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Abstract 

 

The notion of positive arithmetical formula in the signature ),,0( S= , where 

1)( += xxS , is defined and investigated in [1] and [2]. A multidimensional arithmetical 

set is said to be positive if it is determined by a positive formula. Some subclass of the 
class of positive sets, namely, the class of strongly positive sets, is considered. It is 
proved that for any 3≥n  there exists a n2 -dimensional strongly positive set such that 
its transitive closure is non-recursive. On the other side, it is noted that the transitive 
closure of any 2-dimensional strongly positive set is primitive recursive. 
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1. Introduction 
 
The classes of recursive sets having in general non-recursive transitive closures have been  
investigated in the theory of algorithms since the first steps of this theory ([3]-[8]). The works 
[9]-[13] are dedicated mainly to algebraic problems, however, some examples of recursive sets 
having non-recursive transitive closures are actually given also in these works. In [14] it is noted 
that there exists a two-dimensional arithmetical set belonging to the class 4Σ  and having a non-

recursive transitive closure (the classes nΣ  for 0≥n  are defined in [14] as some classes of 

arithmetical sets determined by formulas in M. Presburger’s system ([4], [15], [16])). Below the 
class of strongly positive arithmetical sets is considered (the definition will be given in Section 
2) such that the sets belonging to this class have a more simple structure than the sets noted 
above, and have the following properties: (1) for any 3≥n  there exists a n2 -dimensional 
strongly positive set such that its transitive closure is non-recursive; (2) any 2-dimensional 
strongly positive set has a primitive recursive transitive closure (see below, Theorem 1 and 
Theorem 2). 

                                                
1 This work was supported by State Committee of Science, MES RA, in frame of the research project №SCL 13-
1B321. 
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2. Main Definitions and Results 
 
By N  we denote the set of all non-negative integers, ,...}2,1,0{=N . By nN  we denote the set of 

n -tuples ),...,,( 21 nxxx , where 1≥n , Nxi ∈  for ni ≤≤1 .  

An n -dimensional arithmetical set, where 1≥n , is defined as any subset of n
N . 

An n -dimensional arithmetical predicate P  is defined as a predicate which is true on some 

set nNA ⊆  and false out of it; in this case we say that A is the set of truth for P , and P  is the 
representing predicate for A . 

The notions of primitive recursive function, general recursive function, partially recursive 
function, primitive recursive set, recursive set are defined in a usual way ([3]-[8]). The 
corresponding terms will be shortly denoted below by PmRF, GRF, PtRF, PmRS, RS. 

We will consider arithmetical formulas in the signature ),,0( S= , where 1)( += xxS , for 

Nx ∈  (see [1]-[8]). Any term included in a formula of the mentioned kind has the form 
)...))((...( xSSS  or )...))0((...( SSS , where x  is a variable. Such terms we will denote 

correspondingly by )(xS
k  and )0(k

S , where k  is the quantity of symbols S  contained in the 

considered term. We replace )(0
xS  and )0(0

S  with x  and 0. Any elementary subformula of a 

formula of this kind has the form 21 tt = , where 1t  and 2t  are terms. Any arithmetical formula of 

this kind is obtained by the logical operations ∃∀¬⊃∨ ,,,,&,  from elementary formulas. We say 

that a formula is semi-elementary if it has the form 21 tt =  or )( 21 tt =¬ , where 1t  and 2t  are 
terms. 

The deductive system of formal arithmetic in the signature ),,0( S=  is defined as in [4], [6]; 
we will denote this system by DedS (cf. [1], [2]). As it is proved in [4], this system is complete. 
We say that formulas F  and G  in the signature ),,0( S=  are DedS-equivalent (or simply 

equivalent) if the formula )(&)( FGGF ⊃⊃  is deducible in DedS. Below we consider 
formulas of the mentioned kind up to their DedS-equivalence. 

