Mathematical Problems of Computer Science 42, 54—62, 2014.

Scalable and Accurate Clones Detection Based on

Metrics for Dependence Graph *

Sevak S. Sargsyan, Shamil F. Kurmangaleev, Artiom V. Baloian and Hayk K. Aslanyan

Laboratory of System Programming
IT Educational and Research Centre
Yerevan State University
e-mail: sevaksargsyan@ispras.ru, kursh@ispras.ru,
artyom.baloyan@ysu.am, hayk@ispras.ru

Abstract

The article describes a new method of code clones detection for C/C++ program-
ming languages. The method is based on metrics for program dependence graph. For
every node of program dependence graph a characteristic vector is constructed, which
contains information about neighbors. These characteristic vectors are represented as
sixty four bit integer numbers, which allows determining similarity between two nodes
in amortized constant time. Due to this it is possible to analyze effectively projects
with million lines of source code. The high accuracy of the determined clones was
achieved by checking locations of source code for corresponding nodes. The paper also
describes new approach for dependency graphs generation, which allows building them
much faster than any of the existing methods. This method was compared with several
widely used tools. It performs better both execution time and accuracy.

Keywords: Metrics, Dependency graph, Scalable, Code clones, Compiler, Bit
vector.

1. Introduction

Software developer can reuse the same piece of code many times. It can be done with direct
copy-paste or copy-past and small modifications. Reused code can lead to many semantic
errors. For example, software developer can forget to rename some variable after copy-paste.
The software, which has many clones probably will have many mistakes and low quality.
According to different studies [1,2] up to 20 percent of source code can be a clone in software.
Clone detection tools are widely used during software development to avoid mistakes and
improve code quality. Numbers of approaches were provided [3] for clones detection, but they
have some restrictions. Some of them cannot detect all clone types (see 2.). Others have
high computational complexity, which makes them unusable for large scale projects analysis.
The goal of this paper is to introduce a metrics-based scalable and accurate algorithm of
code clones detection. The metrics are defined for Program Dependence Graph (PDG).
Besides the algorithm, a new approach is presented for dependency graphs generation based

*The paper is supported by RFBR grant 15-07-07541

54

S. Sargsyan, S. Kurmangaleev, A. Baloian and H. Aslanyan 95

on LLVM compiler [4]. It allows generating these graphs effectively, without double analyses
of source code. Flexible definition of metrics and effective generation of PDGs allow us to
create a scalable and accurate tool of code clones detection.

2. Background

Clone Types: There are three basic types of clones. The first type is identical to code
fragments except the variations in whitespace (may be also variations in layout) and com-
ments (T1). The second type is structurally /syntactically identical to code fragments except
the variations in identifiers, literals, types, layout and comments (T2). The third type is
copied fragments of code with further modifications. Statements can be changed, added or
removed in addition to variations in identifiers, literals, types, layout and comments (T3)[5].

Code clone detection approaches: There are five basic approaches for code clone
detection.

1. Methods based on textual approach consider the source code as text and try to find
equal substrings [6]. These substrings are clones. When all clones are found, the clones
which are located nearby can be combined into one. Basically (T1) type of clones is

determined.
2. In case of lexical approach the source code is parsed to sequence of tokens. Then the

longest common subsequence is determined. There are a few effective algorithms based
on the parameterized suffix tree for clone detection [7]. One more interesting method
transforms Java code to some intermediate representation and compares them instead
of original source [8]. These types of algorithms can find basically (T1) and (T2)

clone types.
3. The next is the syntactic approach. The algorithm works on Abstract Syntax Tree

(AST). In this case the clones matched subtrees of AST. Some algorithms directly
compare two ASTs to find common subtrees [9]. Another algorithm constructs vectors
for AST subtrees and compares them [10]. Algorithms based on this approach find all

three types of clones.
4. Metrics-based algorithms are widely used for clone detection. Algorithms based on this

method, compute number of metrics for code fragment and compare them. Basically
these metrics are computed for AST and Program Dependence Graph (PDG) [11].
Another method clusters computed metrics by using neural networks [12]. Metrics-
based algorithms have better performance than AST or PDG comparison algorithms,

but with low accuracy.
5. The last is the semantic approach. The source code is parsed to PDG. Nodes of PDG

are instructions of program. Edges of PDG are dependences between the instructions.
Algorithms based on PDG try to find maximal isomorphic subgraphs for pair of PDGs
[13,14]. All algorithms are approximate because the maximal isomorphic subgraphs
detection problem is NP hard. PDG-based methods have high accuracy but low per-
formance.

