
Mathematical Problems of Computer Science 43, 62--75, 2015.

Structuring of Goals and Plans for Personalized Planning
and Integrated Testing of Plans

Sedrak H. Grigoryan

Institute for Informatics and Automation Problems of NAS RA

e-mail: addressforsd@gmail.com

Abstract

We study competition problems defined in the class where Space of
Solutions is a Reproducible Game Tree (RGT). Personalized Planning and
Integrated Testing algorithms were developed for searching optimal strategies
in RGT problems. Hereinafter we develop structures for plans and goals in
PPIT, construct strategy searching algorithms by plans and demonstrate their
adequacy for chess endgame examples.

 Keywords: Strategy, Plan, Competition, Chess, Goal.

1. Introduction

1.1. In [2] the variety of problems was identified as a class where Space of possible Solutions
can be specified by Reproducible combinatorial Game Trees (RGT) and unified algorithms and
software were developed, RGT Solver, for elaborating optimal strategies for any input specified
problem of the class.
The RGT is a spacious class of problems with only a few following requirements to belong to:

- there are (a) interacting actors (players, competitors, etc.) performing (b) identified
types of actions in the (c) specified moments of time and (d) specified types of situations
- there are identified benefits for each of the actors
- the situations the actors act in and transformed after the actions can be specified by
certain rules, regularities.

Many security and competition problems belong to RGT class. Specifically, these are network
Intrusion Protection (IP), Management in oligopoly competitions and Chess-like combinatorial
problems, many other security problems such as Computer Terrorism Countermeasures, Disaster
Forecast and Prevention, Information Security.
1.2. Unified RGT specification of problems makes possible to design a unified Solver for the
problems of the class.

Solver of the RGT problems is a package [7] aimed to acquire strategic expert knowledge to
become comparable with a human in solving hard combinatorial competing and combating
problems. In fact, the following three tasks of expert knowledge acquisition can be identified in
the process:

62

mailto:addressforsd@gmail.com

S. Grigoryan

63

- construction of the package of programs sufficient to acquire the meanings of the units
of vocabulary (UV) of problems
- construction of procedures for regular acquisition of the meanings of UV by the
package
- provision of means measuring the effectiveness of solutions of RGT problems.

The limitations in designing effective package were formulated as follows:
- be able to store typical categories of communalized knowledge as well as the
personalized one and depend on them in strategy formation
- be able to test approximate knowledge-based hypothesis on strategies in questioned
situation by reliable means, for example, using game tree search techniques.

The second task of acquisition of complex expert knowledge was planned to solve in the
following two stages:

- proving the sufficiency, i.e. proving that Solver, in principle, can acquire the meanings
of expert knowledge of an intensive RGT problem, e.g., for the kernel RGT chess game
- ensuring regularity, i.e. to develop procedures for regular acquisition of RGT problems
and meanings of UV of those problems.

1.3. Regular improvement of Solver by expert knowledge is studied for chess, where the
problems of knowledge representation and consistent inclusion into the programs stay central
since the pioneering work by Shannon in 1950.
Players indicate and communicate chess knowledge by units of vocabulary and are able to form
corresponding contents. Whether it is possible to form equal contents by computers remains
questionionable.

The approaches to regular inclusion of chess knowledge into strategy formation process are
described in [5]. Then try to bring common handbook knowledge to cut the search in the game
tree. The frontiers of those approaches can be revealed by understanding the role and proportion
of the personalized chess expertise compared with the common, communicable one.
1.4. Studies of knowledge-based strategies in the Institute for Informatics and Automation
Problems of the National Academy of Sciences of the Republic of Armenia have been started in
1961 and noticeable results were published in the Laboratories of “Mathematical Logic”
and “Cognitive Algorithms and Models” led by I. Zaslavski [1] and E. Pogossian [2, 3, 6].
Designed and developed PPIT (Personalized planning and integrated testing) [2, 6] algorithms
indicate the optimal strategy by effective usage of expert knowledge. The algorithms had been
tested for a variety of problems, for chess, Reti and Nodarishvili etudes [6], for intrusion
protection problems [3]. In the PPIT algorithms predefined set of knowledge was used which
was strongly specific to the solving problem and did not provide a generic and regular way to
define knowledge and reveal strategies from them. This approach reduced the abilities of
algorithm execution, since it required writing a new program to solve each certain situation and
each of them was useful only for the given situations, so the program developed for Reti etude
could be used only to solve this etude.