An arithmetical formula of the mentioned kind is said to be positive if it contains no other 
symbols of logical operations except ¬∨∃ ,,&, , and all the symbols ¬  of negation relate to 
elementary subformulas containing no more than one variable (see [1], [2]). An arithmetical 
formula of this kind is said to be strongly positive if it can be obtained by the logical operations 
&  and ∨  from semi-elementary formulas of the following forms: ax = , where x  is a variable, 
a  is a constant, Na ∈ ; yx = , where x  and y  are variables; )(ySx = , where x  and y  are 

variables; )0( =¬ x , where x  is a variable. An arithmetical predicate is said to be positive 
(correspondingly, strongly positive), if it can be expressed by a positive (correspondingly, 
strongly positive) formula. An arithmetical set is said to be positive (correspondingly, strongly 
positive) if its representing predicate is positive (correspondingly, strongly positive). 

The notion of one-dimensional creative set is given in a usual way ([3], [5], [7], [8]). We 
will slightly generalize this notion. We use a PmRF ),...,,( 21 nn xxxc , where 2≥n , establishing a 

one-to-one correspondence between nN  and N  (for example, 

)),)...,),,(((...(),...,,( 1321222221 nnnn xxxxxccccxxxc −= , where 1)12(2),(2 −+⋅= yyxc
x ). We 

say that a set n
NB ⊆  is an n -dimensional image of a set NA ⊆  when Axxxc nn ∈),...,,( 21  if 

and only if Bxxx n ∈),...,,( 21 . The set nNB ∈  is said to be creative in the generalized sense if it 

is an n -dimensional image of some one-dimensional creative set. Clearly, the properties of 
creative sets in the generalized sense are similar to the properties of one-dimensional creative 
sets (for example, all sets creative in the generalized sense are non-recursive). 
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Transitive closure *A  of an arithmetical set A  having an even dimension k2  is defined in a usual 
way by the following generating rules (cf. [1], [2], [13]): (1) if Axxx k ∈),...,,( 221 , then 

*
221 ),...,,( Axxx k ∈ , (2) if *

2121 ),...,,,...,,( Ayyyxxx kk ∈ , and *
2121 ),...,,,...,,( Azzzyyy kk ∈ , 

then *
2121 ),...,,,...,,( Azzzxxx kk ∈ . 

 
Theorem 1: For any 3≥n  there exists a n2 -dimensional strongly positive set such that its 

transitive closure is creative in the generalized sense. 

 
Theorem 2: Transitive closure of any 2-dimensional strongly positive set is primitive recursive. 

 

The proof of Theorem 1 will be given below. The proof of Theorem 2 will be published later. 
 
 

3. Auxiliary Notions and Statements 
 
We will use some class of operator algorithms ([8], [17]) having a special structure. The 
algorithms belonging to this class we will call Ω -algorithms. Any Ω -algorithm consists of finite 

number of elementary Ω -algorithms, which will be called below “ Ω -operators”. The set of all 

Ω -operators included in the considered Ω -algorithm we call “scheme” of this Ω -algorithm. We 
suppose that some non-negative integer is attached to any Ω -operator in the scheme of a given 
Ω -algorithm in such a way, that different integers are attached to different Ω -operators. The 
integer attached to some Ω -operator we call “an identifier” of this Ω -operator. In this case we 
say that this Ω -operator has the mentioned identifier. Any Ω -operator implements one step of 
the process of computation realized by the considered Ω -algorithm. The objects transformed in 
the process of computation are non-negative integers. The state of the mentioned computation 
process is defined as a pair ),( wα , where α  is the identifier attached to the Ω -operator which is 

working on the considered step of the process, and w  is the number obtained by the previous 
steps of the process. Ω -operators are algorithms having one of the following forms (where α  is 
the identifier attached to the considered Ω -operator, β  and γ  are identifiers attached to Ω -
operators which should work after the working of this Ω -operator): 
 

(1) ),( endα . This Ω -operator is called below “a final operator”; it finishes the process of 
computation. 

(2) ),2,( βα × . This Ω -operator transforms the state ),( wα  to the state )2,( wβ . 

(3) ),3,( βα × . This Ω -operator transforms the state ),( wα  to the state )3,( wβ . 

