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Abstract

We present a nonparametric algorithm which allows reducing the investigations of
changes of the joint distribution of chronologically ordered multidimensional random
sequence to the investigations of some one-dimensional conditional distributions. The
algorithm is implemented with the statistical software package R. The action of the
program is demonstrated on applications. The first one concerns the retrospective
analysis of the changes in the concentration of chemical components of ground water
preceding major seismic events. The second refers to the definition of cut-points in
two-dimensional life time data sets of the imatinib-treated chronic myeloid leukemia
patients.

Keywords: Change-point problem, Rank score test,Threshold copula, Cut-point
selection method.

1. Introduction

Monitoring of some complex system leads to a vector of observations consisting of input vari-
ables (predictors), output variables (responses), and also concomitant (categorizing) vari-
ables, possibly influencing significantly on the joint distribution of the input and output
variables. FEach of these variables can be discrete, continuous or of non-numerical type.

Classification of observations to statistically homogeneous and significantly distinct
groups is necessary for forecasting and taking adequate control actions. Such task arises
in problems of medical and technical diagnostics in analyzing and forecasting catastrophic
events in nature, and also in actuarial and financial mathematics.

The relatively small or moderate dependence is of interest in seismological applications.
Nelsen [1] and Mari et al [2] have discussed the families of bivariate distributions with a
small or moderate dependence. It is assumed that the data, obtained from different places of
observation, are weakly dependent. This dependence is determined only by the fact that the
variables belong to the same system, i.e., to the same geographic region and therefore, they
are exposed to the same environmental conditions. Change of the structure of dependence
is connected with the fact that the whole system is preparing to move from one state to
another, and such a change is in some way a precursor to this transition.
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In medical applications, such dependence is observable in the research of two-dimensional
functions of survival.

In this paper we solve the problem of classification for the case of vectors (X, Y., Z,),
n =1, N, where X and Y are continuous, and the concomitant variable Z can be arbitrary.

The case is of particular interest for practice where the shared variable Z is a sequence
of ordinal numbers of observations ranked chronologically, or according to some other con-
comitant variable. If the factor that influences the changes of dependence is the time, then
the definition of the moment of changes is a multidimensional version of the famous problem
about “disorder” (change-point detection problem). Staging, bibliography and state of the
art are presented in the book of Borovkov [3]. Nonparametric methods of detection are
presented in the book of Brodsky and Darkhovsky [4]. Theoretical substantiation of non-
parametric algorithms based on rank statistics for detecting change-point in one-dimensional
case was obtained by Safaryan [5].

For the two-dimensional case the following was stated. Let (X,,Y,), n = 1,N be a
chronologically ordered two-dimensional random sequence, statistical properties of which
change in some unknown moment (change-point). As in the one-dimensional case, we assume
that there exists an index A € [A,1 — A],0 < A < 1/2, which determines the index of
observation n) = [AN] such, that the observation (X,,Y;) has a two-dimensional distribution
function F™(z,y) which can be written as:

F™(z,y) = Fi(x,y)[{n < na} + Fy(x,9)I[{n > ny}, n =1, N. (1)

where Fi(z,y) # Fy(x,y) and I(A) is the indicator of the event A.
Since we are interested in the change of dependence, the same relation can be written
with the copulas

C" (u,v) = Cy(u,v)I[{n < ny} + Ca(u,v)I{n >ny}, n=1,N. (2)

Recall that the copula of two random variables (RVs) X and Y with a joint distribution
function F'(z,y) is a function C'(u,v), defined by the relation

C(Fx(x), Fy (y)) = F(z,y),

or

Clu,v) = F(F~(u), G (v)),
where Fx(z) and Fy(Y) are marginal distribution functions and F~! and G™' are quasi
inverse functions defined as F~!(u) = inf{z : F(z) > u}. If the marginal distributions are
continuous, then this representation is unique [1]. Expediency of application of copulas in
the discrete case is discussed in the article of Blagoveschensky [6], where the basic elements
of the theory of copulas are also presented. The maximum likelihood estimator for the copula
function change-point are obtained by Dias and Embrechts in [7]. In the article by Brodsky
et al [8], an estimate of the change-point of 7-dimensional copula is obtained on the basis of
multivariate modification of the Kolmogorov-Smirnov statistic. Unfortunately, this statistic
is not very convenient for practical calculations, and also efficiency of a Kolmogorov-Smirnov
statistic with respect to the statistic of rank score even in one-dimensional case is equal to
Z€ro.

