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Abstract

The subset A of the group G is called zero-free if the equation x4y + z = 0 has no
solutions in the set A. The upper and lower estimates were obtained for the maximum
cardinality of the zero-free set in an Abelian group, and the asymptotic behavior of
the logarithm of the number of zero-free sets in an Abelian group was established.
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1. Introduction

Let G be a set with a certain addition operation on it. The subset A C G is called sum-free
(SES) if the equation x + y = z has no solutions in the set A. The family of all SFS in G
we denote by SF(G). For natural numbers m and n the set of natural numbers z, such that
m < z <n, we denote by [m,n].

In 1988, P. Cameron and P. Erdos [1] assumed that SF([1,n]) = O(2"/2). In particular,
they proved that there exist constants ¢y and ¢; such that |SF([[n/3],n])| ~ c;2™/? for even
n, and |[SF([[n/3],n])] ~ 122 for odd n.

N. Calkin [2] and, independently, N. Alon [3] proved that! log |SF([1,n])] < (n/2)(1 +
o(1)).

The proof of the Cameron-Erdos hypothesis and the asymptotic behavior of the number
of SF'S in the interval [1, n] were found by Sapozhenko [4] and, independently, by B. Green [5].
It is proved that |SF([1,n])| ~ ¢(n)2"/2, where the constant c¢(n) depends on the parity of
n.

In 1991, N. Alon [3] proved that the number of SF'S of an arbitrary finite group does not
exceed 27/2°(") Further, the given result became more accurate for different subclasses of
finite Abelian groups.

In 2002, A. A. Sapozhenko [6] and, independently, Lev-Luczak-Schoen [7] obtained the
asymptotics of maximum possible number of SF'S for finite Abelian groups containing at
least one subgroup of index 2. The group of residues modulo n is denoted by Z,,.

In 2002 V. Lev and T. Schoen [8] proved that if p is a sufficiently large prime number,
then the following estimates are true:

21025 (p— 1)(1+ O2°)) < |SF(Z,)| < 2/,

thereinafter log z = log, =
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where €, and e, are positive constants.

In 2005, B. Green and 1. Ruzsa [9] using the Fourier transform, obtained the asymptotics
of the logarithm of the number of SFS in finite Abelian groups. They proved that for any
finite G Abelian group log |SF(G)| ~ A(G) is true, where A\(G) is the maximum cardinality
SFS in G.

In 2009, A.A. Sapozhenko [10] obtained the asymptotic behavior of the number of SFS
in the groups of prime order.

Theorem 1: For any o € {—1,1} there exists a constant c,, such that for any ¢ > 0 there
exists a natural number N, such that for any simple p of the form p = o (mod 3), such
that p > N, the following inequalities are performed:

|SF(Z)]
Co, (p — 1)2L(p—2)/3J

1< <l+e.

As to the problem of finding the maximum cardinality SF'S in an Abelian group, it is
finally resolved.

In 1969 H. P. Yap and P. Diananda [11] got the upper and lower estimates of maximum
cardinality SFS in an Abelian group, showing that

Theorem 2: Let G be an Abelian group of the order n. Then the following statements are
true:

(i) if n has a prime divisor comparable with 2 modulo 3, then

A(G)—%.<1+3>,

p

where p is the smallest prime divisor of n, comparable to 2 modulo 3,

(i) of it does not have prime divisors comparable with 2 modulo 3, but 3|n, then

MG) =z,

(ili) 4f all prime divisors of n have the formp =1 (mod 3), then

ﬁ'<l/_1>§)\(G)§n_1,
3 v 3

where v is the exponent of the group G.

The final solution of the problem of finding the maximum cardinality SF'S in an Abelian
group was obtained in [9] by B. Green and I. Ruzsa in 2005.