(4) ),,6:,( γβα . This Ω -operator transforms the state ),( wα  to the state )
6

,(
w

β  if the 

number w  is divisible by 6; in the opposite case it transforms the state ),( wα  to the state 

),( wγ . 

 
Note that such forms of operators are considered actually in [17] (see also [8], p. 292, p. 312). 

We suppose that any scheme of Ω -algorithm contains only a single final Ω -operator which 
has the identifier 0=α . Among the operators contained in the scheme of the considered Ω -
algorithm we distinguish the initial Ω -operator having the identifier 1=α ; the working of this 
operator begins the process of computation. The whole process of working of the given Ω -
algorithm is described by the sequence of states ),( 11 wα , ),( 22 wα ,…, ),( kk wα ,…,(where 
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11 =α ) obtained during the working of this Ω -algorithm. The process is described by a finite 

sequence ),1( 1w , ),( 22 wα ,…, ),0( mw  if it is finished by the working of the final Ω -operator. 

In this case we say that the considered Ω -algorithm transforms the state ),1( 1w  to the state 

),0( mw , and is applicable to the state ),1( 1w . If the final Ω -operator does not work during the 

process of computation, then the mentioned sequence ),1( 1w , ),( 22 wα ,… is infinite. In this case 

we say that the considered Ω -algorithm is not applicable to the state ),1( 1w . 

 
The following theorem is proved in [17] (see also [8], pp. 312-315) in some other terms. 
 
Theorem 3 ([17]): For any PtRF )(xf  there exists an Ω -algorithm which transforms the state 

)2,1( 2x

 to the state )2,0(
)(2 xf

 when the value )(xf  is defined, and is not applicable to the state 

)2,1( 2x

 in the opposite case. 

 
If some Ω -algorithm has the property described in Theorem 3, then we say that this Ω -
algorithm realizes the PtRF )(xf . For example, the following Ω -algorithm:  

 
),0( end , )2,3,1( × , )3,1,6:,2( , )0,2,3( ×  

 
realizes the GRF 0)( =xf . 

We will use also another classes of algorithms, namely, nΓ -algorithms for 1≥n . 

These algorithms are actually special cases of graph-schemes with memory ([18]), though 
they will be described below in some other terms than the descriptions in [18]. 

Any nΓ -algorithm consists of finite number of nΓ -operators. The set of all nΓ -operators 

included in the considered 
nΓ -algorithm we call “scheme” of this 

nΓ -algorithm. The index n  in 

the notation 
nΓ  denotes that the objects transformed by the considered 

nΓ -algorithm are n -

tuples ),...,,( 21 nxxx , where Nxi ∈  for ni ≤≤1 . The notion of identifier attached to the 

considered 
nΓ -operator is defined similarly to the notion of “identifier attached to the considered 

Ω -operator” which is given above; we suppose that different 
nΓ -operators have different 

identifiers attached to them. If some identifier is attached to a 
nΓ -operator, we will say that this 

nΓ -operator has the mentioned identifier. 

The state of the computation process realized by a 
nΓ -algorithm is defined as an )1( +n -

tuple ),...,,,( 132 +nxxxα , where α  is the identifier attached to the 
nΓ -operator which is working 

on the considered step of the process, and ),...,,( 132 +nxxx  is the n -tuple of numbers obtained by 

the previous steps of the process. 
nΓ -operators are algorithms having one of the following forms 

(where the notations α , β , γ  have the same sense as α , β , γ  in the description of Ω -

operators given above): 
 

(1) ),( endα . This nΓ -operator we call “a final operator”; it finishes the process of 

computation. 
(2) ),1,( βα +ix , where 12 +≤≤ ni . This nΓ -operator transforms the state 

),...,,,,...,,,( 11132 ++− niii xxxxxxα  to the state ),...,,1,,...,,,( 11132 ++− + niii xxxxxxβ . 
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(3) ix,(α ),1 β , where 2 +≤≤ ni

yxy −=  when yx ≥ , and 

transforms the state ,,( 32 xxα

),...,,1 11 ++ ni xx . 

