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Abstract

The notion of positive arithmetical formula in the signature (0,=,S), where
S(x) =x+1, is defined and investigated in [1] and [2]. A multidimensional arithmetical
set is said to be positive if it is determined by a positive formula. Some subclass of the
class of positive sets, namely, the class of strongly positive sets, is considered. It is
proved that for any n =3 there exists a 2n-dimensional strongly positive set such that
its transitive closure is non-recursive. On the other side, it is noted that the transitive
closure of any 2-dimensional strongly positive set is primitive recursive.
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1. Introduction

The classes of recursive sets having in general non-recursive transitive closures have been
investigated in the theory of algorithms since the first steps of this theory ([3]-[8]). The works
[9]-[13] are dedicated mainly to algebraic problems, however, some examples of recursive sets
having non-recursive transitive closures are actually given also in these works. In [14] it is noted

that there exists a two-dimensional arithmetical set belonging to the class X, and having a non-
recursive transitive closure (the classes X, for n >0 are defined in [14] as some classes of

arithmetical sets determined by formulas in M. Presburger’s system ([4], [15], [16])). Below the
class of strongly positive arithmetical sets is considered (the definition will be given in Section
2) such that the sets belonging to this class have a more simple structure than the sets noted
above, and have the following properties: (1) for any n >3 there exists a 2n-dimensional
strongly positive set such that its transitive closure is non-recursive; (2) any 2-dimensional
strongly positive set has a primitive recursive transitive closure (see below, Theorem 1 and
Theorem 2).

! This work was supported by State Committee of Science, MES RA, in frame of the research project NeSCL 13-
1B321.
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2. Main Definitions and Results

By N we denote the set of all non-negative integers, N ={0,1,2,...} . By N" we denote the set of
n-tuples (x,,x,,....x,), where n21, x,e N for 1<i<n.

An n-dimensional arithmetical set, where n > 1, is defined as any subset of N".

An n-dimensional arithmetical predicate P is defined as a predicate which is true on some

set Ac N" and false out of it; in this case we say that Ais the set of truth for P, and P is the
representing predicate for A .

The notions of primitive recursive function, general recursive function, partially recursive
function, primitive recursive set, recursive set are defined in a usual way ([3]-[8]). The
corresponding terms will be shortly denoted below by PmRF, GRF, PtRF, PmRS, RS.

We will consider arithmetical formulas in the signature(0,=,S), where S(x)=x+1, for

xe N (see [1]-[8]). Any term included in a formula of the mentioned kind has the form
S(S(...S(x)..)) or S(S(..S5(0)..)), where x is a variable. Such terms we will denote

correspondingly by S*(x) and S*(0), where k is the quantity of symbols S contained in the
considered term. We replace S°(x) and S°(0) with x and 0. Any elementary subformula of a

formula of this kind has the form ¢, =¢,, where f, and 7, are terms. Any arithmetical formula of
this kind is obtained by the logical operations &,v,>,—,V,3 from elementary formulas. We say

that a formula is semi-elementary if it has the form 7, =¢, or —(t, =¢,), where ¢, and ¢, are
terms.

The deductive system of formal arithmetic in the signature (0,=,S) is defined as in [4], [6];
we will denote this system by Deds (cf. [1], [2]). As it is proved in [4], this system is complete.
We say that formulas F and G in the signature (0,=,S) are Deds-equivalent (or simply
equivalent) if the formula (F > G)& (G > F) is deducible in Deds. Below we consider
formulas of the mentioned kind up to their Deds-equivalence.

An arithmetical formula of the mentioned kind is said to be positive if it contains no other
symbols of logical operations except 3,&,v,—, and all the symbols — of negation relate to
elementary subformulas containing no more than one variable (see [1], [2]). An arithmetical
formula of this kind is said to be strongly positive if it can be obtained by the logical operations
& and v from semi-elementary formulas of the following forms: x =a, where x is a variable,
a is a constant, ae N; x=1y, where x and y are variables; x =S(y), where x and y are
variables; —(x =0), where x is a variable. An arithmetical predicate is said to be positive
(correspondingly, strongly positive), if it can be expressed by a positive (correspondingly,
strongly positive) formula. An arithmetical set is said to be positive (correspondingly, strongly
positive) if its representing predicate is positive (correspondingly, strongly positive).

