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Abstract

We investigate the biometric generated secret key sharing system. We consider the
generalization of the secret key rate, studied by Ignatenko and Willems [1]: the notion
of E-achievable secret key rate is introduced. The lower and upper bounds for the
largest E-achievable secret key rate are obtained. When E tends to zero, the limits of
our bounds coincide and are equal to the largest achievable secret key rate stated in
[1].
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1. Introduction

In recent years the biometric secrecy systems are being widely used, ranging from border
control at airports to access control in various systems such as computer log-in, ID cards,
e-passports. The purpose of using biometric secrecy systems is to avoid a lot of related
problems with the usage of traditional passwords. For instance, simple passwords can be
easily guessed or broken by brute-force attacks, while more complex passwords are difficult
to remember. Furthermore, when a single password is compromised, it may open many
other “gates”, because most people use the same password for authentication in different
locations. Finally, a password can be shared with another person and there will be no way
to know who the actual user is.

The above mentioned limitations can be solved, if the biometric secrecy systems would
be used to authenticate an individual. Besides, the authentication biometric secrecy systems
can be used in identification, examinations, payment processings and in other various appli-
cations. Such systems are more secure than the traditional password-based authentication
systems, because the biometric properties cannot be lost or forgotten, they are difficult to
falsify or duplicate, share, and distribute. In many applications, such as, examinations, the
person is required to be present at the time and point of authentication. Moreover, there
are access scenarios, which require a participation of multiple previously registered users for
a successful authentication or to get an access grant for a certain entity. For instance, there
are cryptographic constructions known as secret sharing schemes, where a secret key is split
into shares and distributed amongst the users in such a way that it can be reconstructed
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only when the necessary number of secret key holders comes together. The revealed secret
can then be used for encryption or authentication. One of such applications could be sharing
of a bank account by family members.

However, the usage of biometric secrecy systems has its own disadvantages. As the bio-
metric data are gathered from individuals under environmental conditions and the channels
are exposed to noise the biometric secrecy system may accept an impostor or reject an au-
thorized individual. Basically, it’s not possible to build an ideal biometric secrecy system, it
can be information-theoretical secure up to a certain level.

Ignatenko and Willems [1] have mentioned that a perfect system for a secure biometric au-
thentication has to satisfy three requirements. Firstly, biometric data have to be private,
that means the reference information stored in database should not reveal the actual bio-
metric data. Secondly, reference data that are communicated from a database to the place
where an access can be granted or denied have to be fault-tolerant to eavesdropping. And
finally reference data stored in database have to be resilient to brute-force attacks.
Nonetheless, as practice shows people do not feel comfortable in providing their biometric
information to a large amount of outwardly secure databases, because one cannot fully trust
the security implementations of third parties, another reason is that the database might
be compromised from inside, which will allow an owner of a database to misuse biometric
information. And finally people have limited biometric resources, so “identity theft” has
much more serious impacts than a “simple” theft of a credit card.

In this paper we revisit the problem of generating secret keys from biometric data pro-
vided in [1]. We introduce the notion of E-achievable secret key rate and obtain the lower
and upper bounds for the largest E-achievable secret key rate. When E tends to zero, the
limits of our results coincide with the largest achievable secret key rate defined in [1].

2. Related Work

Security concerns related to the use of biometric data in different secrecy systems were raised
a long time ago. From the information-theoretical perspective the biometric secrecy systems
were studied by O’Sullivan and Schmid [2] and Willems et al [3]. Willems [3] investigated the
fundamental properties of the biometric identification system. It has been shown that it is
impossible to reliably identify more persons than capacity which is an inherent characteristic
of any identification system. By analogy with notion of E-capacity or rate-reliability function
introduced for discrete memoryless channels by E. Haroutunian [4] in [5] the new concept of
identification F-capacity for biometrical identification system was introduced. The authors
derived the upper and lower bounds of biometric identification system. Later in [6] the
authors investigated the rate-reliability function for biometric identification protocol with a
random parameter.

