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Abstract

The gossip problem (telephone problem) is an information dissemination problem
where each of n nodes of a communication network has a unique piece of information
that must be transmitted to all the other nodes using two-way communications (tele-
phone calls) between the pairs of nodes. Upon a call between the given two nodes, they
exchange the whole information known to them at that moment. In this paper, we
investigate the k-fault-tolerant gossip problem, which is a generalization of the gossip
problem, where at most k£ arbitrary faults of calls are allowed. The problem is to find
the minimal number of calls 7(n, k) needed to guarantee the spread of whole infor-
mation. We constructed a k-fault-tolerant gossip scheme (sequences of calls) to find
the upper bounds of 7(n, k), which improves the previously known results for some
particular small values of n and k.
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1. Introduction

Gossiping is one of the basic problems of information dissemination in communication net-
works. The gossip problem (also known as a telephone problem) is attributed to A. Boyd (see
e.g. [4] for review), although to the best knowledge of the reviewers, it was first formulated
by R. Chesters and S. Silverman (Univ. of Witwatersrand, unpublished, 1970). Consider
a set of n person (nodes) each of which initially knows some unique piece of information
that is unknown to the others, and they can make a sequence of telephone calls to spread
the information. During a call between the given two nodes, they exchange the whole in-
formation known to them at that moment. The problem is to find the sequence of calls
with a minimum length (minimal gossip scheme), by which all the nodes will know all pieces
of information (complete gossiping). It has been shown in numerous works [1]-[4] that the
minimal number of calls is 2n — 4 when n > 4 and 1, 3 for n = 2, 3, respectively. Since then
many variations of gossip problem have been introduced and investigated (see e.g. [5]-[10],
[12)-[17).

One of the natural generalizations of this problem is the k-fault-tolerant gossip problem,
which assumes that some of the calls in the call sequence can fail (do not take place) [13]-
[16]. The nodes cannot change the sequence of their future calls depending on the current
failed calls. Here the aim is to find a minimal gossip scheme, which guarantees the full
exchange of the information in the case of at most k arbitrary fails, regardless of which the
calls failed. The gossip schemes, which provide k-fault-tolerance, are called k-fault-tolerant
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gossip schemes. Denote the minimal number of calls in the k-fault-tolerant minimal gossip
scheme by 7(n, k).
Berman and Hawrylycz [14] obtained the lower and upper bounds for 7(n, k):

(5] srmenswns | on] o

for k <n —2, and

()] smzrenz o]

for k >n— 2.
Hadded, Roy and Schaffer [15] proved afterwards that

T(n,k)g(g—i—Zp) (n—1+;—_11+2) (3)

where p is any integer between 1 and log, n inclusive. By choosing p appropriately, this result
improves the upper bounds obtained by Berman and Hawrylycz for almost all k. Particularly,

by choosing p = [10‘%2”} the following bound is obtained: 7(n, k) < 2 + O(ky/n+ nlog, n).
For the special case n = 2P for some integer p, Haddad, Roy, and Schaffer [15] also showed

that
1 1
T(n,k) < min{({k—k —‘—l—l)noan,
log, n 2

QkJrlJ+1)m%+((k+l)modlog2n)(2n—4)}. (4)

log, n

Thus, 7(n, k) < % + O(nlog, n), when n is a power of 2.
Later on, Hou and Shigeno [13] showed that

(5)
So, it holds that 2 + Q(n) < 7(n, k) < % + O(n?). These bounds improve the previous
bounds for small n and sufficiently large k.

Recently, Hasunuma and Nagamochi [16] showed that

(6)

(n, k) < MJF%’“, if n is a power of 2
2n [logyn) + n[52],  otherwise,

Fn;ﬂ . E (TM VH . UOMN < (. k). (7)

From their results, it holds that 7(n, k) < % + O(nlog, n). Particularly, their upper bound
improves the upper bound by Hou and Shigeno for all n > 13. They also improve the upper
bound by Haddad et al. by showing that the factor (k/2 + 2p) in their upper bound can be
replaced with a smaller factor (k/2 + p):

T(n,k)S(g—i-p) (n—1+2—_11+2p) (8)

and
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where p is any integer between 1 and log, n.