3. Approval

Textual and lexical approaches are not very effective for detecting clones of (T3) type. Tree-
based methods are more effective for detecting clones of (T1) and (T2) types; (T3) type

51§) Scalable and Accurate Clones Detection Based on Metrics for Dependence Graph

of clones are detected with low accuracy, because the added or deleted instructions strictly
change the structure of AST. Algorithms based on semantic analysis have high computational
complexity, which makes them unusable for large software systems analysis. Metrics-based
approaches have low accuracy. For qualitative analysis of software systems, (T3) as well
as the other clones should be detected. So, there are two scenarios for getting all clones
with high accuracy. One of them is metrics-based algorithms accuracy improvement (note:
metrics should be defined for PDG). And the second one is the reduction of computational
complexity of the semantic approach [15]. This work describes an effective method for PDGs
generation and accurate algorithm of code clones detection based on metrics.

Widely used algorithms are based on metrics work for AST [9] or for some specialized
PDG [16]. As was discussed, AST-based methods detect (T3) clones with low accuracy.
Other methods modify PDGs to achieve high performance or make defined metrics stable
for variations in code fragments. It does not solve the problem of accurate detection for
(T3) clones. Some of them [17] bring graph isomorphism problem to tree similarity task,
which can the decrease accuracy of the detected clones. Our method computes metrics for
nodes of PDG, and compares them. Due to the flexible definition of the metric, the added
or removed instructions have a small impact on nodes, which allows to detect all three types
of clones with high accuracy.

Generation of PDGs has high computational complexity which requires much time. To
reduce its cost we have purposed LLVM-based model of these graphs generation. In this
model PDGs are constructed during the compilation of the project. Other methods use their
own parser for PDG construction. It has a number of disadvantages. Source code should be
analyzed and parsed separately. Dependences between the compilation modules should be
properly processed. The large projects are not possible without the use of Makefile. LLVM
built-in generator of PDGs allows using Makefile of the project and analyzing it only once,
during its compilation. Comparing with other scalable PDG-based tools [17] our method
allows to build these graphs much faster.

4. Dependency Graphs Generation

PDGs for the project are generated by a separate pass of LLVM (see Fig.1).

CLANG PDG’s ROOT DIR.
= 2 —\
—— PDG PASS

@ e Construct PDG
PASS e PDG optimizations ‘

LLVM e PDG serialization

PASS
. PDG FOR ONE MODULE

EXECUTABLE

Fig. 1. LLVM-based PDG generation.

S. Sargsyan, S. Kurmangaleev, A. Baloian and H. Aslanyan 57

It has several advantages. Graphs are generated during the compilation time of the
project. It allows to effectively construct graphs for large scale projects (up to million lines
of source code). Vertices of PDG graph are LLVM bitcode [4] instructions. Edges are
obtained based on LLVM use-def [4], alias and control flow analyses. Those vertices which
have no edges are removed. Then the optimized PDGs are stored to a file. The stored graphs
are loaded from files to memory before running the clone detection algorithm.

5. Algorithm

Bit vector (BV) of PDG’s node is a vector the length of which is equal to 2 % N, where N is
the number of all possible different types of nodes. Assume that each type of node is labeled
with a number from 1 to N (these labels are instruction types). The bit vector for node
is initialized in the following way. For every ¢ = 1,..., N, ©_y4, position of vector is assigned
to 1 if the corresponding node has an incoming edge from the node, which has the label i.
Analogically, for every 7 = N +1,...,2 % N, j_4 position of vector is assigned to 1 if the
corresponding node has an outgoing edge to some node labeled as j — N (see Fig. 2). Other
positions are assigned to 0.

& O
(%) —— []o[1[o]o[o]o1]
®

Fig. 2. Bit vector’s representation.

Definition 1: For two vectors V1 and V2 which have a length N, V1&V2 is a new vector
V' with a length N where V[i| = V1[i|&V2[i] (1&1 =1, otherwise 0), 1 <1i < N.

