d™(x;,{y,x;_2}) = 0 and d~(x;) > 2, there is an z; € C[x;;1,x; 3]
such that xpx; € D. From zy, — {1, 2}, d(z;) < n—2, x;x,1 ¢ D and the condition
(*) it follows that zg12; € D. By a similar argument we conclude that z;_sx; € D, which
is a contradiction.
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For the proofs of (ii) and (iii) we can use precisely the same arguments as in the proof
of (). O

Lemma 6: Let D be a digraph of order n > 6 with minimum semi-degree at least two
satisfying the condition (*). Let C' = x1xo...x, 111 be an arbitrary cycle of length n — 1
in D and let y be the vertex not on C'. Then

(i) If for some i € [1,n— 1|, z;y € D and x;11,y are non-adjacent or (ii) a(x;,y) = 2 or

(#i) d(y) > n — 1, then D contains a Hamiltonian bypass.

Proof: (i) Assume that (i) is not true. Without loss of generality, we assume that z,_1y € D,
d(y,{x1,22,...,2,}) = 0 and 2,1,y are non-adjacent, where a > 1. Then z; and y is a
dominated pair of non-adjacent vertices with a common in-neighbour x,_;. Therefore, by
condition (*), d(y) > n — 1 and d(z1) > n — 1. On the other hand, using Lemma 4(i) we
obtain that d(y) < n — a and hence, a = 1 and d(y) = n — 1. This together with condition
(*) implies that d(z1) > n. If yxo € D, then x,_1yxexs... T, 22,1 is a good cycle in D
and therefore, D contains a Hamiltonian bypass. Assume therefore that xzoy € D. Since
d(x1) > n, by Lemma 2, z; has a partner on the path C[zy,x, 1], i.e, there is an (xs,y)-
Hamiltonian path which together with the arc x5y forms a Hamiltonian bypass, which is a
contradiction and completes the proof of (i).

(ii) It follows immediately from Lemmas 6(i) and 4(i).

(iii) Suppose, on the contrary, that d(y) > n — 1 and D contains no Hamiltonian bypass
as well as no good cycle. By Lemma 4(ii), d(y) = n — 1. From Lemma 6(ii) it follows that
a(y,z;) =1 for all i € [1,n — 1]. Without loss of generality, we may assume that (by Lemma
)

NT(y) ={z1,23,..., 202} and N (y) = {29, T4,...,Tp 1} (1)
Notice that

(2) for every vertex x;, z;x; 1 ¢ D and z; has no partner on the path C[z; 1, x; 1] (for
otherwise, D contains a Hamiltonian bypass).

Assume first that xyx3 € D. Then it is not difficult to show that x5, x,,_; are non-adjacent
and zox4 ¢ D. Indeed, by (1) if 2,122 € D, then D(n,2) = [x129; T12324YT5 . . . Tp_122]; if
xowy € D, then D(n,2) = [xox3; xoxsxs . .. Tp_1yx123); and if zox,—1 € D, then D(n,2) =
[Tom,,_1; Xoyx 12324 . .. T, 1], in each case we have a contradiction. Now, since x, 125 ¢ D,
yzro ¢ D and x5 has no partner on Clzs, z1], Lemma 5(i) implies that d(z3) > n — 1. On the
other hand, using Lemma 2(ii), a(zy, x,_1) = 0, 2324 ¢ D and (2), we obtain

n—1 S d(l.Q) = d($27 {3/75517553}) + d($27 C[$47$n—2]) S n— 27

a contradiction.

Assume second that z1x3 ¢ D. By the symmetry of the vertices x,_ and z; (by (1)),
we also may assume that x, »x; ¢ D. Since x; has no partner on Clzs, z, 5|, again using
Lemma 2(iii) and (2) we obtain

d($1) = d(l.la {'I.n—la T2, y}) + d(l.la 0[1.37 1'71—2]) <n-—2.

Therefore, by condition (*), we have that z; is adjacent with x3 and z,,_o, i.e., 321, 21T, 2 €
D, since y — {x,_2,21,23}. Now it is easy to see that {z3,x4,...,2,-2} — x1, which
contradicts that x,,_»x; ¢ D. In each case we obtain a contradiction, and hence, the proof
of Lemma 6(iii) is completed.

The following simple observation is of importance in the rest of the paper.
Remark: Let D be a digraph of order n > 6 with minimum semi-degree at least two satisfying
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the condition (*). Let C' := x125...T,121 be an arbitrary cycle of length n — 1 in D and
let y be the vertex not on C. If D contains no Hamiltonian bypass, then

(i) There are two distinct vertices xy, and x; such that {xg, xr1} N{z, 01} =0, 2 —
Yy — Tpr1 and x;p — y — x4q (by Lemmas 4(i) and 5(i)).

(ii) x; 1z & D for alli € [1,n—1].

(i) If y — {xi_1, i1} or {wi_1, i1} — y, then x; has no partner on the path
Clwit1, Tia].