Theorem 3: Let G be an Abelian group of the order n. If n is divided only into prime p = 1
(mod 3), then the following equality holds:

Ao =

where v is the exponent of the group G.
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The subset A of the group G is called zero-free (ZFS), if it has no solutions to the equation
r+y+z2=0. (1)

The family of all ZFS in G is denoted by ZF(G), and by u(G) the maximum cardinality ZFS
in G. In case ZFS are missing in an Abelian group, then either the exponent of the group is
equal to 3 (item (iii) of Theorem 5), or the group consists only of a zero element (item (iv) of
Theorem 5 for n = 1). In these cases it is supposed that |[ZF(G)| = 0 and p(G) = 0. In this
paper, using the methods of [9] the asymptotic behavior of the logarithm of the number of
ZFS is set in an Abelian group, and also obtained the upper and lower bounds of maximum
cardinality ZFS in an Abelian group. In particular, the following two theorems are proved:

Theorem 4: Let G be an Abelian group of the order n. Then the following equality is true:
log |ZF(G)| = (G) + o(n).

Theorem 5: Let G be an Abelian group of the order n with the exponent v. Then the fol-
lowing statements are true:

(i) if n has a prime divisor comparable with 2 modulo 3, then

where p s the smallest prime divisor of n, comparable to 2 modulo 3;

(i) if n has no prime divisors p=2 (mod 3), but 3|n and v > 3, then

v

n v—3 n

— . < < —:

L (52) <uie) < 5
(iii) iof v = 3, then

(iv) if all prime divisors of n have the form p=1 (mod 3), then

n v—1 n—1
—. < < .
3 ( y >—“(G)— 3

2. The Asymptotics of the Logarithm of the Number of Zero-free Sets in an
Abelian Group

2.1 Definitions and Auxiliary Statements

Let G be an Abelian group of the order n. The character of the group G is called a mapping
v : G — C such, that for any € G holds |y(z)] = 1 and v(z + y) = v(x)y(y). The set of
all characters of the group G is denoted by I'. Note that I forms a group with the operation
(m%72)(z) = 1 (x)y2(x). Let f: G — R. The Fourier transform f is the function f:G—=cC,
defined by the equality f(7) = ZG f(@)v(x).

Te
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For the proof of Theorem 4 use the method of granularization. The essence of this method
is that for the evaluation of the cardinality of the set ZF(G) the family F, of the so called
“grains” F' € F is constructed, such that every element of the set ZF(G) is contained in
some grain F' of the constructed family F, wherein log |F| = o6(n), and in each grain F' € F
there are 6(n?) solutions of the equation (1), that is, a family of subsets of the group G is
constructed having the following properties:

o log|F| = o(n),
e for any A € ZF(G) there exists a grain F' € F such that A C F,
e in each grain F' € F there exist o(n?) solutions of the equation (1).

There are two types of a granular structure that we will consider.

The union of cosets of the group G of some subgroup of order not less than L is called
L-granular of coset type.

Let L be an integer and d € G, wherein ord(d) > L, where ord(d) is the order of the
element d. Consider the subgroup G, generated by the element d, and divide each of its
cosets into |ord(d)/L| progressions of the form {z +id | 0 <i < L — 1} and one "residual”
set of the cardinality less than L. For each d € G fix one such partition. The union of the
obtained progressions is called L-granular of progression type.

The proofs of the following two lemmas are available in [9].

Lemma 1: Suppose that n is larger than some absolute constant and that L < \/n. Then
the number of subsets of an Abelian group G of the order n, which are L-granular (of either
coset or progression type) is at most 2°V/L.

Lemma 2: Suppose that p is smaller than some absolute positive constant, and that n is
sufficiently large. Then the number of subsets of an n-element set of cardinality at most pn
is not more than 2™?.

The proof of the following lemma can be found in [12].

Theorem 6: Let m > 3 be a fived integer, and suppose that Ay, ..., A, are subsets of
an Abelian group G of the order m, such that there are o(n™ ') solutions to the equation
ap+...+a, =0 with a; € A; for alli. Then we may remove o(n) elements from each A; so
as to leave sets A}, such that there are no solutions to a) + ...+ a,, = 0 with a; € A} for all
i.

2.2  Granularization

The essence of the following lemma is that for every A € ZF(G) “a suitable” grain is
constructed.

Lemma 3: (Granularization) Let G be an Abelian group of the order n, and A € ZF(G),
€€ (O, %) , L and L' be positive numbers satisfying the inequality

n> L (4L/e)?" "

Then there is a subset A’ C G such that
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(i) A’ is either L-granular of progression type, or it is L'-granular of coset type,
(ii) A\ A <en,

(iii) A’ contains not more than en? solutions of the equation (1).