In the RGT Solver strategy searching algorithms were not yet suggested to provide general
solution while plans used in PPIT algorithms are only generic descriptions of strategies.
In the following we describe planning-based strategy searching algorithms within the frame of
Solver package.

In the first section we consider structuring of plans and goals. We need these structures for
strategy generation algorithms. In the second one the algorithm that searches for a strategy to
accomplish the plan and in the last section an example demonstrating adequacy of structures and
strategy searching algorithm are described.

Structuring of Goals and Plans for Personalized Planning and Integrated Testing of Plans 64

2. Contributing to Personalized Planning and Integrated Testing (PPIT)
Algorithms

2.1. State of the Art
2.1.1. The Basics of PPIT

For the strategy construction we use PPIT algorithm, which creates strategies using plans. Plans
are certain general descriptions of strategies. For some positions in chess plans might be
occupying the center or the corners of the board. Each plan represents a hierarchy of goals.
Those are the goals which a player tries to achieve in current situation while playing by the plan.
The essences of the plans are to select the goals which get the maximal profit.
The PPIT program was designed as a composition of the following basic units:
Reducing Hopeless Plans (RHP)
Choosing Plans with Max Utility (CPMU)
Generating Moves by a Plan (GMP)
Given a questioned position P1 and a store of plans, RHP recommends to CPMU a list L1 of
plans promising by some not necessary proved reasons to be analyzed in P1. The core of the unit
is knowledge in classification of chess positions allowing identifying the niche in the store of
knowledge the most relevant for analysis the position. If the store of knowledge is rich and P1 is
identified properly it can provide a ready-to-use portion of knowledge to direct further game
playing process by GMP unit. Otherwise, RHP, realizing a reduced version of CPMU, identifies
L1 and passes the control to CPMU.
CPMU recommends to GMP to continue to play by current plan if L1 coincides with list L0 of
plans formed in the previous position P0 and changes in P1 are not essential enough to influence
the utility of current plan.
 If changes in P1 are essential, CPMU analyzes L1 completely to find a plan with max utility and
to address it to GMP as a new current plan. Otherwise, CPMU forms a new complementary
list L1/ L1*L0 from the plans of L1 have not been analyzed, yet, in L0, finds a plan with the best
utility in that list and comparing it with the utility of the current plan recommends one of them
with a higher utility.
To calculate utilities of the attribute, goal and plan type units of chess knowledge, we represent
them as operators over the corresponding arguments as follows:
 for basic attributes the arguments are characteristics of the states of squares in the

questioned positions, including data on captures of pieces, threats, occupations, etc.;

 for composed attributes, including concepts and goals, the arguments are subsets of values
of basic attributes relevant to the analyzed positions;

 for plans the arguments are utilities of the goals associated with the realization of those
plans.

Utilities of arguments of basic attributes are calculated by the trajectory-zones based technique
(TZT) [4, 6] originally suggested to estimate utilities of captures only of the opponent pieces. For
example, to choose capture with max utility TZT chains the moves to each piece of the opponent
(trajectories) without accounting possible handicaps for real capturing then using all available
knowledge “plays the zones” of the game tree induced by the trajectories followed by estimation
of their values to choose the best.
The utility of units of knowledge the operators assemble from the utilities of the corresponding
arguments in some predetermined ordering. Thus, each operator can provide by a request the
arguments which are analyzed at the moment.

S. Grigoryan

65

For example, realizing the current plan the shell can determine the goal in the agenda which in
turn determines basic attributes to be considered followed by indication of the arguments of
those attributes.
Utility estimation operators rely on the principle of integration of all diversity of units of
knowledge the shell possesses at the moment. In fact, the operators represent a kind of expert
knowledge with a variety of mechanisms and leverages to make them better. Along with
dynamically changed parametric values of pieces they can include rules, positions with known
values and strategies to realize them, other combinatorial structures. To estimate expected
utilities the operators take into account the cost of resources necessary to get them.

2.1.2. What has been done

In the initial C++ realization the units of knowledge are realized as OO classes with specialized
interfaces for each type of knowledge and one common for the shell itself.

Fig 1. Reti and Nodareishvili etudes.