(4) ),,0,( γβα =ix ,where 2 ≤≤ i

),...,,,( 132 +nxxxα  to the state 

),...,,,( 132 +nxxxγ  when 0≠ix .

 
We suppose that any scheme of nΓ -algorithm contains only 

the identifier 0=α . Among the nΓ -operators contained in the scheme of the considered 

algorithm we distinguish the initial nΓ

operator begins the process of computation. This process is described by a sequence of states 

),( 11 Qα , ),( 22 Qα ,…, ),( kk Qα ,… where 

Such a sequence is finite if the final 

infinite in the opposite case. If the sequence of states is finite, then we say that the considered 

-algorithm is applicable to the state ,1(

the state ),1( 1Q  to the state ),0( mQ , where 

the sequence of states ),1( 1Q , ,2( Q

algorithm is not applicable to the state 

We say that a nΓ -algorithm (where 

transforms the state )0,...,0,0,2,1( x  to the state 

and is not applicable to the state 1(

example, the following nΓ -algorithm realizes the PtRF 

),0( end , 2,1( x )1,1 . 
 
Lemma 3.1: If the initial state in the process of computation realized by some 

the form )3,2,1( vu , where Nu ∈ , v ∈

satisfies the condition st

mw 32 ⋅= , where 

 
The proof is easily obtained from the definitions.
 
Lemma 3.2: For any Ω -algorithm ϕ  

realizing the same PtRF )(xf . 
 
Proof: We will consider the process of computation realized by the 

state in such a process has the form ,1(

state included in such a process has the form 

included in the scheme of Ω -algorithm 

2Γ -algorithm ψ  which has the following property: if t

state )32,( vu ⋅α  to the state )32,( st ⋅β
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1+ ; we denote by the symbol  the PmRF such that 

, and x 0=y  when yx <  (cf. [3]-[8]). This Γ

),...,,,,..., 111 ++− niii xxxx  to the state xx ,...,,,( 32β

1+≤ n . This nΓ -operator transforms the state 

to the state ),...,,,( 132 +nxxxβ  when 0=ix , and to the state 

. 

algorithm contains only a single final nΓ -operator which has 

operators contained in the scheme of the considered 

-operator having the identifier 1=α ; the working of this 

operator begins the process of computation. This process is described by a sequence of states 

,… where 11 =α , and any iQ  is an n -tuple ,( )(
2
i xx

Such a sequence is finite if the final nΓ -operator works during the mentioned process, and is 

infinite in the opposite case. If the sequence of states is finite, then we say that the considered 

)1Q ; in this case we say also that nΓ -algorithm 

, where ),0( mQ  is the last state in the considered sequence. If 

)2Q ,… is infinite, then we say that the considered 

to the state ),1( 1Q . 

algorithm (where 2≥n ) realizes a PtRF )(xf , if for any 

to the state )0,...,0,0,2,0( )(xf  when the value )(xf  

)0,...,0,0,2,1 x  when the value )(xf  is not defined. For 

algorithm realizes the PtRF )(xf  which is nowhere defined: 

If the initial state in the process of computation realized by some Ω -algorithm has 

N∈ , then any state ),( mm wα  included in this process 

, where Nst ∈, . 

The proof is easily obtained from the definitions. 

 realizing some PtRF )(xf  there exists a 2Γ -algorithm 

We will consider the process of computation realized by the Ω -algorithm ϕ . Any initial 

)2,1 2x

 that is )32,1( 02 ⋅
x

. As it is proved in Lemma

state included in such a process has the form )32,( st

m ⋅α where Nst ∈, . For any Ω

algorithm ϕ  we will construct some subscheme of the supposed 

which has the following property: if the considered Ω -operator transforms the 

)  then the corresponding subscheme of the supposed 

the PmRF such that x

nΓ -operator 

ii xx ,,..., 1−

operator transforms the state 

, and to the state 

operator which has 

operators contained in the scheme of the considered nΓ -

; the working of this 

operator begins the process of computation. This process is described by a sequence of states 

),..., )(
1

)(
3

i

n

i x + . 

operator works during the mentioned process, and is 

infinite in the opposite case. If the sequence of states is finite, then we say that the considered nΓ

algorithm transforms 

is the last state in the considered sequence. If 

,… is infinite, then we say that the considered nΓ -

, if for any Nx ∈  it 

 is defined, 

is not defined. For 

which is nowhere defined:  

algorithm has 

included in this process 

algorithm ψ  

. Any initial 

. As it is proved in Lemma 3.1 any 

Ω -operator 

we will construct some subscheme of the supposed 

operator transforms the 

then the corresponding subscheme of the supposed 2Γ -



algorithm ψ  transforms the state 
consider the following cases. 
 