The problem of generating secret keys from biometric data is closely related to the con-
cept of secret sharing, which was introduced by Maurer [7] and by Ahlswede and Csiszar [8].
This problem in biometric setting was considered by Ignatenko and Willems [1]. Unlike in
traditional secret key sharing, where the secret key is being generated and shared between
terminals, in biometric secrecy systems a secret key is generated during an enrollment pro-
cedure in which the biometric data are observed for the first time. The secret key is to be
reconstructed after these biometric data are observed again, during an attempt to get an ac-
cess. Reliable biometric secrecy systems extract helper data from the biometric information
at the time of enrollment, as biometric measurements are typically noisy. These helper data
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contribute to reliable reconstruction of the secret key. The detailed description of this model
is given in the next section. More detailed review on information-theoretic approaches of
biometric secrecy systems can be found in [9].

3. Biometric Generated Secret Key Sharing Model

Before we start introducing the model let’s define some conventions that are applied within
this paper. Capital letters are used for random variables (RV) X, Y taking values in the
finite alphabets X', ), correspondingly. The cardinality of the alphabet X is denoted by |X|.
Biometric generated secret key sharing is one of the available models of biometric secret key
sharing system. The model is represented in Figurel.

I *
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Fig. 1. Biometric generated secret key sharing model.
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The model is based on a biometric source with distribution {Q(z,y),z € X,y € V}.
This source produces x = 2" = (1,7, ..., xy) of N symbols from the finite alphabet X and
a second sequence y = vy~ = (y1,¥2,...,yn) of N symbols from the finite alphabet . The
first sequence is called an enrollment sequence, and the second sequence an authentication
sequence. Furthermore, the second sequence Y is a noisy version of the first sequence X*.
Let us denote

Qz,y) = Qi(2)Qa(ylx), € X, y € V.

We assume that

QN(X7 Y) = 1:[1 Q($n7 yn)

Then consider an encoder that explores the enrolment sequence XV. From this sequence in
biometric generated secret key sharing model the encoder generates a secret S € {1, 2, ...,|S|}
and then a public helper-message (helper data) M € {1,2,...,|M|}. That means that

FXY) = (5, M),

where by f(-) we denote the encoder function. The helper-message is sent to the decoder.
The decoder explores the authentication sequence YV and produces an estimate S of the
secret S using the received helper data M, hence

g(YN, M) =8,

where by g(+,-) we denote the decoder function. The channel between the encoder and the
decoder is expected to be public. We assume that an attacker has an access to that channel,
so he can see all the public information but cannot modify. The information outflow is
described in terms of mutual information, and the size of the secret key— in terms of entropy.
Fingerprints and irises can be modeled as such biometric sources.
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The important parameters of a biometric secrecy system include the size of secret key
and the information that the helper data leak on the biometric observation. That leak of
biometric information is called a privacy leakage. The privacy leakage should be small, to
avoid the biometric data of an individual to become compromised. Moreover, the secret key
length should be large to minimize the probability that the secret key is guessed. It is the
goal of both sides (encoder and decoder) to produce a secret key as large as possible, that
satisifies this condition Pr{S # S} ~ 0 , this means that probability that the estimated
secret S is not equal to the generated secret S is close to zero. The biometric generated
secret key sharing model must satisfy the following requirements [1]

Pr{S#S}~0 (reliability),

1 1

NH (S) ~ i log, |S| (secret uniformity),
1
NH (9) is as large as possible (secret key rate),

1
NI(S ANM)=~0 (secrecy leakage),

1

N[ (XY A M) is as small as possible (privacy leakage).

Here is a definition for the achievable secret key rate stated in [1]. A secret key rate R, for
R > 0, is called achievable if for all 6 > 0 and all N large enough, there exist encoders and
decoders such that

Pr{S # S} <4,
1 1
() +0 = Flogy S| = R =6,
1
i < 0.
(S AM) <6

Ahlswede and Csiszar [8] proposed and proved a theorem, which stated that for a source
type model the largest achievable secret key rate R is equal to mutual information I(X AY').
Unlike the original proof, which is based on strong typicality, another proof of the same
theorem, but for biometric generated secret model, using weak typicality is given in [1].
In the next section we will introduce new concept of E-achievable secret key rate, which
differs from traditional secret key rate by having a more solid requirement and exponentially
decreases the error probability in practice.