The Solver is experimented in solving Reti and Nodareishvili etudes (Fig 1.) required by
Botvinnik[4, 5] intensive expert knowledge-based analysis not available to conventional chess
programs.
Experiments with these etudes proved that the shells, in principle, can acquire the contents of
units of vocabulary used by chess players and allow tuning them properly to solve expert
knowledge intensive chess problems.
The initial implementation of the PPIT algorithm used knowledge units that were hardcoded as
C++ language classes. The approach didn’t allow adding expert knowledge in a regular way –
there wasn’t any regular method for formalization and representation of the expert knowledge.
To achieve a regularity of expert knowledge acquisition for RGT problems a graphical language
similar to the UML, using which experts have possibility to formalize and insert meanings of the
communicable knowledge into the Solver.
The constituents of the Interface have been designed for specifying both game attributes and
rules. It was designed to acquire an expert knowledge in a form of patterns (abstracts). Abstracts
are used to define classes as well as operations, thereby providing a considerable uniformity of
the structure of the language [7, 10].

2.1.3. What We are Going to Do

We are developing algorithms and structures of strategy construction in the Solver package by
putting the stress on GMP module of PPIT algorithms first. So for the current state of
development we suppose that we already have plans defined in the Solver and we just need to
execute the defined plan. Plans are being defined by experts.
In PPIT Plan is defined as a set of Goals. We will describe their definitions below.

Structuring of Goals and Plans for Personalized Planning and Integrated Testing of Plans 66

As mentioned above the third module of PPIT GMP chooses the best move from a plan. We
meet the following issues

1. Goals’ and Plans’ structures need to be generic and need to allow definition of the goals
independent of the problems they relate to.

2. An algorithm needs to be developed to search for strategies using defined plans and
goals. The algorithm needs to be generic and allow constructing strategies for any of
defined plans.

2.2. Structuring Goals and Plans

As we used to do before in our research, now we’re going to apply all the defined and developed
to the chess as a classical example of RGT game.
The goal in general needs to have the following structure.

A. It needs a preCondition situation, for which this goal is applicable, because there are
situations where a goal is not achievable, e.g., if the situation contains only two kings and
a pawn, a goal like “make check with the queen” can’t be applied. This basically defines
the pattern of situations where goal is meaningful. Note that for some goals the
preCondition can be any situation, so this is not obligatory to define some pattern in
preCondition.

B. It needs to have a postCondition situation. This is the situation which appears when the
goal is achieved, e.g., if the goal is “make check with the queen”, after it is achieved the
opponent king is under check of queen in the given situation, this describes the
postCondition situation. This defines the pattern of achieved by the goal situations.
Similar to preCondition, postCondition also can be any situation.

C. For some goals the depth of game tree needs to be more than one move, e.g., if the goal is
“make perpetual check”, we need to construct a tree and make several moves to see if this
goal can be achieved.

D. Goals need to have some evaluation. There are goals like “put mate” or “avoid stalemate”
where there are only two evaluation states, which indicate whether the goal is achieved or
not, but there are some goals which do not show “an achieved” or “not” result, they show
how good the goal is achieved, e.g., a goal “keep king closer to the opponent king” goal
does need some criterion to define that the lesser distance between kings is, the better is
the goal evaluation. For that purpose we define evaluator, which is a set of prioritized
criteria that are being defined to evaluate the goal. For the above example only one
criterion exists and it is the distance between two kings.

S. Grigoryan

67

Fig 2. The structure of goals, their inputs and outputs.

From the described above we reveal that the goal consists of preCondition and postCondition,
which are situations (in the Solver we define these situations as composite abstracts), depth of
three, which is a number that defines how deep the tree can be constructed for checking if the
postCondition is achieved (by default it is 1) and the evaluator which evaluates how good the
goal is achieved.
Also one important point we need to define the concept of absolute goal (which is just a flag on
the goal), like mate in chess and indicates that the game is over.
The plan structure is basically defined in previous works of our team and nothing more is
required. It consists of prioritized goals.