Case 1. The considered Ω -operator has the form 

of the supposed 2Γ -algorithm 
 
Case 2. The considered Ω -operator has the form 

of the supposed 2Γ -algorithm 

 
Case 3. The considered Ω

subscheme of the supposed 

),,0,( 12 δγα =x , ,0,( 31 γδ =x

identifiers attached to additional 

2Γ -algorithm for modeling the working of the considered 
identifiers should be different in different subschemes of this kind.
 
Case 4. The considered Ω -operator has the form

the states of Ω -algorithm. So, the 
 
The scheme of the supposed 
mentioned forms constructed for all 
algorithm. It is easily seen that such 
completes the proof. 
 
Corollary 1: For any PtRF f

)(xf . 
 
The proof is based on Theorem
 
Note: The statements established in Lemma

in [18], where it is proved that any PtRF may be realized by some graph

constructed on the base of the functions 

graph-schemes with memory corresponding to 

graph-schemes considered in Theorem 7.1 in [18]. Besides, the definition of realizability 

by nΓ -algorithm differs from the corresponding definition in [18].

 
Now let us define for any Γ

computation process realized by this 

describing predicate”, or, shortly, “SD

SD-predicate for a given nΓ -algorithm, then 

algorithm transforms the state 

corresponding computation process. Let us note the following property of the predicate 

),...,,( 121 +nxxx  is a state of the computational process realized by the considered 
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transforms the state ),,( vuα  of 2Γ -algorithmψ  to the state 
 

operator has the form ),2,( βα × . In this case the required subscheme 

algorithm ψ  consists of the single 2Γ -operator ,1,( 2α +x

operator has the form ),3,( βα × . In this case the required subscheme 

algorithm ψ  consists of the single 2Γ -operator ,1,( 3α +x

-operator has the form ),,6:,( γβα . In this case the required 

subscheme of the supposed 2Γ -algorithm ψ  consists of the following 

), 2δγ , 22 ,( xδ ),1 3δ , 33 ,( xδ ),1 β .  Here 

identifiers attached to additional 2Γ -operators which are included in the scheme of the supposed 

algorithm for modeling the working of the considered Ω -operator. Of course, these 
identifiers should be different in different subschemes of this kind. 

operator has the form ),0( end . This Ω -operator 

algorithm. So, the corresponding 2Γ -operator has the same form 

The scheme of the supposed 2Γ -algorithm is obtained as the union of subschemes of the 
mentioned forms constructed for all Ω -operators included in the scheme of the given 
algorithm. It is easily seen that such 2Γ -algorithm satisfies the conditions of Lemma

)(xf  and any 2≥n  there exists a nΓ -algorithm realizing the PtRF 

The proof is based on Theorem 3 and is similar to that of Lemma 3.2. 

The statements established in Lemma 3.2 and in its Corollary 1 are similar to Theorem 7.1 

in [18], where it is proved that any PtRF may be realized by some graph-scheme with memory 

constructed on the base of the functions 1+x , x 1 and of the predicate 

schemes with memory corresponding to nΓ -algorithms are essentially simple

schemes considered in Theorem 7.1 in [18]. Besides, the definition of realizability 

algorithm differs from the corresponding definition in [18]. 

nΓ -algorithm, where 1≥n , the predicate describing one step of 

computation process realized by this nΓ -algorithm. Such a predicate we will call “

describing predicate”, or, shortly, “SD-predicate” for a given nΓ -algorithm. Namely, if 

algorithm, then ),...,,( 2221 +nxxxη  is true if and only if the given 

algorithm transforms the state ),...,,( 121 +nxxx  to the state ),...,,( 2232 +++ nnn xxx

corresponding computation process. Let us note the following property of the predicate 

is a state of the computational process realized by the considered 

37

to the state ),,( stβ . We will 

. In this case the required subscheme 

),β . 

