Mathematical Problems of Computer Science 42, 113--120, 2014.

Fast Slant-Hadamard Transform Algorithm

Sonik R. Hakobyan

Yerevan State University
e-mail: sonahakobyan@ysu.am

Abstract

In this paper, we investigate an efficient algorithm for computation of parametric
Slant-Hadamard transforms. We present the Slant-Hadamard matrix of order 2" as a
product of sparse matrices, develop the appropriate fast Slant-Hadamard transform
and its complexity. In the end we present the detailed example of factoring of Slant-
Hadamard transform matrix of order 8 and Matlab code for implementation Slant-
Hadamard transform.
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1. Introduction

A phenomenon characteristic of digital images is the presence of approximately constant or
uniformly changing gray levels over a considerable distance or area. The slant transform is
specifically defined for efficient representation of such images. It is a piecewise linear basis that
follows the spirit of Walsh transform, possessing a discrete saw tooth-like basis vector which
efficiently represents linear brightness variations along an image line. The slant transform has
been used for signal compression and pattern recognition as well as for Intel’s “indo” video
compression algorithm [1-2]. The slant transform has the best compaction performance among
the non-sinusoidal fast orthogonal transforms.

Historically, Enomoto and Shibata conceived the first, eight-point slant transform in 1971
andused it in TV image encoding. Its major innovation is given by the slant vector, which can
properly follow the gradual changes in brightness of natural images. Pratt, Welch, and Chen have
generalized it to any order 2" and compared its performance with other transforms [2].

The slantlet transform has been successfully applied in compression and denoising. Currently,
slant transforms are usually constructed via Hadamard or Haar transforms [5-7].

The most common fast slant transform methods [5] are based on the factorization of the slant
transform matrix into a set of largely sparse matrices.
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2. The Slant-Hadamard Transform

The Slant-Hadamard transform is defined as X = Sx [8], where S - the Slant-Hadamard
transform matrix of order N is generated recursively by the following formula:
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where p = 3— 2, N=2", I, denotes an identity matrix of order m, and the parameters a, and

b, are given by
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and S(1)= L is just a Hadamard matrix of order 2 [8].
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Example 2.1: Below we present the Slant-Hadamard transform matrices of order 4 and 8 obtained
from (1) and (2)
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3. Construction of Parametric Slant-Hadamard Transform

The forward and inverse parametric Slant-Hadamard transforms of order 2" (n =1, 2, 3,...), are
defined as X = Sznx, X = S;X [9-10], respectively, where x is an input data vector and Szn 18

generated recursively as



S. Hakobyan 115

1 S

n—1 n—1 1
S, = 2 27 == (1 ®S j ,n>1
2n \/E Q2n 021171 S2n71 \/E an 2 21171 n> s

S_H_1++
27T 2

where 0,, denotes the zero matrix of order M, “+” corresponds to 1 and “-” to -1, ® denotes the Kronecker

product, and 0, is the recursion kernel matrix defined as

o
Y0y O
ay by I
0.= | %2 i O i1y
P
1. . .
R AT
—b, a,: A
0p><2 I 0p><2 I

As in [9-10], we introduce the expressions for a, and bzn to construct the parametric Slant-Hadamard

transforms matrices of order 2"
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It can be shown that for ‘ B> 2%"* the Slant-Hadamard transforms matrices lose their orthogonality. The

parametric slant transform matrices fulfill the requirements of the classical slant transform matrix.
However, the parametric slant transform matrix is a parametric matrix with parameters 3,, f. ..., S

2
* When f, === ,32” = [ =1, we obtain a classical slant transform
= When B, =2""forall 8, n22, we obtain a Walsh-Hadamard transform.
= When B, === '82” = f3, for —4 < B <4, we obtain a constant beta slant transform.
= When B, #pf#..# s -2 <p, <2¥7? n=2,34,.., we refer to this case as a

multiple betas slant transform [9-10]. In this case some of ,an can be equal but not all of

them.

For n=2 and f3, =—4.0 we have the following multiple betas slant transform matrix of order 4.
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Remark 3.1: Parametric slant transform matrices fulfill the following requirements of classical
slant transform:

» Its first row vector is of constant value.

» Its second row vector represents the parametric slant vector.
» Its basis vectors are orthonormal.

» It has a fast algorithm.

Remark 3.2: It is easy to verify that the parametric slant transform matrix can be represented as
follows:
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where p=2""-2, M,=1,. O, denotes a zero matrix of size mxk, I, denotes an identity

matrix of order m, ® is the operator of Kronecker product, H . is the Walsh-Hadamard matrix

of order 2", and the parameters a, and b, are given in (3).
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4. Fast Slant-Hadamard Transform Algorithm

The parametric Slant-Hadamard transform matrix can be represented [11-12] as

S, ZLMz”(Hz ®1,., )(12 ® S, )’ nz2,

2 2)‘!
where M,=1,, M,

The slant transform matrix of order 2" can be factored [11-12] as

is given in (4).