2.3. Searching Strategies by Plans

Now when we have the structures of goals and plans, we can define how the algorithm should
work to find the best move from the given plan.
As described above the goal and the plan are completely generic in their structures regardless of
the problem they solve in RGT class and can be defined by a user, not only injected initially for a
certain problem.
The algorithm we have developed to execute the plans and to choose the best action by the
defined plan is the following.
As said above plan is a set of prioritized goals, we need to run over the goals and find the move
which best satisfies the highest priority goal.
The algorithm initially requires input situation (IS). For IS Solver does matching and finds the
list of active abstracts [8], where there are also actions active in that situation (the actions that are
possible to perform in IS), let’s call the list of active in IS actions <A>. Let’s assume we have
Plan Pl which has G1 to Gn goals in it (G1 has the highest priority and Gn has the lowest
priority). For the given P1 plan, the algorithm will take goals from the highest to the lowest
priority and do the following procedure.

preCondition

postCondition

Depth of tree

Evaluator

Criterion1

CriterionN

List of actions the best relatively to criteria

An input situation The list of permitted actions

Structuring of Goals and Plans for Personalized Planning and Integrated Testing of Plans 68

1. Passing list of actions <Ai-1> (for G1 <A> is passed instead of <Ai-1>). If the list is empty
then nothing can be done for this goal, just returning, else if the list has only one action,
then the list is returned and the procedure is stopped, as nothing to do if only one action
can be done, no need of further processing, we just do the action.

2. preCondition of the goal is checked against IS. If IS satisfies the pattern defined in the
preCondition all actions in the action set <Ai-1> are applied to the IS situation and
postCondition of current Gi is checked to be achieved. The goal is being evaluated by the
criterion defined in the evaluator if there are any and the actions which satisfy the goal
best are being returned in the list <Ai> (this list will be used in the next goal processing).
An important point here is that if the goal is absolute and the list of actions achieving this
goal is not empty, then the procedure is stopped after this step and the list of actions is
returned.

3. If the returned list <Ai> is empty, <Ai-1> list is being used instead, otherwise if the
returned list has only one item in it, the list is just returned and the procedure is stopped.

4. New Actions list is passed to the next goal and the procedure is being done for it from the
beginning (1 to 4).

5. When the procedure is done for all goals or stopped somewhere while performing 1-4
steps, it returns the list of actions, which indicate the best actions to achieve the plan in
the current situation. Any of those actions brings to the best move selection and thus
brings to the best strategy for the given P1 plan.

Any action from the returned list of actions is being selected (we just select the first one) and
applied to the IS. New situation is achieved after opponent’s action, so we already have a
changed situation, a new input situation. The plan execution starts again for the new situation
and a new best move is selected for the plan. The algorithm is stopped when the highest priority
goal is achieved or is not achievable at all (e.g., we have already put mate or no mate can be
achieved), which means that either the strategy for the given plan already worked or cannot be
achieved anymore.

Fig 3. The schema of searching the best moves.

The plan

Goal[i]

The initial
situation

The list of permitted
actions

<Ai>

Matching the situation
to abstracs

<Ai> list processing <Ai> returned
best moves list

Plans

S. Grigoryan

69

3. Testing Adequacy of PPIT for Chess Endgames

3.1. Planning Chess Endgames
3.1.1. Planning “rook against king” endgame

Previously the strategy description language was defined in [9], where exact algorithms were
used to define each plan and its realization. For the demonstration of the language adequacy
“rook against king” chess endgame was described. For the demonstration of our algorithms we
will also consider chess endgames, like “rook against king” or “two rooks against king”.
To simplify the definitions we just assume our color is predefined and is white. We will try to
define only the mate on one direction to make it simpler, the same is done in [9]. Let’s take
vertical direction only for our future definitions. Similarly we will be able to define putting mate
on horizontal direction. Which one to choose vertical or horizontal is a job for another module in
PPIT algorithms expected to be developed in the scope of Solver during the future steps of our
research. Currently it will just construct strategy with the given certain plan.
A plan for the “rook against king” endgame will have the below goals

1. Put mate
2. Avoid stalemate (note that this is quite important because some situations can appear

with stalemate and we need to avoid it)
3. Escape rook from attack
4. Push king to the edge (without putting rook under attack)
5. Make a waiting move when preOpposition appears
6. Bring white king closer to the black king

The definition of each goal is described in details.
1. Putting mate - preCondition is any situation, and postCondition is a situation where

there’s mate, the depth is 1, this is absolute goal. There is no evaluator defined for this
goal.