Definition 2: For two vectors V1 and V2 which have a length N, V1|V2 is a new vec-
tor V- with a length N where V[i| = V1[i]|V2[i] (0|0 =0, otherwise 1), 1 <i < N.

Definition 3: For two vectors V1 and V2 with equal lengths, and with elements 0 or 1,
andC(V1,V2) is a number of 1 in V1&V2 vector.

Definition 4: For two vectors V1 and V2 with equal lengths, and with elements 0 or 1,
orC(V1,V2) is a number of 1 in V1|V2 vector.

Definition 5: The similarity for two vectors V1 and V2 with equal lengths, and with ele-

ments 0 or 1 is a number 1 — (OTC(‘E'IIJ’:?C_(?/T%‘)/)I’V2))

Definition 6: Density for set of nodes of PDG s (Ww(s)‘% where S is a set of nodes of
PDG sorted by the corresponding source code lines of these nodes, max(S) is a correspond-
ing source code line for maximal node of S, min(S) is a corresponding source code line for

minimal node of S.

58 Scalable and Accurate Clones Detection Based on Metrics for Dependence Graph

The first stage of algorithm constructs two sets of similar nodes based on BV (bit vector)
for the corresponding graphs. Every PDG node has information about the source code line
from which it was constructed. The second stage of algorithm eliminates the nodes from the
constructed sets. Node is removed if its corresponding source code line is located far from
the other nodes source code lines.

Description of the Metrics-Based Code Clone Detector (MBCCD) algorithm:

1. Input: G1 and G2 PDG graphs, S similarity level and C'L minimal length of clone.

2. Construct C'1 and C2 multi maps (key is BV, value is PDG node) of BV (bit vector)
for G1 and G2 nodes.

3. Any element n; from C1 is removed, if there is no such ny from C2, that similarity of
the corresponding BVs of n; and ny is higher than S. The same is done for C2.

4. Construct S1 and S2 sets of PDG’s nodes for the corresponding C'1 and C2. Sort the
sets by the corresponding lines numbers of source code for nodes.

5. Consider the first element is fe from S1 and the last element is le from S1. If
Density(S1\ {fe}) > Density(S1 \ {le}) then remove le from S1, otherwise remove
fe. Repeat the process until Density(S1) becomes higher than S. The same is done
for S2.

6. If S1 and S2 have more elements than CL, this pair of sets as clones are printed.

6. Complexity

A few optimizations were applied to achieve high performance and make this algorithm
scalable for analyzed million lines of source code. Programming languages have some limited
set of operations. Usually it is less than 60. It allows representing the above described BV as
a 64-bit integer number. Consequently, the complexity of two BV comparisons is constant.

For every BV of the first PDG, MBCCD algorithm examines all BVs of the second PDG,
which requires N1 N2 steps, where N1 is a number of nodes for the first graph and N2 is a
number of nodes for the second graph. Complexity of the MBCCD algorithm is O(N1x N2).

7. Results

Comparison: The described method was compared with two widely used tools. The first
one is MOSS [18]. It has been developed for detecting a plagiarism in programming classes
(Stanford University). The second one is CloneDR [19]. It was developed by Semantic
Designs Company, which provides different tools for software design and analysis. Test suites
are described in the Table 1. The first test (Original Code) was modified in different ways to
obtain all three types of clones. Article [5] contains more details for all tests. Theoretically
all files are clones, because they were obtained by modification of one test. Clone detection
tool with high accuracy should determine as much clones as possible.

S. Sargsyan, S. Kurmangaleev, A. Baloian and H. Aslanyan

Table 1. Test suites.

copy00.cpp: Original Code.

void foo(float sum, float prod) {
float result = sum + prod;
}
void sumProd(int n) {
float sum = 0.0; //C1
float prod = 1.0;
for (int i = 1; i<=n; i++) {

sum = sum + i;

prod = prod * i;
10: foo(sum, prod);
11: }

12: }

copyO01l.cpp:
line 8 and 9.

spaces are changed with tabs in

copy02.cpp:

comments are added in line 6 and 9.

copy03.cpp:

variables ”sum” and ”prod” are

renamed to ”s” and "p”.

copy04.cpp: arguments of "foo” are exchanged,
line 10.
copy05.cpp: type of ”sum” and "prod” are

changed into int, line 5 and 6.

copy06.cpp:

i is exchanged into (i*i), line 8 and 9.

copy07.cpp:

lines 5 and 6 are exchanged.

copy08.cpp:

lines 8 and 9 are exchanged.

copy09.cpp:

lines 9 and 10 are exchanged.

copyl0.cpp:

”for” replace with ”while”.

copyll.cpp:

condition (if(i%2)) is added after line 7.

copyl2.cpp: instruction in line 9 is deleted.

copy13.cpp: condition (if(i%2)) is added after line 9.

copyl4.cpp: default value is added for the second

argument for ”foo” function.

copyl5.cpp: extra argument is added for ”foo”

function.