In this paper, we construct a k-fault-tolerant gossip scheme based on Wheel graphs,
which improves the previously known results on the upper bound for the number of calls in
case of small n and k. The obtained expressions for general n and k are (see Theorem 2) as
follows:

T(n, k) < % nk +O(n) (9)

2. Preliminaries

A gossip scheme (a sequence of calls between n nodes) can be represented by an undirected
edge-labeled graph G = (V, FE) with |V(G)| = n vertices. The vertices and edges of G
represent correspondingly the nodes and the calls between the pairs of nodes of a gossip
scheme. Such graphs may have multiple edges, but not self loops. An edge-labeling of G
is a mapping tg : E(G) — Z*. The label tg(e) of the given edge e € E(G) represents the
moment of time, when the corresponding call occurs.

A sequence P = (vg,e1,v1, 6,0, ..., € v;) With vertices v; € V(G) for 0 < i < k and
edges e; € E(G) for 1 < i < k is called a walk of length k& from a vertex vy to a vertex vy
in G, if each edge e; joins two vertices v;_; and v; for 1 < i < k. A walk, in which all the
vertices are distinct is called a path. If tg(e;) < tg(e;) for 1 < i < j < k, then P is an
ascending path from vy to v, in G. Given two vertices u and v, if there is an ascending path
from u to v, then v receives the information of u. Note that two different edges can have
the same label. Since we consider only (strictly) the ascending paths, then such edges (i.e.
calls) are independent, which means that the edges with the same label can be reordered
arbitrarily but for any t; < t5 all the edges with the label ¢; are ordered before any of the
edges with the label %s.

Definition 1: The communication between two vertices of G is called k-failure safe if an
ascending path between them remains, even if arbitrary k edges of G are deleted (the corre-
sponding calls fail). The graph G is called a k-fault-tolerant gossip graph if the communica-
tion between all the pairs of its vertices is k-failure safe.

From the Menger theorem [22] it follows that a k-fault-tolerant gossip graph is a graph
whose edges are labeled in such a way that there are at least k£ + 1 edge-disjoint ascending
paths betfween two arbitrary vertices. A O-fault-tolerant gossip graph is simply called a
gossip graph.

To describe the construction of k-fault-tolerant gossip graphs (schemes), we use some
important definitions and propositions given in the works [15], [16]. In order to simplify the
discussion for edge-disjoint paths, we often omit the vertices (or edges) in the description of
a path if there is no confusion.

Definition 2: Let P = (e, ea,...,¢€) be a path with edges e; € E(G) for 1 <i <k in a
labeled graph G. If P is divided into s+1 subpaths PV = (eq,...,e,), P® = (epi1,- .-, €py),
s, POYY = (e, 11 .. eyp), then we write P = PY © PA o ... P where © is the
concatenation operation on two paths for which the last vertex of one path is the first vertex
of the other. If P = PN © P® @ ... ® PE*Y such that PY) is an ascending path for
1 <j<s+1 and PY o PUY s not an ascending path for 1 < j < s, then P is an s-folded
ascending path in G. For an s-folded ascending path P, the folded number of P is defined to
be s.
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Definition 3: Consider two graphs Gy = (V, E1) and Gy = (V, Es) with the same set of
vertices V' and labeled edge sets Ey and FEs, respectively. The edge sum of these graphs is
the graph G1 + Gy = G = (V, E) with E = Ey U E, whose edges e € E are labeled by the
following rules:

te, (e), ife € By,
ta(e) = ta,(e) + max te,(€'), ife€ Es. (10)
e'€eE,
The edge sum G+ G+ - -+ G}, of h identical graphs (G1 = Gy = -+ = G, = G) is denoted

by hG. FEach set E(G;) in hG is denoted by E;(hG), i.e., E(hG) = |J,<;<;, Ei(hG). Note
that the labels of the edges in E;(hG) are greater than the corresponding edges in E(G) by

(1—1) x H}Ea()é) ta(e). Given a subset of edges A C E(G), denote its copy in the set FE;(hG)
ec
by A;. By this analogy, a path P in G as a subset of E(G) has a copy in E;(hG), which we

denote by P;.