() If xiy1xi-1 € D, then d(z;) < n—2 (by Remark (i) and Lemma 6(ii)).

Lemma 7: Let D be a digraph of order n > 6 with minimum semi-degree at least two
satisfying the condition (*). Let C := x125 ...z, 121 be an arbitrary cycle of lengthn—1 in D
and let y be the vertex not on C. Assume thaty — {x9,xn_1}, v1 — y and d(y, {x3, z,—2}) =
0. Then D contains a Hamiltonian bypass.

Proof: The proofis by contradiction. Assume that D contains no Hamiltonian bypass. From
Remark (i) and Lemmas 6(i), 4(i) it follows that for some j € [4,n — 4], z; = y — z,41.

Now we show that z, ox; ¢ D. Assume that this is not the case. Then z, sx; € D
and d(z,—1) < n — 2 (by Remark (iv)). Then, since y — {zs,2, 1}, the condi-
tion (*) implies that x5 and z,_; are adjacent, i.e., 22,1 € D or x, 129 € D. 1If
Tokp_1 € D, then D(n,2) = [r2%p_1;%25. .. Tp_oT1YTn_1], and if z,122 € D, then
D(n,2) = [Xp-121; Tp_1T2%3 . .. TjYTjt1 - . . Tp_o®y|. In both cases we have a Hamiltonian
bypass, a contradiction. Therefore x, _»x1 ¢ D.

Now, since 27 has no partner on C|x3,x, 5|, by Lemma 5(i), d(z1) > n—1. On the other
hand, from d(y, {x3,z,—2}) =0, d(y) < n—2 and the condition (*) it follows that z;x3 ¢ D
and 12,9 ¢ D (in particular, a(zi,z,-2) = 0). Now using Lemma 2(ii) and Remark (ii)
we obtain

n—1 S d(l'l) = d(l.la {3/7 1.271.71—1}) + d(l'l, C[.I'g,l'n_g]) S n— 27

which is a contradiction. Lemma 7 is proved.
Lemma 8: Let D be a digraph of order n > 6 with minimum semi-degree at least two
satisfying the condition (*). Let C := x1x5...x,_121 be an arbitrary cycle of length n — 1
in D and let y be the vertex not on C. If d~(y) > 3 and y is adjacent with four consecutive
vertices of the cycle C', then D contains a Hamiltonian bypass.
Proof: Suppose, on the contrary, that D contains no Hamiltonian bypass and no good cycle.
Using Lemmas 6(i) and 4(i), without loss of generality, we can assume that {z, 1,22} — vy
and y — {x1,x3}. By Remarks (ii) and (iii) we have

(3) x;xi—1 ¢ D for each i € [1,n— 1] and x; (respectively, x5) has no partner on the path
Clza, xp—1] (respectively, Clzs, x1]).

If x, oxq ¢ D and xy25 ¢ D, then using Lemma 2(iii) and (3) we obtain that

d(x1) = d(z1, {y, x2, xpn_1}) + d(z1, Cxs, 21—2]) <1 — 2.

Therefore, by condition (*), the vertices 1, x3 are adjacent, since y — {z1,x3} (z; and x3
has a common in-neighbour y). This means that z3z; € D. Since z; has no partner on
Clzs, xp_o], it follows from x3 — {z1,24} and d(z1) < n — 2 that z421 € D. Similarly,
we conclude that x,_ox; € D which contradicts the assumption that x,_ox; ¢ D. Assume
therefore that

Tp_oX1 €D or xyx3€ D. (4)

Now we prove that d(z;) > n — 1. Assume that this is not the case, that is
d(z1) < n — 2. Then again by condition (*) z1,z3 are adjacent because of y — {z1,x3}.
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Therefore x3z; € D or zix3 € D. If x3xy € D, then it is not difficult to show that
{z3,24,...,2p_2} — x1, 1., d(x1) > n—1, a contradiction. Assume therefore that 3z, ¢ D
and r1x3 € D. Then C' := zyx324... 2, 1yx1 is a cycle of length n — 1 missing the ver-
tex x5. Then d(zy) < n — 2 (by Remark (iv)). Now, since x5 has no partner on C|z3, 2]
(by (3)) and d~(xo,{z;,z;01}) < 1 for all i € [3,n — 2] (by Lemma 4(i)), it follows that
d~(x2,{y,x3,24,...,25-2}) = 0. Then x,,_129 € D because of d~(z2) > 2. From d~(y) > 3
and Lemma 6(i) it follows that there is a vertex z; € Clxy, x,—3] such that z; — y — xj41.
Therefore D(n,2) = [x122; 212324 . .. T;YZj11 . . . Tp_122] is a Hamiltonian bypass, a contra-
diction. This contradiction proves that d(z;) >n — 1.