Table 2. The results of comparison: ”yes” - clone is found, ”no

Table 2 shows results of comparison for MOSS, CloneDR and MBCCD algorithms.

b

Test Name | MOSS | CloneDR | MBCCD
copy00.cpp | yes yes yes
copyOl.cpp | yes yes yes
copy02.cpp | yes yes yes
copy03.cpp | yes yes yes
copy04.cpp | yes yes yes
copy05.cpp | yes yes yes
copy06.cpp | yes yes yes
copy07.cpp | yes yes yes
copy08.cpp | no no yes
copy09.cpp | no yes yes
copylO.cpp | no yes yes
copyll.cpp | no no yes
copyl2.cpp | yes yes no
copyl3.cpp | yes yes yes
copyl4.cpp | yes yes yes
copylb.cpp | yes yes yes

- clone is not found.

99

Run time: The MBCCD was applied to a number of widely used libraries and software
systems. Tests were run on Intel Core i3 CPU 540, 8GB RAM. Table 3 shows basic results
of clone detection with minimal length equal to fifteen and similarity higher than 85%.

60 Scalable and Accurate Clones Detection Based on Metrics for Dependence Graph

Table 3. Test results of libraries: openssl, llvin/clang and firefox.

Test Name | Lines PDGs | PDG gen. time | Time | clones | False
openssl 280.000 1800 43 3 16 0
llvm/clang | 1.300.000 | 19946 | 396 1876 | 94 4
firefox 3.800.000 | 61643 | 465 2489 | 18 0

The second column contains the number of source code lines written in C/C++ pro-
gramming languages. The third column contains the number of PDGs for the project. The
fourth column contains PDGs generation time. The fifth column contains the detection time
in seconds. The sixth column contains the number of detected clones. The last column
presents the results of manual analysis. We have tried to run MOSS and CloneDR on the
same tests, but these tests were analyzed partially (MOSS and CloneDR are not able to
process dependences between the compilation modules properly). Even for these partially
analyzed pieces of code MBCCD is faster and more accurate. Table 4. illustrates one of
the detected clones for the openssl library.

Table 4. Illustration of clones.

openssl-1.0.1g/crypto/cast/c_enc.c | openssl-1.0.1g/crypto/bf/bf_enc.c
141: for (1-=8; 1>=0; 1-=8) 237: for (I-=8; 1>=0; 1-=8)
142: { 238: {

143: n2l(in,tin0); 239: n2l(in,tin0);

144: n2l(in,tinl); 240: n2l(in,tinl);

145: tin0"=tout0; 241: tin0"=tout0;

146: tinl"=tout1; 242: tinl"=tout1;

147: tin[0]=tin0; 243: tin[0]=tin0;

148: tin[l]=tinl; 244: tin[l]=tinl;

149: CAST _encrypt(tin,ks); 245: BF _encrypt(tin,schedule);
150: toutO0=tin[0]; 246: toutO=tin[0];

151: toutl=tin[1]; 247: toutl=tin[1];

152: 12n(tout0,out); 248: 12n(tout0,out);

153: 12n(toutl,out); 249: 12n(toutl,out);

154: } 250: }

8. Conclusion

We have proposed a metrics-based method of code clones detection, which is capable to
analyze million lines of source code. (T3) as well as other types of clones are detected.
The method is used as built-in instrument for LLVM. LLVM bitcode-based construction of
PDGs allows building them much faster than any existed method. This tool can analyze
and compare source code quality. Semantic mistakes arising during the software development
process can be detected by the compiler in early stages. It can also be used for automatic
refactoring.

References

[1] B. Baker, “On finding duplication and near-duplication in large software systems”, Pro-
ceedings of the 2nd Working Conference on Reverse Engineering, WCRE 1995, pp. 86-95,
1995.