Proof: Assume § = £*/192. First prove that there is a subset P C G, satisfying the
following conditions:

(A) P is either a progression of the form {id | L —1<i < L —1}, and ord(d) > 2L/e, or
a subgroup of the group G of an order not less than L/,

(B) for any B C G and v € T the inequality |B(v)(1 — g(7))| < dn holds, where g(v) =
|P|™' = ~(p), and B(z) is the characteristic function of the subset B.
peP

Let Ry be the set of characters 4 such that |B(v)| > 6n/2, and T'y be the subgroup of
the group I', generated by the set R;. Consider the subgroup G of the group G

Gr={z€G|~(x)=1forany v € I' }.
Consider two cases:

1) Let |G| > L. Assume P = (. Since g(v) € [~1, 1] for v € I'\I'; obtain that |B(v)(1—
9(7))] < 2|B(y)| < 26n/2 = dn, and for v € I'y the equality |B(v)(1 — g(y))| = 0 is
true.

2) Let |G| < L'. Choose such d, that if the progression P = {id | L —1 < < L — 1},
is taken as P then the requirements of the items (A) and (B) will be satisfied. Note
that when v € I'\I'y, the item (B) is executed. Now estimate the value of 1 — g(7).
Fix v € I" and denote arg~y(d) € [—m,7) by . Thus, we have

1 L—1
0<1—gy)=1- > (cosjf+isingf) =
2L -1, %7,
1 2 Lo 2L — 2 2 Lol
:1— —_— y pr— —_— y pr—
2L —1 2L—1JZICOSJB oL —1 2L—1JZICOSJB
“ 1 A L(L—1) (L3)?
= 1— 13) < i3)2 = N 32 .
2L—1j:1( COSJB)_zL—1j:1(JB) e s

Note that if for all v € Ry there occurred |argy(d)| < L=11/66n/|B(7)|, then the fulfill-
ment of the item (B) was completed. Also note that to satisfy the condition ord(d) > 2L /e
it is sufficient that for some v € I' there occurred

e mE
2 - _ = —,
0 < |argvy(d)| < 27 5= T

Show that such d ¢ G can be chosen that for all v € R; the following is true:

|arg v(d)| < lmin (mz, &) :
L |B(7)I
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Note that if dy, dy € G belong to different cosets of G on GG, then there exists a character
v € Ry such that v(dy) # v(dy). Thus, for the existence of d = d; — dy ¢ G;, with the
restriction |arg(y(d))| < m, it is enough that the amount of cosets with respect to Gy
exceeds [] (1+ |27/n,]), that is

a/el> 1 (1+Lmax (;V%)) |

YER1

Note that the following inequalities are true:

YER: YER:

< (4L)l H max (é’ |§6(7;Y)| ) .

YER1

By the Parsevals identity, we have

S IBMIP=n) |B(x)] =n|B| < n

vyel zeG

Hence, from the definition of the set R, it follows |R;| < 462. Also note that the following
inequality max(z,y) < 2¥ is true for # > 1 and y > e'/¢. Thus, we obtain

(4L)|R1| H max (é’ @%ﬂ) < (4L)45—2 (H _— (8%’ (%7?)2))1/4 _

YER: YER:

o (46%02)1 37 [B(y))? P o
< (4L () < (L)Y < (4L /e)¥ <%§|G/G1|.

Thus, the existence of the subset P C G, satisfying the requirements of the items (A) and
(B), is proved. Also note that since by construction P is either a subgroup or a progression
symmetric with respect to 0, then g(y) = |P|™" 3 7(p) is a real number in the interval

peP

[—1,1].
Now construct a set A’. Consider two cases:

1) If P is a subgroup, then as A’ take the union of cosets G on P, containing at least €| P|
elements of the set A. Then we have
n

A\ A <elP|- % =
P

En.

2) If P is a progression with the difference d, then consider the granular structure of pro-
gression type with the difference d, and as A’ take the union of progressions containing
not less than e /2 elements A. Note that not more than nL/ord(d) elements of ”resid-
ual” sets are not included in any of the grains. Then, considering that ord(d) > 2L/e

obtain I I
el n n
AVA < —. = < en.
AN AT = SR ord(d) — N
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The requirements (i) and (ii) of the lemma are satisfied in both cases.