Let P = P o P@ ©...® Pt be an s-folded ascending path from a vertex u to a
vertex v in G, where PY) is an ascending subpath for 1 < )] < s+ 1. Then, P, is also an
s-folded ascending path and P, = Pim ® B(Q) ORERNO, i(SH for 1 < ¢ < h. Now consider
the path P(k) = P,il) © P,Sr)l ORERNO P,if;l) in hG. Then, P(k) is an ascending path from u
to v for 1 < k < h — s such that P(k) and P(k’) are edge-disjoint if k # k’. Thus, based
on P, we can construct (h — s) edge-disjoint ascending paths from u to v in AG. Similarly,
based on another s-folded ascending path P’ from u to v, we can construct (h — s) edge-
disjoint ascending paths P’(k) from u to v for 1 <k < h—s. If P and P’ are edge-disjoint,
then all the paths P(1),..., P(h—s) and P’'(1),..., P'(h— s) are pairwise edge-disjoint by
construction. Therefore, the following lemma holds (see [15, 16]).

Lemma 1: Let u and v be vertices in a labeled graph G. If there are p edge-disjoint s-folded
ascending paths from u to v in G, then there are p(h — s) edge-disjoint ascending paths from
u to v in hG for any integer h > s.

From this lemma, if there are p edge-disjoint s-folded ascending paths from u to v in G, then
there are k + 1 edge-disjoint ascending paths from u to v in <s + (%1) G.
Thus, the following corollary is obtained (see [15]).

Corollary 1: Let G be a graph with n vertices and m edges. If there are p edge-disjoint
s-folded ascending paths between every pair of vertices in a labeled graph G, then T(n,k) <

<s + (%1) m.

In order to improve this estimation of the upper bound, a stronger proposition is formulated
and proved in [16].

Theorem 1: Let G be a labeled graph with n vertices. Suppose that

e E(G) can be decomposed into | subsets F(O, FM) . FU=D sych that for any two edges
e€ FO ande’ € FU tg(e) < tgle’) ifi < j,

e for any two vertices u and v, there are p edge-disjoint paths from u to v such that the
sum of their folded numbers is at most q, and the last edges of r; paths are in F® for
0<i<Il-—-1.
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Then, the minimal number of edges in a k-fault-tolerant gossip graph is bounded
7(n, k) < &(n, k), (11)

with £(n, k) defined by the expression

En. k)= [FOmeD], (12)

0<i<w

where w is an integer satisfying

Z Timodlzk+q+1. (13)

0<i<w

During the proof, the graph G = hG + G’ with h = 7] and G = (V, Uo<icw_mF®) is
constructed, and showed that it is a k-fault-tolerant gossip graph. The number of edges of
this graph is |[E(G)| = Ygcic,, [F1 1Y),

In the next section we construct a labeled Wheel graph and apply Theorem 1 to improve
the known estimations of the upper bounds for 7(n, k).

3. Fault-tolerant Gossip Graphs Based on Wheel Graph

Consider a wheel graph G = (V| E) with an odd number of vertices n, whose vertices and
edges are labeled by the following rules: the label of the central vertex is u, the remaining

vertices (which are located on the circle) are labeled consequently vy, v}, va, V5, ..., vk, v},
where n = 2k + 1. Since the periodic boundary conditions are assumed, we identify the
vertices v;4 = v; and v, = v, for i = 1,2,..., k. The set of edges consists of three subsets
E(G)=FOurWyr® (14)

with
FO = {(w,v): to((v,v)) =1, i=1,2,....k}, 15
FOO = L@hu): to((v,u) =2, i=1,2,...,k}, 16

— plOa) y pay,

)
)
FU = {(ou): to((v,u) =3, i=12... K},
)
F® = {(hvi): ta((th o)) =4, i=12...,k}.