. In this case the required subscheme 

), β . 

. In this case the required 

following 2Γ -operators:

Here 1δ , 2δ , 3δ  are 

operators which are included in the scheme of the supposed 

operator. Of course, these 

 does not transform 

form ),0( end . 

algorithm is obtained as the union of subschemes of the 
s included in the scheme of the given Ω -

algorithm satisfies the conditions of Lemma 3.2. This 

algorithm realizing the PtRF 

are similar to Theorem 7.1 

scheme with memory 

1 and of the predicate 0=x . However, 

algorithms are essentially simpler than the 

schemes considered in Theorem 7.1 in [18]. Besides, the definition of realizability of PtRf 

, the predicate describing one step of 

algorithm. Such a predicate we will call “a step 

algorithm. Namely, if η  is the 

is true if and only if the given nΓ -

)  by one step of the 

corresponding computation process. Let us note the following property of the predicate η : if 

is a state of the computational process realized by the considered nΓ -algorithm, 
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such that x1≠ 0, then there exists a single 

),...,,( 2221 +nxxxη  is true. 

The set of truth for the mentioned predicate 

algorithm. Clearly, such a set π  has the following property: 

),...,,( 121 +nxxx  is a state of computation process realized by th

this nΓ -algorithm transforms the state 

of the computation process. 
Now let us define the forms of SD

that some nΓ -algorithm ψ , where ≥n

any nΓ -operator included in the scheme of 

 
Case 1. The considered nΓ -operator has the form 

state ),...,,,,...,,,( 11132 ++− niii xxxxxxα  

where 23 xxn =+ , 34 xxn =+ ,…, −+ = iin xx

 
The SD-predicate for such a nΓ

1 2 3 2 4 3 1 1

2 1 2 2 1

( ) & ( ) & ( ) & ( ) & ... & ( ) & ( ( )) &

&( ) & ... & ( ).
n n n n i i n i i

n i i n n

x x x x x x x x x S x

x x x x

α β+ + + + − + +

+ + + + +

= = = = = =

= =

Case 2. The considered nΓ -operator has the form 

state ),...,,,,...,,,( 11132 ++− niii xxxxxxα  to the state 

23 xxn =+ , 34 xxn =+ ,…, 1−+ = iin xx , inx +

 
The SD-predicate for such a nΓ

(&)0(((&)(&

)(&)(&)(

1122

2321

++++

++

==

===

innn

nn

xxxx

xxxx βα

 
Case 3. The considered nΓ -operator has the form 

the state ),...,,,( 132 +nxxxα  to the states 

23 xxn =+ , 34 xxn =+ ,…, 122 ++ = nn xx ) in the cases, when, correspondingly, 

SD-predicate for such a nΓ -operator is

))).0(&)((

)(&)(&)(

2

34231

=¬=

===

+

++

in

nn

xx

xxxxx

γ

α

 
Case 4. The considered nΓ -operator has the form 

the states of nΓ -algorithm, so, an SD-predicate is not considered for such 

The SD-predicate for nΓ -algorithm 

disjunction of formulas expressing SD

contained in the scheme of ψ  and different from the operator 

algorithm ψ  is obtained as the set of truth for the corresponding SD

set is a )22( +n -dimensional arithmetical set.