Notice that z,,—122 ¢ D, by Remark (iv). From (4) it follows that the following two cases

are possible: z1x3 € D (Case 1) or 2123 ¢ D and x,,_ox; € D (Case 2).
Case 1. 2123 € D. Then d(z5) < n — 2 (by Remark (iv)). It is easy to see that xoxy ¢ D
and z, 12y ¢ D (if z, 129 € D, then D has a cycle of length n — 1 missing x, and hence
d(z1) < n —2 which contradicts that d(x1) > n —1). Thus, we have a contradiction against
Lemma 5(i), since d(x9) < n— 2, x,_122 ¢ D and x5 has no partner on C[z3,z,-1] (by (3)).
Case 2. 2123 ¢ D and x, oz, € D. It is easy to see that x,,_122 ¢ D and z,,_3x,-1 ¢ D. If
YZTn—o € D, then x,_1 has no partner on C[z1, z,,_s]. This together with d(x,_1) < n—2, and
Tp_3T,_1 ¢ D contradicts Lemma 5(i). Assume therefore that y and x,_» are non-adjacent.
Then, since d(y) < n — 2 and zyy € D, we have that xex, o ¢ D.

Assume first that xox,—; € D. Then z, oxo ¢ D (for otherwise the arc z, sz,_1 €
Clzs,x, 1] is a partner of x5 on Clzs, z, 1], a contradiction against (3)). Therefore z, and
Z,_o are non-adjacent. Now we have x;xy € D, where i € [4,n — 3] since d~(z5) > 2 and
d~(x2,{y, 3, Tpn_2,2,—1}) = 0. It is not difficult to see that d(x2) > n — 1 (Lemma 5(i)).
Then by Remark (ii) and Lemma 2 we obtain

n—1 S d(l'Q) = d($27 {3/7351735373571—1}) + d($27 0[1.471.77,—3]) S n— 17

ie., d(xz2) = n—1 and d(zs, Clr4,2,-3]) = n — 5. By Lemma 2, zoz4 and x, 322 € D.
From d(z3) = n — 1 and the condition (*) it follows that d(z, ) > n, since x5 and z,
are non-adjacent and have a common in-neighbour z, 3. If zyz, o € D, then D(n,2) =
[T129; X1, oy 1YT3Ty . .. T, _3To), a contradiction. Assume therefore that xyz, o ¢ D.
Now we consider the cycle C' := x,_sxox, 1yx324... 2T, 3 of length n — 2 which does not
contain the vertices z,,_o and z1. Since d(z,—2) > n and z12,-2 ¢ D (i.e., a(xy, z,—2) = 1),
then d(z,-2,C") > n — 1. Therefore, by Lemma 1, there is a cycle, say C”, of length
n — 1 missing the vertex ;. Then, since d(z,C"”) > n — 1, by Lemma 4(ii) D contains a
Hamiltonian bypass.

Assume second that z5 and z,_; are non-adjacent. Then, since d(z,-1) < n — 2, the
condition (*) implies that z,,_oxs ¢ D. Then by Remark (ii) and Lemma 2(ii), we have

d(zq) = d(z2, {y, 1, 23}) + d(x2, Clxg, 2H0]) <1 — 2.

This contradicts Lemma 5(i) (because of (3)) and completes the proof of Lemma 8.
From Lemmas 6, 7 and 8 immediately the following lemma follows:

Lemma 9: Let D be a digraph of order n > 6 with minimum out-degree at least two and

with minimum in-degree at least three satisfying the condition (*). Let C := x1xo... 1, 121

be an arbitrary cycle of length n — 1 in D and let y be the vertex not on C. If the vertex

y 1s adjacent with three consecutive vertices of the cycle C, then D contains a Hamiltonian

bypass.
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Lemma 10: Let D be a digraph of order n > 6 with minimum out-degree at least two and
with minimum in-degree at least three satisfying the condition (*). Let C := x1xy. ..y 121
be an arbitrary cycle of length n —1 in D and let y be the vertex not on C. If D contains no
Hamiltonian bypass and x;_1x;1 € D for some i € [1,n — 1], then d(x;,{x;_2,zi12}) = 0.
Proof: The proof is by contradiction. Without loss of generality, we may assume that D has
no Hamiltonian bypass, z,-122 € D and a(xy,z3) > 1 or a(xy,z,—2) > 1. If a(zy,23) > 1
(respectively, a(z1,z,—2) > 1), then, since y is not adjacent with three consecutive vertices
of C, by Remark (i) there exists a vertex xp € Clzs, z,_o] (respectively, x, € Clxse, z,-3])
such that z, — y — z4.1. It is not difficult to see that C" := Clzy, x|yClz)y1, T 1]2s is
cycle of length n — 1 missing the vertex x,, and z; is adjacent with three consecutive vertices
of C', namely with x,,_1, o, x3 (respectively, x,,_o, £,_1, x2), which is a contradiction against
Lemma 9. Lemma 10 is proved.