o~~~ o~ o~
—_
~— — — — —
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V, l V,
V, 4/T 7\4 '
vl
2 3
1 3 U7 1
!
v3* 2 3 } V,
4 3 2 4
( 2 3§
V 4
4 I\L A/l "
; 4
v4 vS
Fig. 1. Wheel graph for odd n (here n=11).
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Fig. 2. The illustration of two arbitrary fixed vertices in the wheel graph.
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Fig. 1 illustrates the wheel graph G for n = 11 vertices. Then we apply Theorem 1 to
this graph. For all pairs of vertices in GG, we first construct 3 edge-disjoint folded paths from
the first vertex to the second one. Fori,j =1,2,... kand j #4,i — 1,1+ 1,i 4+ 2 (see Fig.
2 for illustration) we have

e from v; to u

3
— UV — U

1, 2
— VU, — U

4,2
e form u to v;

2
- uUu—"

3 1,
— U — v — ]

3 4
— U= Vg1 —— Y]

e from v; to v;

3 2, 4
— VUV

1, 2 3 |
—U U T U = Ui —— U = U

4, 2 3
7/U’L—>/Uz—1 > U ’Uj

e form v; to v}

3 2
— v U —— U

1, 2 3 T,

4, 2 3 4
7Ui—>vi—1—>u—>vj+1—>vj
e from v; to v;

;2 3 4,01
— U T U Vi U U

;1

3 2 4
— U —— V;_ — U,
j J
, 4 1, 2 3
TV T Ui T Vi T U T Y

/
to ch

;2 3 T,
e e N e

;1 3 2
— VTV U —— U

, 4 1, 2 3 4
TV T Vikl T U T U T Ui Y
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The edge-disjoint folded paths for j = 4,2 — 1,7+ 1,7+ 2 are shorter; they have less or equal
folded numbers and are easier to construct. Therefore, they are not presented here in order
to avoid an artificial growth of the text. Finally, we have

FOl=(n-1)/2, [FY=n-1, [F¥|=(n-1)/2, (20)
p=3, ro=r=re=1 ¢q=3, (21)

from which we obtain w > k£ + 3 and

B3 g(n —Dk+2(n—1), if (kmod3)=0
D O Flmedd| = %(n—l)( )+I(n—1), if (kmod3)=1 (22)
i=0 sn—1)(k—=2)+4(n—1), if (kmod3)=

For even n, we modify the wheel graph by adding a new vertex u’ and transforming the
edge set to the following expression

EG)=FOYUuFWyFr® (23)

U
with
FO = {(n0) to((u)) =1, i =12k}, (24
FOO = {(fu) s to((whu) =2, i=1,2,...,k}, (25)
e = (), tale) =3, (26)
FOO = (o) to((vnu)) =4, i=1,2,... .k}, (27)
ep = (u,u), toley) =5, (28)
FO = POy FI Y {e, e}, (29)
FO = (o)t to((vhvin)) =6, i=1,2,....k}. (30)
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Here the vertices u and u' are connected by two edges e, and e,. The graph G for n = 12
vertices is shown in Fig. 3. Constructing the edge-disjoint folded paths, one obtains

FO=(n-2)/2, [FV|=n, [F®|=(@n-2)/2 (31)
p =3, ro=ri=rp=1 ¢q=3, (32)

which results w > k£ + 3 and

k3 %(Zn — 1Dk +5n—4, if (kmod3)=0
D |plmedd)| = §(2n — (k=1 +In—5 if (kmod3)=1 (33)
i=0 32n —1)(k—2) +4n -5, if (kmod3) =2

From Eq. (22) for odd n and Eq. (33) for even n the following theorem holds.