4. FE-achievable Secret Key Rate

Definition: A secret key rate R(E), for R(E) > 0, is called E-achievable if for all 6 > 0 ,
E >0 and N large enough, there exists a code such that

Pr{S # S} < 27 NE=9),
1 1
NH(S) +6> NlogQ |S| > R(E) — 4,

1
LS AM) <6
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We shall use the following PD in the formulation of result:

Ql = {Ql(l.)’l. € X} 7@2 = {QQ(?AI.)’@/ € yal. € X}a
P ={P(z),z € X}, P ={P(y|x),y € YV,x € X},
Q=A{Q(x,y),r € X,y €V},
P={P(x,y),z € X,y €Y}

We refer to [4] , [10] , [11] and [12] for notions of divergence D(P||Q) , mutual information
Ip(X NY) , information-theoretic quantities. The proofs are based on the method of types.
We denote by 75 (X) the set of vectors x of type Py, by 72'(X,Y) the set of vectors (x,y)
of type P. We use some known properties [4], [10], [11], [12].

For (x,y) € Tp'(X.Y)

QY (x,y) = exp{=N(Hp(X,Y) + D(P||Q))}, (1)
75" (X, Y)| < exp{NHp(X,Y)}, (2)
QY(Tp'(X,Y)) < exp{-ND(P||Q)}, (3)
D(P[|Q) = D(A[|@1) + D(P[[Q2| Pr). (4)

Our main result is stated in the following theorem.

Theorem: For biometric generated-secret model the largest E-achievable secret key rate
R(E) is lower bounded by

R(E)= min |Ip(XAY)+D(P||Q)— BE|* (5)

P:D(P||Q)<E
and upper bounded by

Ry,(E)= min Ip(XAY). (6)

P:D(P||Q)<E

Here the notation |a|* is used for max(a, 0).

Corollary: When E — 0, the limits of our bounds coincide and are equal to the largest
achievable secret key rate defined in [1]:

lim R,(E) = lim R,,(E) = Io(X AY).

E—0 E—0

5. Proof of Theorem

Proof of Upper Bound. X
Let £ > 0 and the error probability satisfy the condition Pr{S # S} < exp{—N(E—J)}.
It means that
1

Z Ql (X) |S|

xeXN

>R {YN = g2 (9)|xm(s)} < exp{=N(E =)},

sES
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where
g (5) ={y : gm(y) = s}.

For any P we can write

oY QVxal(9) x QT (VIxn(s)) = 9. () xm(s)} <

sES xm(s)ET}i\lf (X)

|Slexp{—=N(E —d)}.

QY (x,n(s)) and QY (y|x,.(s)) are constant for various x and y of fixed type P, hence, we

can write
Z Z {‘TPN(Y|Xm(S))‘ — ‘TPN(Y|xm(s)) ﬂg;zl(s)‘}x

QY (xim(s)) x Q2 (ylxm(s)) < |Slexp{—N(E —3)}.
According to (3)

> X AT O] - [T b)) N9 )]}

SES xm ()T (X)

exp{=N(D(P||Q) + Hp,(Y[X))} < [S]exp{=N(E —9)}. (7)
It follows from the definition of decoding function g that for the given m the sets g!(s) are
disjoint, therefore
S T2 V() 9 (5)| < 1T (V).
s€S
Then from (7) we have

N |S|exp{—N(E — )}
ST (Vx(s))| — exp{—N(D(P||Q) + Hp(Y X))

seS

7S 75 (V).

Hence,
exp{NIp(X NY)}

(N + 1)~ —exp{N(D(P||Q) — £ = 0)}
The right-hand side of this inequality can be minimized by the choice of P keeping the de-
nominator positive, which takes place for large N, when D(P||Q) < E — 4.

5] <

Achievability part of theorem.

Code Construction. We consider those types P that D(P||Q) < E, from (4) it follows
that
D(P||@1) < E and D(B||Qq|P1) < E.

Let us denote

TQ]\I(E) = U TIQI(X)?
Pi:D(P1||Q1)<E
E) = | XY

P:D(P||Q)<E



M. Haroutunian and N. Pahlevanyan 23

We define a random partition of 7 (E) into | M| bins. The encoder independently assigns
a helper label (index of the bin) m € {1,2,...|M|} to each sequence x with the probability

Pr{M(x) =m} =1/|M|.