S. Sargsyan, S. Kurmangaleev, A. Baloian and H. Aslanyan 61

[2] C.K.Roy and J. R. Cordy, “An empirical study of function clones in open source software
systems”, Proceedings of the 15th Working Conference on Reverse Engineering, WCRE
2008, pp- 81-90, 2008.

[3] D. Rattana, R. Bhatiab and M. Singhe, “Software clone detection”, A systematic review,
Information and Software Technology, vol. 55, no. 7, pp. 1165-1199, 2013.

[4] [Online]. Available: http://llvm.org

[5] Ch. K. Roya, J. R. Cordya and R. Koschkeb, “Comparison and evaluation of code clone
detection techniques and tools”, A qualitative approach, Science of Computer Program-
ming, vol.74, no. 7, pp. 470-495, 2009.

[6] S. Ducasse, M. Rieger and S. Demeyer, “A language independent approach for detecting
duplicated code”, Proceedings of the 15th International Conference on Software Mainte-
nance, (ICSM’99), Oxford, England, UK, pp. 109-119, 1999.

[7] T.Kamiya, S.Kusumoto and K.Inoue, “CCFinder: A multilinguistic token-based code
clone detection system for large scale source code”, IEEE Transactions on Software
Engineering, vol. 28, no. 7, pp. 654-670, 2002.

[8] R. Kaur and S. Singh, “Clone detection in software source code using operational sim-
ilarity of statements”, ACM SIGSOFT Software Engineering Notes, vol. 39, no. 3, pp.
1-5, 2014.

[9] 1. Baxter, A. Yahin, L. Moura and M. Anna, “Clone detection using abstract syntax
trees” | Proceedings of the 14th IEEE International Conference on Software Maintenance,
IEEE Computer Society, pp. 368-377, 1998.

[10] L.Jiang, G.Misherghi, Z.Su and S.Glondu, “DECKARD : Scalable and accurate tree-
based detection of code clones”, Proceedings of the 29th International Conference on
Software Engineering, (ICSE07), IEEE Computer Society, pp. 96-105, 2007.

[11] J. Mayrand, C. Leblanc and E. Merlo, “Experiment on the automatic detection of
function clones in a software system using metrics”, Proceedings of the 12th International
Conference on Software Maintenance, (ICSM96), Monterey, CA, USA, pp. 244-253, 1996.

[12] N. Davey, P. Barson, S. Field and R. Frank, “The development of a software clone
detector”, International Journal of Applied Software Technology, vol. 1, no. 3/4, pp.
219-236, 1995.

[13] R.Komondoor and S.Horwitz, “Using slicing to identify duplication in source code”,
Proceedings of the 8th International Symposium on Static Analysis, pp. 40-56, 2001.

[14] J. Krinke, “Identifying similar code with program dependence graphs”, Proceedings of
the 8th Working Conference on Reverse Engineering, (WCRE 2001), pp. 301-309, 2001.

[15] S. Gupta and P. C. Gupta, “Literature Survey of Clone Detection Techniques”, Inter-
national Journal of Computer Applications, vol. 99, no. 3, pp. 41-44, 2014.

[16] Y. Higo and S. Kusumoto, “Code clone detection on specialized PDGs with heuristics”,
Proceedings of the 15th European Conference on Software Maintenance and Reengineering
(CSMR11), Oldenburg, Germany, pp.75-84, 2011.

[17] M. Gabel, L. Jiang and Z. Su, “Scalable detection of semantic clones”, Proceedings of
30th International Conference on Software Engineering (ICSE08), Leipzig, Germany, pp.
321-330, 2008.

[18] [Online]. Available: http://theory.stanford.edu/~ aiken/moss/

[19] [Online]. Available: http://www.semdesigns.com/products/clone/

62 Scalable and Accurate Clones Detection Based on Metrics for Dependence Graph

Submitted 06.09.2014, accepted 27.11.2014.