In this paper a heuristic algorithm is proposed that allows to reduce the investigation
of changes in the joint distribution of multivariate random sequence, ordered chronologi-
cally, or according to some other categorical variable, to the examination of changes in the
corresponding one-dimensional sequance of conditional distributions with the application of
appropriately selected rank scores statistics. The algorithm was first introduced in [9].
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2. The Rescaling Procedure and Steps of the Algorithm

2.1 Copulas of Weak Dependence

Now we formalize the notion of weak dependence in terms of the copula. Let X and Y be
RVs with continuous marginal distribution functions F'(z) and G(y), the joint distribution
function F'(z,y) and the corresponding copula C(u,v). Each copula is a surface in the unit
cube, so each distance between surfaces zp = uv and z; = C(u,v) should yield a measure
of dependence between X and Y. The most famous of them are the Pearson correlation
coefficient r and the Spearman rank correlation coefficient p:

1 1 1
XY)=———— — ! -1
rXY) = Boep b ) (Cle) = w)dF wdG o), (3)
where D stands for a standard deviation and
1 1
p(X,)Y) = 12/ / (C(u,v) — uv)dudv. (4)
0o Jo

The smaller is Spearman p(X,Y"), the weaker is the dependence [3]. Below some examples
of weak dependence of copulas are given, which are relevant for the considered applications.

Case 1. Two families of one-parameter copulas describing the relatively weak dependence
between the random variables X and Y are presented by Nelsen [1]. This is the Farlie-
Gumbel-Morgenstern (FGM) copula:

Cy(u,v) = uwv+ Quv(l —u)(1 —v), 0€[-1,1],

and the Ali-Michail-Haq copula (AMH):

Colu,v) = 1 +9uv(1uj}u)(1 —v)’ bel-11}

Coefficients (3) and (4) for copulas FMG and AMH change within the limits [—1/3,1/3].

Case 2. The second variant relates to the fact that the predictor can also be a grouping
variable, i.e., contain one or more cut-points. In this case, the high correlation coefficient
between the predictor and the response cannot be interpreted as a sign of dependence of one
to the other. This dependence in the monograph of the Blagoveschensky [10] is named false
or spurious and some examples of why such a spurious dependence may arise are given. In
[11] the false dependence is defined as a threshold dependence. Here we remind the definition
of homogeneity of an RV with respect to another, which is equivalent to the definition of
independence.

We call an RV Y homogeneous with respect to RV X if for all pairs (x,y) on the plane
the following conditional probabilities are equal:

PriY <y/X <z)=Pr(Y <y/X > uz). (5)
If there exists a unique value of x = p such that for all y € R,
Pr(Y <y/X <z)=Pr(Y <y/X <p), for x <y, (6)

PriY <y/X >x)=Pr(Y <y/X >p), for x>y, (7)
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and
PrY <y/X >x)# Pr(Y <y/X > p), (8)

then the statistical dependence between X and Y is called one-threshold and the value p
is called a threshold.

Actually one-threshold dependence is an example of dependence in single point p. In a
similar way M- threshold dependence with M > 1 can be defined.

Case 3. Dependence arising in the time means that a dependence between X and Y
occurs at some unknown moment of time, i. e., in relation (2) Cj(u,v) = wv. A practical
example of dependence arising in the time given by Stakheev [12] is dedicated to earthquke
geochemical precursors.