Let us prove the point (iii). Consider the function a;(z) = |P|7'[A N (P + z)|. By A(z)
denote the characteristic function of the subset A of the group G. Note that for the Fourier
transform of the function a; () the following correlation is true () = g(7)A(y). Indeed,
considering that P = —P we have

&1(7):Za1(ﬂv)”y($ |P|Z|Aﬂ (P + 2)|y(x ZZ"}/(L— —

zeG zeG aeApeP

“mi(570) (5 o0) - m (5 >(;;v )=o)

Also note that if f : G — R, and f is a Fourier transform of the function f, then the
following equality is true:
1
> S flan) - flen) =~ 3 (

z1t+z2+23=0 n/WEF

Indeed, considering that
Z (z) = {O, ifz#0
T =\, ifz =0,

we have
xﬁx;x :Of(iﬂl) flwa) - flas) = %x c;u ; ; (”y (x1 4+ 29 + 23) f21) - f(22) - f(x3)> =
23 (S rsen) - (X ateaitm) - (3 atwion) - 3 3 (7).

Consider two cases: v € A" and = ¢ A'.

Let x € A'. If P is a subgroup, then = + P contains at least ¢|P| elements of the set A,
and if P is a progression, then x + P contains the grain of A’, comprising x, and therefore
|(z + P) N A| > ¢|P|/4. In both cases a;(x) > /4 = A'(z)/4.

In case if x ¢ A’, then a;(z) > 0= cA'(z)/4.

Thus, considering that |A(7y)| < ZA |v(x)] = |A| <n,and A € ZF(G) we have

e

# {solutions of the equation (1) in A’} =

3

= > A’($1)'A'($2)'Al($3)§4—3' Yo ai(m) - ai(@e) - ai(w;) =

TS (o) o) o) - A)- Alw) - Al -
- % ’ % 2 (@) = (Am)*) = % 2 (A ((90))* = 1) <
< S AP - G0 < 55 max A~ 9] 3 IA

yel’ yel’
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192 192
< ——-6n-n|A| < —=-6-n*=en’.
ned g3
Lemma 3 is proved. B
The existence of a family of grains is proved in the following theorem.

Theorem 7: Let G be an Abelian group of the order n, and n be sufficiently large. Then
there exists the family F of subsets of the group G, satisfying the following conditions:

(i) log|F| < v2n(logn)~ "/,
(ii) for each A € ZF(Q) there exists F € F such that A C F,

(iii) every F € F contains not more than n?(logn)~/? solutions of the equation (1).

Proof:  Assume that L = L’ = |logn| and ¢ = (logn)~'/%/4. Note that for sufficiently
large n such a choice of parameters satisfies the condition of Lemma 3. Thus, for every set
A € ZF(G), applying Lemma 3, construct the set A’. Assume that F = {AU A | A €
ZF(G)}. The item (ii) is executed by construction.

Hence and from the item (ii) of Lemma 3 it follows that the cardinality of the family
F does not exceed the number of sets that are the union of L-granular with some subset
of the group G, of size at most en. Thus, from Lemmas 1 and 2 it implies that log |F|
< 3n/L + ny/e, which for sufficiently large n does not exceed 2n./c.

Also note that while adding an element to the set, there can be formed not more than
3n new solutions of the equation (1). From this it follows that in each set F' € F there exist
not more than en? + 3en? = n?(log n)~1/? solutions of the equation (1).

Theorem 7 is proved. W

2.3 Proof of Theorem 4

Let G be an Abelian group of the order n. By Theorem 7 there exists a family F of subsets
(grains) of the group G, satisfying the conditions (i)-(iii). Let F' € F. Fixing F' and applying
Theorem 6 at A; = Ay = A3 = F' we obtain that there exists F” C F such that |F'\ F'| = o(n)
F' € ZF(G). Hence, it follows that |F| < u(G) + o(n), where p(G) is the maximum size of
the set from ZF(G). The fact that log |F| = o(n) (item (i) of Theorem 7) we find that the
number of subsets of all the sets of the family F, does not exceed 2#(@)+o(m)

By virtue of item (ii) of Theorem 7 all the sets from ZF(G) are subsets of some set of
the family F. Hence it follows that

log |ZF(G)| = (@) + o(n).