Lemma 11: Let D be a digraph of order n > 6 with minimum out-degree at least two and
with minimum in-degree at least three satisfying the condition (*). Let C := x1xy. .. 2, 12
be an arbitrary cycle of length n — 1 in D and let y be the vertex not on C. D contains no
Hamiltonian bypass, then x; 12,1 ¢ D for all i € [1,n — 1].

Proof: The proof is by contradiction. Without loss of generality, we may assume that
r3r1 € D.

Assume first that the vertex z; has a partner on C[z4,z,_1], i.e., there is an z; €
Clz4, p—2) such that z; — 22 — xj41. From d~(y) > 3 and Lemma 6(i) it follows that
there exists a vertex zy, € C|z3, x,—2] distinct from z; such that x;, — y — x411. Therefore,
if k> j+ 1, then D(n,2) = [x321; X324 . .. £jT9Tj41 - .. TYTh41 - - - T 2], and if & < j — 1,
then D(n,2) = [x321; X3%4 . . . LkYThiq - .. LjT2Tj4q - . . Tp_121), & contradiction.

Assume second that x5 has no partner on Clz4, x,,_1]. Since z3z; € D, Lemma 10 implies
that zoxy ¢ D and x,,_129 ¢ D. Now using Lemma 2(iii) and Remark (ii) we obtain

d(z2) = d(z2, {y, x1,23}) + d(x2, Clxg, 2p1]) <10 — 2.

This together with the condition (*) implies that d~ (zq, Cz3, x,—1]) = 0. Therefore d™ (z2) <
2, which contradicts that d~(z3) > 3. Lemma 11 is proved. o

4. The Proof of the Main Result

Proof of Theorem 12. By Theorem 11 the digraph D contains a cycle of length n — 1 or n
is even and D is isomorphic to the complete bipartite digraph (or to the complete bipartite
digraph minus on arc) with equal partite sets. If n < 5 or D contains no cycle of length n—1,
then it is not difficult to check that D contains a Hamiltonian bypass. Assume therefore
that n > 6, D contains a cycle of length n — 1 and has no Hamiltonian bypass. From
Lemma 9 it follows that if C' is an arbitrary cycle of length n — 1 in D and the vertex y
is not on C, then there are not three consecutive vertices of C' which are adjacent with .
Let C' := x125...x,_121 be an arbitrary cycle of length n — 1 in D and let y be the vertex
not on C. Then, by Lemma 6(i), the following two cases are possible: There is a vertex
x; and an integer a > 1 such that d(y, {z;1,%i12,...,%ia}) = 0, ;1 — y — z; and the
vertices y, Z;i1q11 are adjacent (Case I) or d(y, {it1,Tit2, ..., Tiva}) =0, ¥y — {Zi, Titara},
Titar1y € D and the vertices y, x;_1 are non-adjacent, where a € [1,n — 6].

The proof will be by induction on a. We will first show that the theorem is true for
a=1.
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Case I. a = 1. Without loss of generality, we may assume that x,, o — y — x,_1, T2,y are
adjacent and y , x1 are non-adjacent. Since the vertex y is not adjacent with three consecutive
vertices of C' (Lemma 9), it follows that y, z,,—3 also are non-adjacent. Condition (*) implies
that x, oz ¢ D, since d(y) <n —2 and z,, oy € D.

We show that x; has a partner on C|z3,z, 5|. Assume that this is not the case. Then
by Lemma 5(i) we have d(z1) > n — 1, since x,,_ox1 ¢ D and yx; ¢ D. On the other hand,
using Lemma 2(ii) and Remark (ii), we obtain

n—1<d(x) = d(w, {72, vy 1}) + d(21,Clzs, 20 2]) <1 —2,

which is a contradiction.

So, indeed z; has a partner on C[z3,x, _»|. Let the arc zyxy € Clxs, x, 3] be a partner
of zy, i.e.,, xy — 1 — xp41. Notice that k € [4,n — 4] (by Lemma 11). If yxo € D, then
D(n,2) = [yTp_1;YTax3 ... TpT1Tps1 - - - Ty_2Ty 1), & contradiction. Assume therefore that
yre ¢ D. Then zyy, yrs € D and y, x4 are non-adjacent, by Lemmas 9 and 6(i). This
together with the condition (*) implies that zoxy ¢ D, since zoy € D and d(y) < n — 2. If
Tp_oxy € D, then C" := x,, 2Xoyx3 ... TpT1Tp 1 ... Tpo is a cycle of length n — 1 missing the
vertex x,_; for which {z, o,y} — x,_1. Then z, 125 € D, by Lemmas 6(i) and 4, i.e., z,,_1
is adjacent with three consecutive vertices of C’, which is contrary to Lemma 9. Assume
therefore that x,_ox2 ¢ D. Now we show that x5 also has a partner on C|z3, z,_2|. Assume
that this is not the case. Then, since z2z,_1 ¢ D (by Lemma 11) and xex4 ¢ D, using
Lemma 2(iii) and Remark (ii) we obtain

d($2) = d($27 {3/7 T1,T3, xn—l}) + d($27 0[1.47 xn—Q]) S n—2.