Theorem 2: In k fault-tolerant gossip schemes the upper bound of T(n, k) minimum needed
calls satisfies the following condition:

(k) < % nk +O(n). (34)

4. Special Cases: k=1,2

Finally, we consider the special cases when £ = 1 and k£ = 2. In these cases the construction
of the k fault-tolerant graph becomes simpler. We present it here, without considering the
details: n

T(n,1) < 2n— 3+ bJ 7(n,2) < 20— 3+ n. (35)
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Wheel qpudltiph ypw hhiGywo k-hntuwihnipjudp gossip gpubltip
€. <nybwGjub, U. Mnannuyu L 9. MnnnujwG

Udthnthnid

Gossip fulinhpp (htinwfunuGtph fuGnhpp) hbnpiwghwyh mwpwodwl fulinhp k, npntn
hwnnpmugnipjul gulgh n hwiqniyglGtnhg jmpuwpwyympp mhpwwtnnmy E npll Gquyh
hGbnpiwghwjh, npp whwp L thnjuwlgyh pninp WGwgwo hwlgniyglGphG’ oqumuwagnpoting
hw(qnyygGtph qniyqtiph dhol Gpyynniwbh hwnnppuygnipyniln: Spywo tpynt hwlgniygltnh
dhol qulgh dwiwlwly npwlp thnfuwlwynmd GG wjn wwhhG hptlGg hwjnbGh nn9



V. Hovnanyan, S. Poghosyan and V. Poghosyan 53

hGbnpiwghwG: Uju hnpuonid dtlp phnwpymy Glp £ hntuwihmpjwudp gossip fulnhpp,
npp plghw6nip gossip fulinph plnhwGpuwgnmdl b, Gpp poyjwnpjuwo GG qulqbtiph
witlw)wwmp £ ywwunwhwiwl jpwihwindGbp:  Gghpp yuywlmy £ quqbph wyG
T(n, k) Guquqgnyl pwGuyp quGhnt dke, nph nhypmd Juwwwhndyh hGHnpiwghwjh
wipnnowlwl wmwpwonuip: Uklp Gwhiwqot) tlp & hntuwihnipjudp Jpupuuyml gos-
sip ufubidw (qubgtph hwenpnuywlnipyniG), nputiugh qulGkGp 7(n, k)-h hwdwp YtphG
uwhiwGGtp, npnGp Ypwptjwytl Gwjunpn wpniGpGipp n-h W k-h npnpwyh thnpp
wnpdbplbtph nhwypnud:

k-TOA€PAHTHEIE gOSsip rpadul OCHOBaHHEIE Ha wheel rpagos
B.OBuausan, C. INorocsau u B. INorocsn

AnHoTanus

[TpobaeMoti gossip (IpobaeMoil TeAe(POHOB) IBAIETCA IPOOAEMa PacIIpOCTPaHEHUS
nH(popMauy, TAe KaXAbIM U3 N Y3AOB CETU CBI3U HMMeeT YHUKAABHBINM (pparMeHT
nH(popMaIuy, KOTOPHIM AOAKEH OBITH IIepepAaH BCEM OCTAaAbHBIEM Y3AaM C IIOMOIIBIO
ABYCTOPOHHEN CBfI3U (Tere(pOHHBIE 3BOHKM) MEKAY Ilapamu y3A0B. [locae BBI3OBa
Me>XKAY AQHHBIMU ABYMS Y3AaMH, OHU OOMEHMBAIOTCA BCel MHPOpMaIyen, n3BeCTHOU
UM B AQHHBIM MOMEHT. B 5TOU cTaTbe, MBI UCCAEAYEM k-OTKa30yCTOMYUBYIO JOS-
sip mpobOAeMy, KOTopasd gBASeTCS O0OOIleHWeM 3apaud gossip, rae Hauboaee k
MMPOU3BOABHBIX COOMHBIX BBI3OBOB pa3zpellieHbl. [IpobGaeMa B TOM, UTOOBI HaUTH
MUHUMAaAbBHOE KOAMYECTBO 3BOHKOB T (1, k), HEOOXOAUMBIX AASI OOeCIIeueHUs TOAHOTO
pacrpocTpaHenusa nHpopMaruu. MbI IIOCTPOUAU k-OTKA30yCTOMYUBYIO OSSIp CXeMy
(IOCAEAOBATEABHOCTH BBI3OBOB) C IIEABI0 HAWTH BepXHUE I'PAHUIIHL T(n, k), KOTOpas
YAyYllIaeT paHee U3BECTHBIE Pe3yABTAThl AA HEKOTOPHBIX MAAbIX 3HAUeHUU n U k.