S, =8,5,8, -8, =[[S: where §,=(1,,. ®M )1, ®H,®1,.).

n=n-1
i=1

Below we represent in detail sparse matrices decomposition of Slant-Hadamard matrix of order 8.
Consider the Slant-Hadamard matrix Sy =—S,S,S, for B, =0B,=0=1.We have
8

=
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145
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0 0010 0 0 -]
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Below the 8-point transform steps are given in detailed (S, = §,S,S,x, scaling coefficient is omitted).

Step 1: y = S,x, (the number of additions is 8).
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Step 2: z = S,y, (the number of additions is 12 and of multiplications is 8).
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Step 3: X = S,z, (the number of additions is 10 and of multiplications is 4).
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The total number of additions is 30 and the total number of multiplication is 12.

Now calculate the number of operations for § o transform.
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transform requires 6271 operations ( 4.2 multiplications and 2.0 additions). Therefore,

the S, requires 249" ddition and 42" multiplication operations.

I i—] . o, . .
; 12 ' ]}c transform requires only 2" addition operations, and the Iyt ®M )y
21’71 - 21’71

So, the fast Slant-Hadamard transform of order 2" requires C; =(n+1)2" —2addition and

C}, =2"" —4 multiplication operations(n >2), with C; =8 and C; =4, where C; and C are,

respectively, the number of additions and multiplications required for the m — point fast
algorithm [8].

% 1D FSHT Matlab code
function M=M2N(n)
if n==
M=eye(2);
else
p=2"(n-1)-2; m=2"(2*n-2);
a=sqrt(3*m/(4*m-1)) ; b=sqrt((m-1)/(4*m-1));
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M=[[1 0 ;0 b] zeros(2,p) [0 0;a 0] zeros(2,p);
zeros(p,2) eye(p) zeros(p,2) zeros(p,p);
[00; 0 a] zeros(2,p) [0 1 ;-b 0] zeros(2,p);
zeros(p,2) zeros(p,p) zeros(p,2) eye(p)l;
end
end
Y0 Yo To Yo o To Yo To Yo To To Yo Fo Yo To To Fo Fo Yo To Yo Yo To Yo To Yo Yo To Yo Fo To Yo Fo Yo To Yo Fo Yo
function Y=FSHT(n,x)
Y=x;
for i=1:n
Y=kron(eye(2"(n-1)),M2N(i))* kron(eye(2”(n-i)),kron(hadamard(2),eye(2*(i-1))))*Y;
end
end

The 2D Slant-Hadamard transform can be defined as SHT(f) = SH * f* SH’, where f is the image and
SH and SH’ zre Slant-Hadamard matrix and its transpose [9].

5. Cunclusion

In this paper, an efficient algorithm for computation of parametric Slant-Hadamard transforms is

investigated. The Slant-Hadamard matrix of order 2" is presented as a product of sparse matrices and the
appropriate fast Slant-Hadamard transform and its complexity are developed. In the end the detailed
example of factoring of Slant-Hadamard transform matrix of order 8 and Matlab code for implementation
Slant-Hadamard transform on 1D case are presented. Later the Slant-Hadamard transformation will be
discussed which will be used in image processing.
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Uywutp-Zunudwuph Abwthnpunipjut wpug wjgnphped
U. Zulnpjut
Udthnthnid

Munudtbwuhpynid £ wwpuwdbnpny Upwbp—Zungudwph dbwhnjunipjub
wpynitbwybn wignphpdp: 2" Jupgh Upwbp-Zugpudwph dwunphgp tbpjuyugdnud k
unup dwwnphgutph wpunwnpuh wbupny, htyywbu twb dowlynd L Ujwbp-
Zunuuwph wpwg dhwthnjumpniit nt tpw puppnipniup: Yhpenud dwipudwut
ubpuyugynmd ki 8-pn Jupgh Ujwbp-Zunwdwph Adbuwthnpunipjut dwwnphgh
dwljuinphquughwn b Ujwmbp-Zunudwph dlwthnjpunipniip hpujwubwgunng Matlab
Ynnp:

Aaropurtm ObICTPOro npeodpaszosanus Cianra-Ajxamapa

C. AxomsH
AHHOTAINA

B nmannoit paboTe MbI uccneayem 3¢ (HEeKTUBHBIN alTrOPUTM MapaMeTPUUECKOTO Mpeodpa3oBaHus
Cnanra-Anamapa. Marpuna Cnanra-Azamapa nopsiika 2" MpejacTaBieHa B BUJIE IPOU3BEIECHUS
paspexeHHbIXx MaTpull. Pa3pa®oranbl cooTBeTcTByMOlee ObicTpoe mnpeoOpa3oBaHue CraHTa-
Anamapa u ero ciaoxHocTb. [IpenctaBineHsl MoApoOHBI Hpumep (GakTOpU3aLUK MaTPHUIIbI
npeoOpaszoBanus U Matlab xon ans peanuzanuu peodpazoBanus CrnaHra-Agamapa .