Theorem 4 is proved.

3. The Upper and Lower Estimates for the Maximum Size of a Zero-free set
in an Abelian Group

3.1  Definitions and Auxiliary Statements

In this section we find the upper and lower estimates of the value ;(G). For this the following
auxiliary results are needed.
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Let G be an Abelian group and A, B be non-empty subsets of the group GG. Assume that
A+B={a+b|acAbeB},2A=A+ A, and —A={—-a | a € A}. Let A € ZF(G).
The subset A is called mazimal, if it is maximal by inclusion, i.e., for every x € G'\ A the
set (AU{z}) ¢ ZF(G).

Definition 1: Let A be a non-empty subset of an Abelian group G. The subgroup H(A) =
{g€ G | g+ A= A} is called a stabilizer of the set A.

Theorem 8: (Kneser, [13]) Let A, B be non-empty subsets of an Abelian group G, and H
be a stabilizer of the set A+ B. Then

|A+B| > |A+ H|+ |B+ H|—|H]|.

Lemma 4: Let G be an Abelian group, A € ZF(G), and H be a stabilizer of the set 2A.
Then (A+ H) € ZF(G).

Proof:  Assume the contrary, and let a; +hy +as + ho +as+hg = 0 for some a1, a2, a3 € A,
and hq, ho,hs € H. Since 2A + H = 2A, then obtain 0 = a; + hy + ay + hy + a3 + hy =
a1+a2—|—a3—|—(h1+h2+h3) = a1+a2—|—a3+h4 = a1+(a2+a3—|—h4) = a; + a4 + as,
where a4, a5 € A, and hy € H. The latter contradicts the fact that A € ZF(G), i.e., the set
(A+ H) € ZF(G).

Lemma 4 is proved. B

Lemma 5: Let G be an Abelian group and the subset A of the group G be a maximal ZF'S,
and H be a stabilizer of the set 2A. Then the set A is a union of cosets of the subgroup H.

Proof:  Since the subset A of the group G is a maximal ZFS, then by Lemma 4: we have
A = A+ H, that is the subset A is a union of cosets of the subset H.
Lemma 5 is proved. B

Lemma 6: Let G be an Abelian group. Then the following statements are equivalent:

(i) the exponent of the group G is divided into d;

(i) there exists a subgroup H of the group G such that the quotient group G /H is isomor-
phic to the cyclic group Zg.

Lemma 7: Let G be an Abelian group of the order n, and d is a divisor of the exponent
group G. Then the following inequality holds:
WG) = plZa) - =
Proof: Since d is an exponent divisor of the group G, then by Lemma 6: there exists
a subgroup H of the group G such that the quotient group G/H is isomorphic to the
cyclic group Zy. Let ¢:G — G/H be a canonical homomorphism, and K € ZF(G/H).
It is easy to see that the set ¢y '(K) € ZF(G), and [¢"'(K)| = |K|- 2. Assume that
K = {a1+ H,as + H,...,a;, + H}, where ay,...,ay ¢ H(H ¢ K), and k = |K|. Let
v Y K) ¢ ZF(G). Without loss of generality assume that for some hy, he,hy € H the
following equality holds: a; + hy + as + hs + a3 + hs = 0. From this equality it follows
that a; + ax + a3 € H, i.e., for elements (a; + H), (ay + H), (a3 + H) € K the following
correlation holds: (a; + H) + (as + H) + (a3 + H) = H. The latter contradicts the fact that
K € ZF(G/H), i.e., the set v 1K) € ZF(G).
Lemma 7 is proved. B
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3.2  Proof of Theorem 5

First prove the upper estimates. Let A C G be a maximal ZFS. Since 2AN(—A) = () (follows
from the fact that A € ZF(G)), then we obtain

12A] + |A| < n. (2)
From Theorem 8, Lemma 5 and the inequality (2) it follows that
3|A[ = [H| < n, (3)

where H is the stabilizer of the set 2A.
From the last inequality and the fact that |A| is divided into |H| (follows from Lemma
5) we find that

A1< 11 [5( + 1) ()
Thus, we have i
+1] n
u(@) <mas (|5=] 7). (5)

It is easy to see that the last inequality is equivalent to

(1+ i), the least prime divisor n of the form p =2 (mod 3);
u(G) < no prime divisor n of the form p =2 (mod 3), but 3|n;

n — 1), all prime divisors n have the form p =1 (mod 3).