This together with 1 — {z, 24,1} and the condition (*) implies that x5, x;,; are adjacent.
It is easy to see that zp, 120 € D. By a similar argument, we conclude that x, szs € D,
which contradicts the fact that x, sxs ¢ D. Thus, z, also has a partner on Clzs,z, ».
Therefore, by Multi-Insertion Lemma there is a (23, z,_1)-path with vertex set V(C'), which
together with the arcs yz,_; and yxs3 forms a Hamiltonian bypass. This completes the
discussion of induction first step for (a = 1) Case L.
Now we consider the induction first step for Case II.

Case II. a = 1. Without loss of generality, we may assume that y — {z3,2, 1}, 22y € D
and d(y, {x1, 24, x,—2}) = 0. By induction first step of Case I, we may assume that y, z5 also
are non-adjacent. This together with d(y) < n — 2, oy € D and the condition (*) implies
that

d+($2, {.1'4, Ty, .fL'n_Q}) = 0, (5)
and hence, by Lemma 11, in particular, the vertices x5, x4 are non-adjacent. If z,_ox; € D,
then the cycle C" := x,,_sx122yxs ... 2,,_o has length n — 1 missing the vertex z,_; and

{zpn-2,y} — xn_1 — x1, i.e., for the cycle C" and vertex z,,_; the considered induction first
step of Case I holds. Assume therefore that x, oxy ¢ D. Then xy,x,_» are non-adjacent
(Lemma 11). It is not difficult to see that z; has a partner on Cf[zs,x, 3]. Indeed, for
otherwise from Lemma 5(i) it follows that d(x,_ 1) > n — 1 and hence by Lemma 2 and
Remark (ii), we have

n—1 S d(l'l) = d(l.la {1.271.71—1}) + d(l'l, C[l’g,l’n_g]) S n— 27

which is a contradiction. Thus, indeed x; has a partner on C[z3, x,,_3]. Let the arc xpxp1 €
Clzs,x,—3] be a partner of z1. Note that k € [4,n — 4] (by Lemma 11). Therefore, neither
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the vertex x5 nor the arc xyz5 has a partner on C|xs, x,,—1] (for otherwise, by Multi-Insertion
Lemma there is an (z3, x,_1)-path with vertex set V(C), which together with the arcs yxs
and yx,_; forms a Hamiltonian bypass). Recall that a(zs,x4) = 0 and xex5 ¢ D (by (5).
Now using Lemma 2(ii) and Remark (ii) we obtain that

d(z2) = d(z2, {y, 1, 23}) + d(x2, Clxs, 2p1]) <1 — 2.

This together with x; — {z2,2441} and the condition (*) implies that x5 and zji;
are adjacent. Then zp,129 € D (if zoxp; € D, then the arc zyz, has a partner
on Clzs,x, 1]). By a similar argument, we conclude that {z, 5,2, 1} — x5. Then
C' = Ty _9Xoyx3xy ... TpT1Ty1 ... Ty_o i8S a cycle of length n — 1, which does not contain the
vertex T,—1 and d(z,-1, {n—2,T2,y}) = 3, a contradiction against Lemma 9 and hence, the
discussion of case a = 1 is completed.

The induction hypothesis. Now we suppose that the theorem is true if D contains a cycle
C:=x129... x,_1x1 of length n — 1 missing the vertex y for which there is a vertex x; such
that d(y, {zit2, Tiys,..., irj}) = 0 and (i) 2; — y — x;4; and the vertices y, z;4 ;4 are
adjacent or (ii) y — {@i+1, Titjro} and 4511y € D, where 2 < j < a <n —6.

Before dealing with Cases I and 11, it is convenient to prove the following general claim.