Then we define a second random partition over 7)) (E) with |S| bins, and the encoder assigns
a random label (bin-index of this second partition) s € {1, 2,...|S|} to each sequence x with
the probability

Pr{S(x) = s} =1/|S|.

The encoder explores the sequence x and determines the secret label s and helper label m.
The encoder sends the helper label m to the decoder.

The decoder after having observed y sequence looks for a unique sequence x with the helper
label m such that (x,y) € 7p(X,Y) and D(P||Q) is minimal.

Error probability. From (3) we obtain that for any P such that D(P||Q) > FE the
probability of the event is small enough

QY(Tp'(X,Y)) < exp{—NE}. (8)

The decoder can make an error if for the given m the secret s was determined, but there
exists § # s, such that for some P

(X (s),¥m) € Te(X,Y), (%m(5),¥m) € Tp(X,Y)

and
D(P||Q) < D(P||Q).

The mathematical expectation of this event can be upper bounded by the following expres-

| YT Y Y My

P,P:D(P||Q)<D(P||Q) 875 xexXN ye YN
Pr{(%,(5), ¥m) € T (X, Y)} x Pr{(%,,(8),ym) € TV (X, Y)}.

The first probability is different from zero only if x € 72 (X) and y € 72 (Y). Hence, the
expression will have the following form:

> Y2 Y Qxy)x

P,P:D(P||Q)<D(P||Q) 575 x€Tp (X) yeT 2 (Y)
Pr{(xmn(s), ¥m) € Tp' (X, Y)} x Pr{(%m(3),ym) € Tp'(X,Y)}.
Taking into account that for any P
S| =1 < exp{N(Ip(X AY) + D(P||Q) — E — &)}
and (1), (2) the last expression will not be greater than

S ep{NUHXAY)+ DP|Q) — E - 5)}x

P,P:D(P||Q)<D(P||Q)

exp{=N(Hp(X,Y) + D(P||Q))} x exp{N(Hp(X) + Hp(Y))}x
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exp{—N{Ip(X ANY)—082)} x exp{—N({Up(X ANY) —03)} =

> exp{N(D(P||Q) = E — (81 + &> + J5)) } X
P,P:D(P||Q)<D(P||Q)
exp{—ND(P||Q)} < exp{—N(E —§)}. (9)

Then from (8) and (9) we state that for NV large enough there exists a code with labelings
M and S such that

Pr{S # S} < exp{~N(E — &)} + exp{~NE)} < exp{—N(E —3)}.

For the rest of the proof we state that since Pr{S # S} < exp{—N(E — §)} for N large
enough, there exists at least one pair of labelings M, S, such that

H(M) <log|M| = NP:D(IE%)SE(HP(XD/) —D(P||Q) + E + ). (10)
H(S) <log|S| = NP:D(r]r;'i'g)SE(Ip(X AY)+ D(P||Q) — E — €3). (11)

Uniformity. Let XV be the estimate of XV based on S and M, then we find that
H(XM)=H(XN,S, M) = H(S)+ H(M|S)+
H(XN|S,M) < H(S)+ H(M)+ H(XN|S, M, X") <
H(S)+ H(M)+ NP, log |X| + 1,
the last step follows from Fano’s inequality. Hence, from (10) and (11) we have
H(S) = H(X™) — H(M) — NP.log|¥| 1>
NH(X)—N max (Hp(X|Y)—D(P||Q)+ E+¢€)—

P:D(P||Q)<E
Nexp{—N(E —9)}log|X|—1>
log |S| — N(€; — €3) — Nexp{—N(E —§)}log |X| — 1.
Secrecy. Now we study the secrecy.
I(SANM)=H(S)+ HM)+ H(S,M) =
H(S)+ H(M) - H(S, M, X™) + H(XN|S, M) =
H(S)+ H(M)— H(X™) + HXYN|S, M, X") <
H(S)+ H(M)—-NH(X)+ NP log|X|+ 1.
From (10) and (11) we obtain
H(S)+ HM)—-NH(X)+ NP log|X|+1<

i — H(X
NGl TP Y i He XY — HEO)

N(e1 —€2) + Nexp{—N(E —9)}log|X|+ 1.