2.2 Problem Formulation for Some Heterogeneity Models

We solve the above stated problem about the determination of change moment of copula
function without fixing in advance some kind of weak dependence, since if X and Y are
weakly dependent like in Cases 1 or 3, then they verify (8). It is assumed that there is some
unobserved random variable Z!, which changes the copula function in some threshold point,
then as it is shown in [13], X is heterogeneous with respect to Y, and vice versa. Taking
one of the variables for the base, we find the threshold value, which is change moment of the
copula function. The approach to cut-point detection using the change-point identification
techniques is introduced in [14].

2.3 Steps of Algorithm

Stepl. Selection of a base variable.

Let Rx, = #(X, : X, < X;,n=1,N)and Ry, = #(Y,,: Y, <Yy, n=1,N), i =1,N
be ranks of sequences {X,,}2 | and {V,}_,.

We define two sequences of rank score statistic as follows:

Wy (n) =n/(N —=n)(T;(n) = A(J)), n=T1,N, (9)
where .
T5(n) = 1/?”&; J(R;/(N +1)), (10)
and

AU = [ u)da) (1)

where R; is Ry, in the first case or is Ry, in the second case and J(u) is a score function
[15]. The change points by time are

n; = arg [AN]Q?SH[(%—A)N] Wyn), 0<A<1/2, i=1,2. (12)

We define the standardized statistic

Wil = /N1 = )2 S()Wh(n),
where S(.J) = [ J*(u)du — (fy J(u)du)?. If for both variables W' < z,, where z, is the

quantile of the level a for standard normal distribution, is detected and we choose the base
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variable for which the extremum is observed earlier. For other cases, the choice of base
variable is arbitrary.

Step 2. Estimation of the moment homogeneity violation

In what follows we denote the base variables by X, ranks of variable Y rearranged in
order of increasing of the base variable by Rffn, n =1, N, and rank score statistic calculated
with rearranged ranks by W3 (n), n =1, N. The moment n,, of the violation of homogeneity
of response variable relative to the base variable is defined by (12), where W} (n) is replaced
by Wi(n).

The founded moment of change is a certain rank of base variable, and corresponding to
this rank the value of variable is the cut-point. Index of the moment in chronologically
ordered sequence corresponding to cut-point is the moment of change of the copula. Un-
fortunately, in the real data quite a lot of such coinciding values are encountered. Different
ranks correspond to them since in accordance with our ranking system, the smaller rank
receives a chronologically earlier observation.

Step 3. Correction of the moment of change of the copula visually using
graphical representations

For graundwaters it is presented on Fig. 2. by scatterplots. For survival time data the
copula density histograms are obtained but not included in the paper for restriction of the
volume of the text.

3. Analysis of Real Data

3.1  Comparison of Variations of the Components of Groundwater

The concept of seismographic geochemical anomaly is not clearly defined. Usually, the se-
quence of observations between the two earthquakes contains two specific points: the start
of the accumulation of changes and release to the level of quasi-permanent (“geochemical
quiescency” ). Thus, the observations in the period prior to the earthquake can be considered
as a chronologically ordered random sequence with two unknown points of the “disorder”.
Processing of the data obtained on a number of stations of the hydrogeochemical observation
network of the National Service for Seismic Protection (NSSP) of Armenia, using nonpara-
metric algorithms, designed to changes in the statistical properties of the random sequences,
confirmed this model of anomalies. The present example is related to the determination of
the time of changing the structure of two-dimensional relationships for the three observation
stations on the eve of the helium content of the Spitak earthquake. Note that the correlation
analysis presented in the book of Petrosian [16] did not determine a significant statistical
dependence on helium (He) between the observations of two stations. The actual data in the
example is the content of helium in the groundwater on the eve of major seismic events.
Definition of change moments of these two sequences was carried out in a known manner by
means of the Wilcoxon statistic.