On Strongly Positive Multidimensional Arithmetical Sets 

there exists a single )1( +n -tuple ),...,,( 2232 +++ nnn xxx  

The set of truth for the mentioned predicate η  we will call “SD-set” for the considered 

has the following property: π∈+ ),...,,( 2221 nxxx  if and only if 

is a state of computation process realized by the considered nΓ -algorithm, and 

algorithm transforms the state ),...,,( 121 +nxxx  to the state ),...,,( 2232 +++ nnn xxx  by one step 

Now let us define the forms of SD-predicates and SD-sets for nΓ -algorithms. We suppose 

1≥  is fixed. We will define the forms of SD-predicates for 

operator included in the scheme of ψ . 

operator has the form ),1,( βα +ix . Such nΓ -operator transforms the 

 to the state ,,,...,,,( 2143 +++++++ inininnn xxxxxβ

1− , 11 +=++ iin xx , 12 +++ = iin xx ,…, 122 ++ = nn xx . 

n -operator is expressed by the following formula: 

1 2 3 2 4 3 1 1( ) & ( ) & ( ) & ( ) & ... & ( ) & ( ( )) &n n n n i i n i ix x x x x x x x x S x+ + + + − + += = = = = =
 

operator has the form ix,(α ),1 β . Such nΓ -operator transforms the 

to the state ,...,,,,...,,,( 22143 +++++++ inininnn xxxxxxβ

ix=+1 1, 12 +++ = iin xx ,…, 122 ++ = nn xx . 

n -operator is expressed by the following formula:

)))).((&)0(())0

(&)(&...&)(&

1

2134

++

++−++

==¬∨=

===

iniii

iniinn

xSxxx

xxxxx

operator has the form ),,0,( γβα =ix . Such nΓ -operator transforms 

to the states ),...,,,( 2243 +++ nnn xxxβ  or ,...,,,( 243 +++ nnn xxxγ

) in the cases, when, correspondingly, 0=ix  or x

operator is expressed by the following formula: 

(&)(((&)(&...&) 2122 === +++ innn xxxx β

operator has the form ),0( end . Such nΓ -operator does not transform 

predicate is not considered for such nΓ -operator. 

algorithm ψ  is expressed by the formula obtained as the 

disjunction of formulas expressing SD-predicates constructed above for all nΓ

and different from the operator ),0( end . The SD-set for 

is obtained as the set of truth for the corresponding SD-predicate. Clearly, such SD

dimensional arithmetical set. 

 such that 

set” for the considered nΓ -

if and only if 

algorithm, and 

by one step 

algorithms. We suppose 

predicates for 

operator transforms the 

),..., 222 +nx , 

following formula: 

operator transforms the 

)22 +n ,where 

the following formula:

...&)1+ix  

operator transforms 

)2+  (where 

0≠ix . The 

expressed by the following formula: 

))0 ∨  

operator does not transform 

operator.  

is expressed by the formula obtained as the 

n -operators 

set for nΓ -

predicate. Clearly, such SD-
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Lemma 3.3: SD-predicate and SD-set constructed for any nΓ -algorithm, where 1≥n , are 

strongly positive. 
 
The proof is obtained evidently from the definitions. 
 

Lemma 3.4: (cf. [13], p.72). If A  is a k2 -dimensional set, 
k

NA
2⊆ , then k2 -tuple 

),...,,,,...,,( 2121 kk yyyxxx  belongs to the transitive closure *A  of the set A  if and only if there 

exists a sequence ),...,,( 21 mQQQ  of k -tuples, such that 2≥m , ),...,,( 211 kxxxQ = , 

),...,,( 21 km yyyQ =  and any k2 -tuple ),( 1+ii QQ  for 11 −≤≤ mi  belongs to A . 

 
The proof is easily obtained using the definition of the transitive closure *A . 
 
 

4. Proof of Theorem 1 
 
Let M  be any one-dimensional creative set ([3], [5], [7], [8]). We consider the PtRF )(xf  such 

that 0)( =xf  when Mx∈ , and the value )(xf  is indefined when Mx∉ . For any fixed 2≥n  

we construct (using Corollary of Lemma 3.2) a nΓ -algorithm ψ  realizing the PtRF )(xf ; 

clearly, ψ  transforms the state )0,...,0,0,2,1( x  to the state )0,...,0,0,1,0(  when Mx∈  and is not 

applicable to the state )0,...,0,0,2,1( x  when Mx∉ . Now, let us consider the SD-predicate η  and 

SD-set π  for ψ . Clearly, η  is true for )22( +n -tuple ),...,,,,...,,( 121121 ++ nn yyyxxx  (and the 

statement π∈++ ),...,,,,...,,( 121121 nn yyyxxx  holds) if and only if ψ  transforms the state 

),...,,( 121 +nxxx  to the state ),...,,( 121 +nyyy  by one step of the process of computation. Let us 

consider the transitive closure *π  of the SD-set π . 