Claim. Let C := z1x9...2,_ 121 be an arbitrary cycle of length n — 1 in D and let y be
the vertex not on C' and let d(y, {z1,xs,...,2,}) = 0, where a > 2.If (i) z, 2y,yx, 1 € D
and the vertices y and z,,; are non-adjacent or (ii) =, 1Y, yT.42 and yz, 1 € D, then
Tp—1Tp+1 & D for all k € [1,al.
Proof of the Claim: Suppose, on the contrary, that xy_1xx1 € D for some k €
[1,a], then C" = zp oyxp_121. .. Tp_1Tks1 ... Tpo o8 C" = Tp 1T1 ... Tp_1Tpy1 ... Tat1
YTgso - Ty_oTy_ 1 18 a cycle of length n — 1 missing the vertex x; for (i) and (ii), re-
spectively. Therefore, d(z;) < n — 2 (by Remark (iv)). By the induction hypothe-
sis xy is not adjacent with vertices xyio, Tras, ..., Thia, Th—2, Tk—3,-- - Tk_q. In particular,
d™ (g, {Tk41, T2y -y Tar1y) = 0 and d™ (xg, Clzp_2,xk—2]) = 0 (it is easy to show that
in both cases x,_oxr ¢ D). Since d(zr) < n — 2 and 21 ¢ D, by Lemma 5(i), the
vertex x has a partner on Clz, 9, ,_2], say the arc z;z,41 € Cl2 442, T,—o] is a partner of
Ty, 1.e., 2Tk, x4 € D. Therefore x, 121 ... Tp1Tpq1 . TaZos1 - TiTpTjg1 . - TpeoTp_1
is a cycle of length n — 1 missing the vertex y, for which d(y,Clx1,z.] — {zx}) = 0 and
Tp—2Y,YTn—1 € D, X441,y are non-adjacent or y,_1,Te1Y, YTare € D for (i) and (ii), re-
spectively. Therefore, by the induction hypothesis D contains a Hamiltonian bypass, a
contradiction to our assumption. The claim is proved. 7 Case 1. Without loss of generality,
we may assume that d(y, {zs,z3,...,2.1}) = 0, where a > 2, x, 1y,yr; € D and the
vertices vy, x,.o are non-adjacent.

Notice, the condition (*) implies that for all i € [2,a + 1], z,—12; ¢ D, since x,_1y € D,

d(y) <n — 2 and the vertices z;,y are non-adjacent.
Subcase I.1. There are integers k and [ with 1 < [ < k < a + 2 such that x,x; € D.
Without loss of generality, we assume that k — [ is as small as possible. From Remark (ii)
and Lemma 11 it follows that k—1 > 3. If every vertex x; € C|x;,1, xx_1] has a partner on the
path P := x3&py1 ... Tp_1yx1 ... 2y, then by Multi-Insertion Lemma there exists an (zy, z;)-
Hamiltonian path, which together with the arc xxx; forms a Hamiltonian bypass. Assume
therefore that some vertex z; € Clx;11, 21| has no partner on P. From the minimality of
k — 1> 3 and Claim 1 it follows that z; 5 € C[z;, z;] and a(z;, x;_5) = 0 or x5 € Clxy, x1]
and a(z;, x;12) = 0. Therefore by the minimality of k — [ we have

d(z;, Clay,xg)) <k —1-—1. (6)
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Since z; has no partner on the path C[zj1,x,-1], and if [ > 2 also on C[zy,x;-1], using
Lemma 2 with the fact that z,_12; ¢ D we obtain

d(z;, Clrgsr, xn—1) <n—k—1 andif [>2 then d(z;,Clzy,z4]) <.

The last two inequalities together with (6) give: if [ > 2, then d(z;) < n — 2, and if | = 1,
then d(z;) < n — 3. Thus, d(x;) < n— 2. In addition, Claim 1 and x,_;z; ¢ D imply that
x;_ox; ¢ D. Therefore, by Lemma 5(i), z; has a partner on P, which is contrary to our
assumption.

Subcase 1.2. For any pair of integers k and [ with 1 <1 <k < a+ 2, zxz; ¢ D. Then it is
easy to see that for each z; € Clza, x441]),

d(s, Clr1, Taya]) < (7)

since ;o € Cx1, Tayo] and a(z;, x;—2) = 0 or x40 € Clz1, 412] and a(x;, x;42) = 0.

We first show that every vertex x; € C[xa, x441] has a partner on Clz,y3,2,-1]. Assume
that this is not the case, i.e., some vertex x; € C[ry, 24,1 has no partner on Clz,, 3,2, 1].
Then, since z,,_1x; ¢ D, by Lemma 2(ii) we have that d(z;, C[z. 3, 2,_1]) <n—a—3. This
inequality togeter with (7) gives d(z;) < n — 3, a contradiction against Lemma 5(i), since
Ti—2&; ¢ D.

Thus, each vertex x; € C[xg, x441] has a partner on C[z443, 2,-1]. Therefore, by Multi-
Insertion Lemma there is an (2,3, z,_1)-path, say R, with vertex set V(C) — {z1, z,.2}. If
YZTaro € D, then [yxy; yz, o Rrq] is a Hamiltonian bypass. Assume therefore that yz,,o ¢ D.
Then z,.0y € D. By Lemma 6(i) and by the induction hypothesis, we have yz,.3 € D and
d(y, {®a+4,Tar5}) = 0. This together with x,.0y € D, d(y) < n — 2 and the condition (*)
implies that

d+($a+27 ) {$a+47 $a+5}) =0, (8)

in particular, by Lemma 11, a(x,40,a414) = 0. Since yz,,3 € D and each vertex z; €
Clza,x441] has a partner on Clze43, Tp-1], to show that D contains a Hamiltonian bypass,
by Multi-Insertion Lemma it suffices to prove that z,,2 also has a partner on Clzs43,Zpn_1].
Assume that x,42 has no partner on C[z,3,Z,—1]. Then, since the vertices z, and z,o are
non-adjacent (Claim 1 and Lemma 11), from Lemma 5(i) it follows that d(z,42) > n — 1.
On the other hand, using (7), (8), d(z412, {%a, Tara}) = 0 and Lemma 2, we obtain

n—1 S d($a+2) = d($a+27 C[xla xa—&-l]) + d($a+27 {3/7 $a+3) + d($a+27 C[$a+57 xn—l]) S n— 37

a contradiction. So, x,o also has a partner on C[z,, 3,2z, 1] and the discussion of Case I is
completed.
Case II. Without loss of generality, we assume that d(y,{z1,z2,...,2,}) = 0, where a > 2,
Tap1y € D and y — {zp_1Ta12}-