2. Avoid stalemate - preCondition is again any situation and the postCondition is a situation
where no stalemate appears. The depth is 1 and no evaluator again.

3. Escape rook from attack - the preCondition is “rook under kings attack” abstract, so the
goal is applicable only for situations where the rook is under the opponent king’s attack.
The postCondition is a situation where rook is not under attack and the vertical
coordinate of the rook is not changed. It has a depth value 1 and the evaluator will have
one criterion defined which calculates the distance of the rook and opponent king by
vertical direction.

4. Push king to the edge- preCondition can be any situation and postCondition is “rook is
not under attack” situation and depth is 2. The evaluator has two criteria. First is: moves
of opponent king are closer to the edge are better (this basically means the horizontal
distance of opponent king from the edge is calculated and for each action the value of
criterion is calculated as the highest value of king’s distance from the edge). The second
criterion for this goal evaluator is the number of actions opponent king can do, and the
better action is the action which allows fewer number of actions by opponent king.

5. Make a waiting move when preOpposition appears - preCondition is preOpposition
situation. PreOppositionByVertical abstract in the Solver can be defined as below.
This is a virtual abstract which has two attributes – black and white kings. It must have 4
specifications

Structuring of Goals and Plans for Personalized Planning and Integrated Testing of Plans 70

 A. Whiteking.cordX = BlackKing.cordX + 2
 whiteking.cordY = blackking.cordY + 1
 B. Whiteking.cordX = BlackKing.cordX + 2
 whiteking.cordY = blackking.cordY – 1
 C. Whiteking.cordX = BlackKing.cordX - 2
 whiteking.cordY = blackking.cordY + 1
 D. Whiteking.cordX = BlackKing.cordX - 2
 whiteking.cordY = blackking.cordY – 1
which is complete enough to define the precondition of preOpposition.
The postCondition is a situation where the king position is not changed and the rook vertical
coordinate is not changed. Depth of goal is 1. The evaluator again has one criterion, which
shows the distance of the rook from the opponent king.
6. Bring white king closer to the black king, but avoid opposition – preCondition and is any

situation and postCondition is a situation where no opposition appears, depth is 1. The
evaluator has one criterion, which defines the distance of the king from the opponent king
to be minimal. We can calculate this by the following formula
“(king.cordX-opponentKing.cordX)2 + (king.cordY-opponentKing.cordY)2”.

3.1.2. Planning “two rooks against king” Endgame

A winning plan for chess endgame “two rooks against king” will be

1. Put mate
2. Avoid stalemate
3. Escape rook from attack
4. Push king to the edge, where postCondition will be two rooks on the board and the

criterion of evaluator will be only opponent king’s distance from edge is minimal.
5. Escape rook which vertical coordinate is different from opponent king’s coordinate by 1

(rook.y = king.y + 1 or rook.y = king.y - 1).

3.2. Searching for Winning Strategy of “rook against king”

Chapter 3.1 describes how chess endgames can be brought into Solver and this chapter describes
the execution of the plans by the designed algorithm for “rook against king” example. For other
plans its work is similar. Let’s see how the algorithm works for a situation.

Fig 4. K., R. vs. B.K., An initial position.

S. Grigoryan

71

1. Algorithm tries to find moves which bring to mate, and returns the empty list.
2. Since the returned list of the 1st goal is empty it takes the initial list of moves and returns

the whole list of possible moves since all of them brings to situations where there is no
stalemate, so the whole list of moves is passed to the 3rd step

3. “Escape rook from attack” goal is not applicable for this situation, so it just does nothing
4. “Push king to the edge” for all the moves that does not put rook under attack it calculates

the first criterion value. Let’s see what values it assigns to three of moves.
a. 1. Rc2… this puts check to the black king, for all king moves it calculates the

distance from the vertical edge. King moves can be Kd4, Kd3, Kb4… for Kd4
and Kd3 it assigns will assign the highest value of 4 (the distance from edge is 4).
Kb4 will have value 2, so the value assigned to move Rc2 is 4.

b. 1. Rd2… king can do moves Kc3, Kc5, Kb4… for Kb4 again value as mentioned
above is 2, for Kc3 and Kc5 is 3, so the value for Rd2 move is 3.

c. 1. Rg3… in this case also black king can move to d4 position, so the value will be
4.