Using Lemma 3.4 we conclude that *
121121 ),...,,,,...,,( π∈++ nn yyyxxx  if and only if there 

exists a sequence ),...,,( 21 mQQQ  of )1( +n -tuples such that ),...,,( 1211 += nxxxQ , 

),...,,( 121 += nm yyyQ , and π∈+ ),( 1ii QQ  for any i  such that mi <≤1 . But in this case the 

sequence ),...,,( 21 mQQQ  is a sequence of states of the nΓ -algorithm ψ  which  describes some 

part of a process of computation implemented by the nΓ -algorithm ψ . 

Hence, the )22( +n -tuple )0,...,0,0,1,0,0,...,0,0,2,1( x  belongs to *π  if Mx∈ . It is easily seen 

that the mentioned  )22( +n -tuple does not belong to *π  if Mx ∉ . Let us consider the set 

N∈**π  such that its )22( +n -dimensional image is *π . Then 
**

22 )0,...,00,1,0,0,...,0,0,2,1( π∈+
x

nc  if and only if Mx∈ . So the set M  is m -reducible to the set 
**π . Using the corresponding theorem concerning m -reducibility (see, for example, [8], p. 161), 

we conclude that the set **π  is creative, the set *π  is creative in the generalized sense, and the 
set π  is strongly positive (see Lemma 3.3). This completes the proof. 
 
Note: It is seen from Theorem 1 that the transitive closures of some strongly positive sets having 

the dimensions 6, 8, 10, … are creative in the generalized sense. On the other side (Theorem 2) 

the transitive closure of any 2-dimensional strongly positive set is primitive recursive. Similar 

problem concerning 4-dimensional strongly positive sets remains open. 
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Խիստ պոզիտիվ բազմաչափ թվաբանական բազմությունների 

մասին 
 

Ս. Մանուկյան 

 

Ամփոփում 

 

[1]-ում և [2]-ում սահմանվում և հետազոտվում է պոզիտիվ թվաբանական 

բանաձևի գաղափարը ),,0( S=  սիգնատուրայում, (որտեղ 1)( += xxS ): 

Բազմաչափթվաբանական բազմությունը կոչվում է պոզիտիվ, եթե այն որոշվում է 

որևէ պոզիտիվ բանաձևի միջոցով: Դիտարկվում է պոզիտիվ բազմությունների դասի 

որևէ ենթադաս, այսինքն` խիստ պոզիտիվ բազմությունների դասը: Ապացուցվում է, 

որ ցանկացած n -ի համար, որտեղ 3≥n , գոյություն ունի n2 -չափանի խիստ 

պոզիտիվ բազմություն, որի տրանզիտիվ փակումը ռեկուրսիվ չէ: Մյուս կողմից 

նշվում է, որ ցանկացած 2-չափանի խիստ պոզիտիվ բազմություն ունի պարզագույն 

ռեկուրսիվ տրանզիտիվ փակում: 

 

 

О строго позитивных многомерных арифметических 

множествах 
 

С. Манукян 
 

Аннотация 
 

Понятие позитивной арифметической формулы в сигнатуре ),,0( S= , где 1)( += xxS , 

определено и исследовано в [1] и [2]. Многомерное арифметическое множество 

называем позитивным, если оно задаётся позитивной формулой. Рассматривается 

подкласс класса позитивных множеств, а именно, класс строго позитивных множеств. 

Доказывается, что для всякого 3≥n  существует строго позитивное множество 

размерности n2 , такое, что его транзитивное замыкание нерекурсивно. С другой 

стороны, указывается, что транзитивное замыкание всякого строго позитивного 

множества размерности 2 примитивно рекурсивно. 