Opwgph Jwpjwonipjwl qpudbh ypw vwhdwljuo dtmphyubtpny
Unnh YnGatph pnGgujGbh L 62qphun npnlnid

U. Uupquyui, C. UmpiwGqutl, U. Pumnjub L L. Qupuljwd
Udthnthnid

nnuond Gyupwgpyud £ Yynnh YinGGaph npnGiw Gnp dtipnn C/C++ opwgpuynpiw b
1bgniGtnh hwdwp: UyG hhdGwo £ opwgph juwuuwonpjul gpudh hwiwp vwhiwGuo
dtmphwGtph Yypw: Yuwjuwonmpjul gpubh witl dh ququph hwiwp vwhdwGymd
L pGmpwqphs Yytywnp, npp wuwpniGuynd £ wfyuiGtp’ hwplwl ququpliph dwuhG:
Clnphhy GpwG, np pGmpwqgnphy Yyayumnplbpp Gipujugymd G0 npybu Jupunilynpu php
wwnniGulynn wipnnowwumhy pytn, hGwpwynp £ Gpynt ququpltiph Gdwlnmp niip yqunpqbp
hwunwwnni(dwdwGwynid: dw pniyp £ nmwhue wpyniGuwytunnpbl hbmwgnut] dhihnGuynp
wnnntn wwpniGwynn opwgptin: Guljwo YnGGtph &qpuumpnilp wwwhnyymd L
hwiwywunwupuwl ququpltph wnntph puuwynpyuonipjul vnnigiwip: <nnpjuontd
(qupugpyuo t Gwl juwpuwonpjul gqpudbh unmwgiwl Gnp dnnbgnud, npp pnyp k
nwhu unwlw] wyn quudplbpp 2wwn wytjh wpwgq, pwl gnympjnil nilGtgnn dtpnnltpn:
Llwpwqpuo dtpngp hwitidwwnyty E dh Jwpp (wyl mwpwonid qunwo wj] dapnnltph
htim: UpnynilGpGtipp gnyyg G0 vwhu, np wju dtpnnp wfuwwmnid £ wybh wpwq b §pqphwn:

MacurrabupyeMuIil ¥ TOUYHBEIM UHCTPYMEHT IIOMCKa KAOHOB

KOAQ Ha OCHOBE METPUK AAA rpada
3aBUCHUMOCTEM IIPOrPaMMEL

C. Caprcgn, 1. Kypmanraaees, A. barogn u A. AcraHgaH

AnHoTanuys

CraThsd ONUCHIBAeT HOBBLIM METOA IIOMCKa KAOHOB Kopa AAS 3BIKOB C/C+ +.
OH OCHOBaH Ha MeTpHKax AAS rpada 3aBUCHUMOCTENM HpOrpamMMbl. AASI KaXKAOU
BEepPIIMHBI rpada CTPOUTCI XapPAKTEPUCTUUECKUU BEKTOP, KOTOPBIA COAEPIKUT
UHPOPMAIINI0O O COCEAHUX BepIIUHaX. OTU BEKTOPhI TIPEACTABAEHBI B BHAE
IIECTUAECATU YEeThIpeX OUTHBIX IIEABIX YUCEA, U 3TO ITO3BOASIET OIIPEAEAUTH CXOACTBO
Me>XAY ABYMSI BEPIIMHAMU B MOCTOSHHOE BpeMf. OIOTO HO3BOAUAO 3(P(PEKTUBHO
QHAAM3UPOBATh MUAAUOHBI CTPOK MCXOAHOTO KOAA. BBICOKas TOYHOCTH HAWAEHHBIX
KAOHOB OBIA@ AOCTHUTHYTAQ NyTeM IIPOBEPKU MECTONOAOKEHUS HMCXOAHOTO KOAAQ
COOTBETCTBYIOIIWX BepLIMH. B cTaTbe TakK)Ke IIPEANAraeTCs HOBBIM ITOAXOA AASI
reHepanuy rpapoB 3aBUCUMOCTEM, YTO IIO3BOASIET IIOAYYUTDh UX FOPa3A0 OBICTpee, ueM
AIOOO0U CYLIeCTBYIOMUN MeTOA. [TpeArOsKeHHBIN MeTOA OBIA CPAaBHEH C HECKOABKUMU
IIMPOKO UCIIOAB3YEMBIMU METOAAMU. Pe3yAbTaThI TOKA3aAH, YTO ITOT METOA paboTaeT
OBICTpee M TOYHee.

	1_BAL.pdf (p.1-3)
	2_Bal.pdf (p.4-8)
	3_Bal.pdf (p.9)