By the considered Case I, without loss of generality, we may assume that
d(y, {n_2,Tars, Tara}) = 0. Since z,1y € D, d(y) < n — 2 and d(y,{z1, %2, ..., ZTa, Tar3,
Tatd, Tn—2}) = 0, the condition (*) implies that

d+($a+17 {1.17 T2,...,%a;Ta+3, $a+47$n—2}) = 0. (9)

Subcase I1.1. There are integers k and [ with 1 <[ < k < a + 1 such that x,z; € D.
By (9), k # a + 1. Without loss of generality, we assume that k — [ is as small as possible.
By Remark (ii) and Lemma 11 we have k — 1 > 3.
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We first show that each vertex of C[z;1,2,-1] has a partner on the path P :=
TkThal -« Tat1ly Taso .- Tp_1T1...x;.  Assume that this is not the case and let x; €
Clzi41, x,-1] have no partner on P. Then, since z;_oz; ¢ D (Claim 1), from Lemma 5(i)
and the minimality of & — [ it follows that d(x;) > n — 1. On the other hand, using the
minimality of k — [ and the fact that z; o € Clx;, x;]) and a(z;, x;_2) = 0 or x5 € Clay, x4
and a(z;, z;12) = 0 we obtain

d(z;, Clay,xg)) <k —1-1.
In addition, by Lemma 2 and x,12; ¢ D we also have
d(zi, Clxgs1, o)) <a—k+1 and  d(z;,Clrare, xi-1]) <n—a+1—2.

Summing the last three inequalities gives d(z;) < n— 2, which contradicts that d(z;) > n—1.
Thus, indeed each vertex x; € C|x; 1, 2r_1] has a partner on P. Then by Multi-Insertion
Lemma there is an (xy, z;)-Hamiltonian path , which together with the arc xyx; forms a
Hamiltonian bypass.
Subcase II.2. There are no ¢ and j such that 1 <i < j <a+1 and z;x; ¢ D. If every
vertex x; € Cx1,x,41]) has a partner on C[z,. 9, z,,_1], then by Multi-Insertion Lemma there
is an (2,49, T, 1)-path, say R, with vertex set V(C). Therefore [yz,_1;yR)] is a Hamiltonian
bypass. Assume therefore that there is a vertex x; € C[x1,x441] which has no partner on
ClTat2, Tn-1].

Let x;_ox; ¢ D, then from Lemma 5(i) it follows that d(x;) > n — 1.

Assume first that d(z;, C[z1,2,11]) = a — 1. Using Lemma 2 we obtain that if z; # x,,1,
then

n—1<d(x;) = d(z;, Clx1, xey1]) + d(x;, ClTata, Tn1]) <n — 2,

and, since x,41%a43 ¢ D, if ; = 2411, then
n—1 < d(l.a—s—l) = d(l.a—‘rla C[xla xa—&-l]) + d(l.a—&—la {3/7 $a+2) + d(l.a—&-la C[xa—&—?n xn—l]) <n-— 27

a contradiction.
Assume second that d(x;, C[z1,24+1]) = a. Then from Claim 1 and Lemma 11 it follows
that a = 2, x; = xo, d(x9, {z1,23}) = 2 and d(za,{x,_1}) = 0. Then

n—1<d(x) = d(w2, {71, v3}) + d(22, ClT4, Tp9]) <1 — 2,

a contradiction.

Let now x;_sx; € D. Then, by Claim 1, x; = x; and x,,_sx; € D. We consider the cycle
C = 2, 3T, 2T1%9 ... TqTei1YTara - - - T3 Of length n — 1 missing the vertex x,,_;. Then
{zp_2,y} — 2,1 and z,,_121 € D, i.e., for the cycle C' and the vertex z,_; Case I holds,
since |{za,x3,...,Zar1}| = a. The discussion of Case II is completed and with it the proof
of the theorem is also completed. o

5. Concluding Remarks

The following two examples of digraphs show that if the minimal semi-degree of a digraph
is equal to one, then the theorem is not true:

(i) Let D(7) be a digraph with vertex set {x1, xs, ..., 26, y} and let 125 ... 2621 be a cycle
of length 6 in D(7). Moreover, N*(y) = {x1,x3, 25}, N~ (y) = {x2, x4, T }, T123, 2325, T521 €
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D(7) and D(7) has no other arcs. Note that d~(z3) = d~(x4) = d~(x¢) = 1 and D(7) contains
no dominated pair of non-adjacent vertices. It is not difficult to check that D(7) contains
no Hamiltonian bypass.