Wl |3 w(3
—~

The upper estimates are proved. Now prove the lower estimates.
(i) Let p be the least prime divisor n, of the form p = 2 (mod 3). Then there exist a
subgroup H of the order n/p, and the element g of the order p such that

G=HUH+g)U...UH+(p—-1)9).
Define the set A by the equation
A=H+g9)UH+49)U(H+Tg)U...U(H+ (p—1)g). (6)
1

It is easy to see that the set A is a ZFS in the group G, and |A| = % = By definition
ZFS Ae ZF(G)if 0 ¢ A+ A+ A, which is equivalent to 24 N (—A) = (). Considering that
A = —A it is sufficient to show that 2AN A = (). Indeed, from (6) we have 2A C |J; (ig+ H),
where i # 1 (mod 3), but since A = {J; (jg + H), where j = 1 (mod 3), then it follows
that 2ANA = 0.

(ii) Note that for any integer m > 1 the interval [1,m — 1] is a ZFS in the cyclic group
Zsm. Hence and from Lemma 7 the lower estimate follows.

(iii) Let the exponent of the Abelian group G be equal to 3. Since for any g € G the
following equality holds g + g + g = 0, then in the group G the ZFS are missing. Therefore,
one can assume that u(G) = 0.

(iv) Let v be an exponent of the Abelian group G of the order n. Then there exists a
subgroup H of the order n/v, and an element g of the order v such that

~—

G=HUH+g)U...U(H+ (v—1)g).



V. Sargsyan 15

Define the set A by the equation
A=(H+29)U(H+59)U(H+8g)U...U(H+ (vr—2)g). (7)

It is easy to see that the set A is a ZFS in the group G, and |A| = %51 - 2. Considering
that A = —A it is sufficient to prove that 2A N A = (). From (7) we have 24 C U, (ig + H),
where @ # 2 (mod 3). And since A = UJ; (jg + H), where j = 2 (mod 3), then we find
that 24N A = 0.

Theorem 5 is proved.
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Onnjhg wquu puquinipniGGtnt Uptpjwl fudpbpnd
d.. UwpquyuG

Udthnthnid

G hwiph A tGpwpwqinipjnilp Yngynid & qunjhg wquw, tipk 2+y = z = 0 hwjwuwpnuip
sniGh (nond A puquinipjul dhg:

Wyhnwunmwbpnid unwgytiy GG Upbpjwl fudph qpnyhg wquunm pwuqinipjul wnwytjwagnt)i
hgnpnipjwl ytphG L vnnphlG qwhwwnwywGGhpp, hGywbu Gwlb Upkpjwl fudph qpnjhg
wqwu pwqunipniGitnh pwlwyh nquphpiwjwl wuhiyunnunhy qlwhwnwlwin:

MHo>XecTBa, CBOOOAHEIE OT HYyASI, B a0eAeBEIX Ipynnax
B. Caprcan

AnHoTanuys

[TopMHOKXECTBO A 5AeMeHTOB Ipynnbl G Ha3bIBAaeTCS CBOOOAHBIM OT HYASI, €CAU
ypaBHeHUe = + y + 2z = 0 He MMeeT pellleHHuM B MHOKecTBe A. B paboTe mOAyueHE
BepXHUE M HUWKXHUE OIeHKNW MaKCHUMAAbHOUW MOITHOCTA MHO’KEeCTBa, CBOOOAHOTO OT
HYAsI, B abeAeBOM IrpyIIie, U YCTaHOBA€HAa aCMMIITOTHKA AOTapudMa YUCAa MHOJKECTB,
CBOOOAHBIX OT HYAs, B abeAeBOM TpyIiIe.