Similarly all moves other than Rd2 will have 4 value, the minimum value is 3, and
only Rd2 has that, so after processing the 4th goal the algorithm will return move Rd2

Since only Rd2 move is returned the algorithm is not processed anymore and this move is
applied.
Let’s assume black does Kc3 move (attacking rook).

Fig 5. The left: the position after Rd2. The right: the position after Kc3.

After Kc3 move algorithm works again
1. For mate goal again empty list is returned
2. For stalemate all moves list is returned
3. “Escape rook from attack” goal’s preCondition is matched to the situation and rook

moves are considered to achieve the goal where rook is not under black king’s attack
since postCondition is “rook not under attack”. The criterion to evaluate the move is
vertical distance of rook and black king, so Rd8 move is chosen since it has the highest
vertical distance from black king. Since the list has only one move in it, the procedure is
stopped here and Rd8 move is returned

Rd8 is applied to the situation. Let’s assume black makes Kc4 move.

Structuring of Goals and Plans for Personalized Planning and Integrated Testing of Plans 72

Fig 6. The left: the position after Rd8. The right: the position after Kc4.

Algorithm works again and now with the following result.
1. For goal mate again empty list is returned
2. For stalemate all moves list is returned
3. No rook under attack so this is just omitted
4. “Push king to the edge” for all the moves where rook is not under attack it checks the

evaluator, which have two criteria, the 1st is kings distance from the edge is minimum. So
for moves Rd1, Rd2, Rd6, Rd7,Ke7, Ke5, Kf7, Kf6, Kf5 the distance of king from the
edge will be calculated as it was done for the 1st move, and the value will be 3, which is
selected as the minimum value. Then the second criterion (which is the number of moves
opponent king can make) is checked for the moves which are best for criterion 1. Number
of moves of black king is always 5 for all the mentioned moves. So the whole list is
returned from this goal processing procedure.

5. The situation is not a preOpposition, so preCondition is not matched, this goal is just
omitted.

6. “Bringing king closer” preCondition is any situations, and postCondition is a situation
where no opposition appears. The list of moves is [Rd1, Rd2, Rd6, Rd7, Ke7, Ke5, Kf7,
Kf6, Kf5], which does not bring to opposition, so all of them satisfy postCondition. The
evaluator criterion is that distance between two kings needs to be minimum. For the
moves by rook distance value will be 8 ((5 -3)2 + (6-4)2). For king moving by f vertical
the value will be rising, e.g., after Kf6 criterion returns 13 ((6 -3)2 + (6-4)2). The best
move will be Ke5, which will have evaluation value 5 ((5 -3)2 + (5-4)2). Ke5 will be
returned.

Since only Ke5 is returned this is applied to the situation. To make the example shorter let’s
consider Kd5 move for black.

Fig 7. The left: the position after Ke5. The right: the position after Kc5.

S. Grigoryan

73

After Kc5 move similar to the 1st move for “push king to the edge goal” Rc8 move will be
selected. Again we will assign black king moves which finish the game sooner, we will consider
the move Kb4. So after the following moves

1. Rd2 Kc3 2. Rd8 Kc4 3. Ke5 Kc5 4. Rc8 Kb4 5. Kd5 Kb5 6. Rb8 Ka4 7. Kc5 Ka3 8.
Kc4 Ka2 9. Kc3 Ka1 10. Kc2 Ka2.

After the 10th move (Ka2 by black) the algorithm will work and find that mate is achievable and
Ra8 move will be returned. This move will be applied and the plan is achieved.

Fig 8. The position of putting mate.

4. Conclusion

1. Structures of plans and goals are defined for the Solver of RGT class allowing user to
describe generic plans and goals for any problem of this class in a regular manner. Goals
are defined as a composition of preCondition, postCondition situations, depth of game
tree to achieve the goal and evaluator to evaluate the utility achieved in a situation while
accomplishing the goal. Plans are sets of prioritized goals.

2. An algorithm of searching strategy by a plan was constructed and developed based on
PPIT algorithms previously developed by our team for certain problems and with injected
knowledge usage. The algorithm works only with defined plans and goals, regardless of
the problem it solves. Previously the constructed PPIT consists of three modules RHP,
CPMU, GMP.

a. In the following we developed algorithms for GMP module
b. Future development of other modules within the scope of Solver to complete PPIT

algorithm are in progress now, which is related to constructing algorithms to
choosing the best plan from the given list of plans. This corresponds to CPMU
module.