If we choose A = 0.1, then the left 30 values of the Wilcoxon statistic will be cut to both
sides and the minimum value outside the critical border -1.96 comes to the point 150. Thus,
data from the monitoring station Ararat, having a rank 150, corresponds to the time of
the change of homogeneity of helium in station Kajaran with respect to the station Ararat.
Theoretically, this means some form of weak dependence (case 1-3) between the values of
the indicators of these two stations. The rank 150 corresponds to the value of cut-point
i = 284 and time 06.02.88 (2/6/88). We present a two-dimensional scatterplot until the



68 Detection of Heterogeneity in Three-Dimensional Data Sequences: Algorithm and Applications

time moment 06.02.88 by one color, and after it with another.

Kadjaran by time
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0 50 100 150 200 250 300
(d)

Fig. 1. (a)data of helium at the station Kajaran are on the vertical axis, the horizontal axis
is for the number of observations over time. (b) Wilcoxon statistic over time, (c) data for station
Kajaran ordered according to increasing of values of the index of helium on Ararat station are
on the vertical axis, the horizontal axis is for Rank values of the helium in station Ararat. (d)
Wilcoxon statistic for Kajaran by Ararat.
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Fig. 2. Two-dimentional data of helium classified over time (Kajaran -Ararat).

We see that the two-dimensional observations are sufficiently well separated in time.
However, the following ranks: 144(29.09.87), 145 (29.11.87), 146 (01.12.87), 147(11.12.87),
149(07.01.88) 150(06.02.88), 151(28.04.88), 152(30.04.88) correspond to the value 284. We
constructed two-dimensional scatter plots for all of moments corresponding to the cut-point
1 = 284 and made sure that the best division by time corresponded to 02.06.88.
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3.2 Analysis of Survival Function of Patients with Myeloid Leukemia

Recently a lot of works have been devoted to the study of two-dimensional survival functions
which include also applications describing algorithms and programs in R codes such as in
[17,18]. The same algorithm was applied to the analysis of two-dimensional life time data of
expectancy of patients with myeloid leukemia. The sequence {X,,}_, is the life time data
denoting the date of diagnosis, and the sequence {Y;,}2_, denotes the life time from the point
of therapeutic treatment. Categorizing variable Z is the age of patient, the sample size is
413 patients. In this example, the variables are strongly dependent, however,even in this
case, the proposed algorithm works. The cut-point is found: 60 years of age, after which
the copula function is changed. For two-dimensional histogram of the density copula such
separation is visible even to the eye. The main conclusion is that after 60 years, the life time
is only slightly dependent on the therapeutic treatment.

4. Conclusion

The presented algorithm shows the prospects of application of threshold copula meth-
ods and mixed sampling to determination of anomalies in multidimensional hydrogeochem-
ical data occurring prior to earthquakes and for spatially correlated survival data. Further
theoretical elaboration and implementation of programs for their realization are admissable.
It is desirable to fitting copulas C}(u,v) and Cy(u,v) for using the goodness-of-fit tests.
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OOHapy>KeHre HEOAHOPOAHOCTU B TpeXpa3MepPHEIX
IIOCA€AOBATEABHOCTSAX AQHHEIX:
AATOPUTM M IPUAOSKEHUS

E. Apytionsan, U. Cadapsasn, A. Hazapan u H. ApyTioraH

AnHoTanuys

MBI TpeacTaBAsieM HellapaMeTPUYeCKUN AaATOPUTM, ITO3BOASIOINIUN CBOAUTH
HMCCAEAOBaHUE M3MEHEeHUM COBMECTHOTO PacClpeAeAeHUs MHOTOMEPHOW CAyYarHOU
ITOCAEAOBATEABHOCTH K MCCAEAOBAHUIO HEKOTOPBIX OAHOMEPHBIX YCAOBHBIX pacIpe-
AeAeHUN. AATOPUTM peaAr30BaH B CpeAe CTaTUCTUYECKOTO s3biKa R. AelicTBue
MIPOTPaMMBI TTIOKa3aHO Ha ABYX MPUAOKEHUIX: CEMCMOAOTHYECKOM U MEAUITMHCKOM.