Finally, we see that the secrecy leakage is small for N large enough

1 1
NI(SA M) <exp{—N(E —d)}log|X|+ (e1 — €2) + -

The theorem is proved.
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6. Privacy Leakage

The following proposition gives the privacy leakage corresponding to the maximum FE-
achievable secret key rate in the biometric generated secret key sharing model.

Proposition: [In a biometric generated secret key sharing model for E-achievable secret
key rate the privacy leakage is

1
Slo (M AXY) = max  (Hp(X]Y)+ D(PI|Q) - E). (12)

Proof: As M is a function of X» we have from (11)
I(XNAM)=H(M)>HX"Y)~H(S) - NP.log |X| — 1>
NHo (X) =N min  (Ip(X AY)+ D(P||Q) — E — e)—

P:D(P||Q)<E
N2 NED g | x| - 1>
N max (Hp(X[|Y)+ D(P||Q) — E — &)—

P:D(P||Q)XE
N2~ NE=) Jog | X| — 1.
On the other hand from (10)

H(M)<N max (Hp(X|[Y)— D(P||Q)+E +e).

P:D(P||Q)<E

Dividing both sides by N, and for N — oo we obtain (12).

Remark: The above proposition gives the privacy leakage if we apply the coding scheme
outlined in the achievability proof. However, it may be possible to achieve a smaller privacy
leakage depending on the secret-key rate. This problem will be considered in the future work.

7. Conclusion

We studied the biometric generated-secret model for discrete i.i.d biometric sources. The
new concept of E-achievable secret key rate is introduced and the expressions for the lower
and upper bounds of largest rate are obtained. This notion is the generalization of the
achievable secret key rate as it tends to the last when F tends to zero. The proofs are based
on the strong typicality. Also an expression for privacy leakage, which corresponds to the
largest E-achievable secret key rate is obtained.
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G-tabpwgywo qunubh pwlGwih hnfjuwbwynn Yhluwswhwluwb
unnbtith hepnpiwghnG-nbtuwjwl htmwgnunipjnib

U. Qwpnipjnifyul b b, GwhjlwGjud
Udthnthnid

Jtumwgnuynmd £ gqhGipuguwo qunulh pwlGwih thnfuwGuyng YhaGuwswhwlywl
hwiwuwpgp: ‘Lhpdmoyt) L qunulhph £ hwuwGbih wpugnipyniG Gnp hwujugnipymGn,
nnG pnhwlpuglnid £ hqGuumtGyngh U dhitduh [1] nuuntdiGuuppwo qunuGhph hwuwGbih
wpwqgnipjul qunuthwpp: Guwnmgylp GG qununGhph £ hwuwlbh wnwybjugnG
wpwqnipjul yYtphG U uwmnphlG qGwhwwmwlwGltpp: Gpp £ — 0, unwgwo
qiwhwwnwlwGitph vwhiwGGbpp hwdpGynd G6 LW hwJwuwp GG [1]-nd uvnwgw o qununGh
pwlwnithwuwlbh wpwgnipyjul vhowagni)G wpdbphG:
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NHu(popManiOHHO-TEOPETUUECKUM aHaAu3 OHMOMETPUYECKOM
MOAEAM paclpeAeAeHUs] CTeHepUPOBAHHOI'O
CEKPETHOI'0 KAIYa

M. Apytionas u H. [latireBansan

AnHoTanus

PaccmaTpuBaeTca OuomeTpuuecKasgs CUCTEMa paclpeAeAeHUus CTeHepHUPOBAHHOTO
CEKpPEeTHOTO KAIOUa. BBopuTCA HOBOe MOHATHE [-AOCTHKUMOMN CKOPOCTH CEKpPeTa,
KOTOpO€e $SBAdeTCA O0OOIleHneM AOCTUKHUMOM CKOPOCTH CeKpeTa, W3Y4eHHOU
HUrnatenko u Buaemcowm B [1]. [TocTpoeHB! BepXHAd U HUKHAATPAHUIIBIHAUOOABIIIEN
E-poctmrxkumon ckopocTu cekpera. Korpa E — 0, IpeAeABIIOAYYEHHBIX I'DAHUI]
COBIIAAQIOT C HAUOOABIIEN AOCTUJKUMOU CKOPOCTBIO CEKPETHOI'O KAKOYA, IIOAYYEHHOU
B [1].