For the current state we assume that expert knowledge for plans is being defined by a
user but in the development process we aim to achieve creating algorithms for Solver to
generate plans by itself relying on the knowledge set it already has for the game.

3. Demonstration of the structures and the algorithms were carried out for chess endgames,
their adequacy is shown. More experiments are in progress now for different chess
situations, particularly Reti etude planning is in progress now.

Structuring of Goals and Plans for Personalized Planning and Integrated Testing of Plans 74

Acknowledgement

Author expresses his deep gratitude to Professor Edward Pogossian for supervising the work and
to Boris Karapetyan for support in defining the winning plan of chess endgame “Rook against
king”.

References

[1] Ch. Brutyan, I. Zaslavski and L. Mkrtchyan, “On methods of automated synthesis of
positional strategies in games”, Problemi Kibernetiki, Moscow, Russia, vol. 19, pp. 141-
175, 1967.

[2] E. Pogossian, V. Vahradyan and A. Grigoryan, “On competing agents consistent with
expert knowledge”, Lecture Notes in Computer Science, AIS-ADM-07: The International
Workshop on Autonomous Intelligent Systems - Agents and Data Mining, pp. 229-241, St.
Petersburg, Russia, June 6-7, 2007.

[3] E. Pogossian, A. Javadyan and E. Ivanyan, “Effective discovery of intrusion protection
strategies”, The International Workshop on Agents and Data Mining, Lecture Notes in
Computer Science, St. Petersburg, Russia, vol. 3505, pp. 263-274, 2005.

[4] M. M. Botvinnik, About Solving Approximate Problems, (in Russian), S. Radio, Moscow,
1979.

[5] M.M. Botvinnik, “Computers in chess: solving inexact search problems”, Springer Series
in Symbolic Computation, with Appendixes, Springer-Verlag, New York, 1984.

[6] E. Pogossian, V. Vahradyan and A. Grigoryan, “Experiments in consistency of chess
expertise with decision making for etudes of Retie and Nodareishvili”, Transactions of
IIAP NAS RA, Mathematical Problems of Computer Science, (in Russian), vol. 28, pp.
94—113, 2007.

[7] K. Khachatryan and S. Grigoryan, “Java programs for presentation and acquisition of
meanings in SSRGT games”, Proceedings of SEUA Annual conference, pp. 127-135,
Yerevan, Armenia, 2013.

[8] K. Khachatryan and S. Grigoryan, “Java programs for matching situations to the
meanings of SSRGT games”, Proceedings of SEUA Annual conference, pp. 135-141
Yerevan, Armenia, 2013.

[9] B. Karapetyan, “High level strategy description language in games”, Mathematical
Problems of Computer Science, (in Russian), vol. 16, pp. 167-183, 1986.

[10] E. Pogossian, “On modeling cognition”, International Conference in Computer
Sciences and Information Technologies, Yerevan, Armenia, Sept. 26-30, pp. 194-198,
2011.

Submitted 10.12.2014, accepted 16.02.2015.

S. Grigoryan

75

Նպատակների և պլանների կառուցում անձնավորված
պլանավորման և պլանների ինտեգրացված

թեստավորման համար

Ս. Գրիգորյան

Ամփոփում

Մենք ուսումնասիրում ենք մրցակցային խնդիրները՝ սահմանված որպես դաս,
որտեղ լուծումների բազմությունը վերարտադրելի ծառ է (RGT)։ Մշակված են
Անձնավորված պլանավորման և ինտեգրացված թեստավորման ալգորիթմներ RGT
խնդիրներում լավագույն ռազմավարության փնտրման համար։ Աշխատանքում
զարգացվում են նպատակների և պլանների կառուցվածքներ, կառուցվում է
ռազմավարության փնտրման ալգորիթմ ըստ պլանի և ցուցադրվում է նրանց
հիմնավորությունը։

Структурирование целей и планов для персонализированного
планирования и интегрированного тестирования

С. Григорян

Аннотация

Разработаны алгоритмы и программы представления планов и целей при решении
задач класса RGT. Представлено описание поиска стратегий на основе планов для
пакета Solver. Обоснованность алгоритмов показана на примерe шахматных эндшпилей.