(ii) Let D(n) be a digraph with vertex set {xy,zs,...,z,} and let zy25...2,2; be a
Hamiltonian cycle in D(n). Moreover, D(n) also contains the arcs x;xs, 235, ..., Ty 2Ty
(or myx3, X35, ..., Tn_3Tn_1, Tn—121 and D(n) has no other arcs. Note that D(n) contains
no dominated pair of non-adjacent vertices, d™(xq) = d¥(z2) = 1. Tt is not difficult to check
that D(n) contains no Hamiltonian bypass.

We believe that Theorem 12 also is true if we require that the minimum in-degree at
least two, instead of three.

In [2] and [3] Theorem 13 and Theorem 14 were proved, respectively.
Theorem 13:(Bang-Jensen, Gutin, H. Li [2]). Let D be a strong digraph of order n > 3.
Suppose that min{d*(x) +d~ (y),d” (z) + d*(y)} > n for any pair of non-adjacent vertices
x,y with a common out-neighbour or a common in-neighbour, then D is Hamiltonian.
Theorem 14:(Bang-Jensen, Guo, Yeo [3]). Let D be a strong digraph of order n > 3.
Suppose that d(x) + d(y) > 2n — 1 and min{d* (z) +d (y),d” () + d*(y)} > n —1 for any
pair of non-adjacent vertices x,y with a common out-neighbour or a common in-neighbour,
then D 1s Hamiltonian.

Note that Theorem 14 generalizes Theorem 13.

In [9] and [10] the following results were proved:
Theorem 15:( [9]). Let D be a strong digraph of order n > 4 which is not a directed cycle.
Suppose that min{d*(x) +d~ (y),d” (z) + d"(y)} > n for any pair of non-adjacent vertices
x,y with a common out-neighbour or a common in-neighbour. Then either D contains a
pre-Hamiltonian cycle or n is even and D = K7 5 5.
Theorem 16: ([10]). Let D be a strong digraph of order n > 4 which is not a directed cycle.
Suppose that d(x) + d(y) > 2n — 1 and min{d* (z) + d (y),d” () + d*(y)} > n —1 for any
pair of non-adjacent vertices x,y with a common out-neighbour or a common in-neighbour.
Then D contains a pre-Hamiltonian cycle or a cycle of length n — 2.

In view of Theorems 13-16, we pose the following problem:
Problem: Characterize those digraphs which satisfy the condition of Theorem 13 or 14 but
have no Hamiltonian bypass.
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UnnuiGnpn)ywo hwdihjunnbjwb gnudbbph dh nuup
hwihjnnGywG powlgniGtnh dwuhO

U. QGwpphljuG L b. Gupuwbnjwb
Udthnthnid

Unnulnpnpyuwo gqpuwdbh hwdhpunnGub powlgmin wyn gqpwdbh th GGpwgpuwd L,
npp unwgymd £ hwdhjunGyul ghyth dby wnbnh YnndGnpn)mdip ppotinig hbtwn:
‘Uhpjuw wuwnmwlpnid wywgnigymd E, np tGph YnniGnpnpwo qpudp pudupupnid
L hwipjnnGyulmpjuG th hwjymbGh wwjydwGh (J.of Graph Theory 22(2) (1996) 181-
187), L Gpw quwquwpltph tnppugniy dunlnn L npoipubynn  wunmhdwGGipp  topp
s60 hwiwwywwumwupwlwpwp,tpiphg L Gpynwuhg, wyw wjyn gpudbnp wwpniGuwymd k
hwdihjnnGywl ppowligniyi:
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O raMUABTOHOBHEIX 00X0OAAX B OAHOM KAAcCcCe
raMUABTOHOBEIX Oprpados

C. Aap6unsan u U. Kapanersan

AnHoTanus

AOKa3bIBaeTCs, YTO AIOOOU CUABHO CBSI3HBIM N-BEPIIMHHBIA (n > 3) oprpad, Ko-
TOPBIN YAOBAETBOPSAET OAHOMY AOCTATOYHOMY YCAOBHIO TaMUABTOHOBOCTH OpPrpadosB
(J.of Graph Theory 22(2) (1996) 181-187) nu uMeeT MUHUMAABHYIO IIOAYCTEIIEHb NCXOAQ
1 3aX0Aa He MeHIIIbe ueM 2 1 3, COOTBETCTBEHHO, COAEKUT FaMUABTOHOBEIN 00XO0A, T.€.,
KOHTYP, KOTOPBIM IIOAYYAeTCAd U3 TaMUABTOHOBOTO KOHTYypa IIOCAE IIepeOpUeHTalluu
OAHOU AYTH.