The notion of one-dimensional creative set is given in a usual way ([3], [5], [7], [8]). We
will slightly generalize this notion. We use a PmRF c, (x,,x,,...,x, ), where n =2, establishing a

one-to-one correspondence between N" and N (for example,
C, (X, Xy,00%,) =,y (¢, (cy (0y (X, X,),X5)0, X)), X, ), Where ¢, (x,y)=2"-2y+1)—1). We

say that a set B < N" is an n-dimensional image of a set Ac N when c, (x,,X,,....x,)€ A if

and only if (x,,x,,...,x,)€ B. The set Be N" is said to be creative in the generalized sense if it

is an n-dimensional image of some one-dimensional creative set. Clearly, the properties of
creative sets in the generalized sense are similar to the properties of one-dimensional creative
sets (for example, all sets creative in the generalized sense are non-recursive).
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Transitive closure A” of an arithmetical set A having an even dimension 2k is defined in a usual
way by the following generating rules (cf. [1], [2], [13]): (1) if (x,,x,,...,x,, )€ A, then

(X)5 Xy 5eees Xy ) E A, () if (X5 Xy seees X s Vys Voo Vi ) E A", and (D15 Voseees Vs 215 ZpsenZs ) € A,

"
then (x,,X,,.., X, ,2,,2,5--2, )€ A .

Theorem 1: For any n=>3 there exists a 2n-dimensional strongly positive set such that its
transitive closure is creative in the generalized sense.

Theorem 2: Transitive closure of any 2-dimensional strongly positive set is primitive recursive.

The proof of Theorem 1 will be given below. The proof of Theorem 2 will be published later.

3. Auxiliary Notions and Statements

We will use some class of operator algorithms ([8], [17]) having a special structure. The
algorithms belonging to this class we will call Q -algorithms. Any Q -algorithm consists of finite

number of elementary Q. -algorithms, which will be called below Q -operators”. The set of all

Q -operators included in the considered Q -algorithm we call “scheme” of this Q -algorithm. We
suppose that some non-negative integer is attached to any Q -operator in the scheme of a given
Q -algorithm in such a way, that different integers are attached to different Q -operators. The
integer attached to some Q -operator we call “an identifier” of this Q -operator. In this case we
say that this Q -operator has the mentioned identifier. Any Q -operator implements one step of
the process of computation realized by the considered Q -algorithm. The objects transformed in
the process of computation are non-negative integers. The state of the mentioned computation
process is defined as a pair (&, w), where @ is the identifier attached to the Q -operator which is

working on the considered step of the process, and w is the number obtained by the previous
steps of the process. Q -operators are algorithms having one of the following forms (where & is
the identifier attached to the considered Q-operator, S and y are identifiers attached to Q-
operators which should work after the working of this Q -operator):

(1) (a,end). This Q-operator is called below ‘““a final operator”; it finishes the process of

computation.
(2) (ax2,p). This Q-operator transforms the state (&, w) to the state (3,2w) .

(3) (ax3,p). This Q -operator transforms the state (a,w) to the state (£,3w).
4) (a,:6,8,y). This Q-operator transforms the state (a,w) to the state (ﬁ,%) if the

number w is divisible by 6; in the opposite case it transforms the state (&, w) to the state

(7.w).

Note that such forms of operators are considered actually in [17] (see also [8], p. 292, p. 312).
We suppose that any scheme of Q -algorithm contains only a single final Q -operator which
has the identifier & =0. Among the operators contained in the scheme of the considered Q -
algorithm we distinguish the initial Q -operator having the identifier & =1; the working of this
operator begins the process of computation. The whole process of working of the given Q-
algorithm is described by the sequence of states (¢,,w,), (@&,,w,),..., (&,,w,),....(where
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o, =1) obtained during the working of this Q -algorithm. The process is described by a finite
sequence (L,w,), (&,,w,),..., (O,w, ) if it is finished by the working of the final Q -operator.

In this case we say that the considered Q -algorithm transforms the state (I, w,) to the state
(0,w, ), and is applicable to the state (1,w,). If the final Q -operator does not work during the
process of computation, then the mentioned sequence (1,w,), (&,,w,),... is infinite. In this case
we say that the considered Q -algorithm is not applicable to the state (L, w,).

The following theorem is proved in [17] (see also [8], pp. 312-315) in some other terms.

Theorem 3 ([17]): For any PtRF f(x) there exists an Q -algorithm which transforms the state
(1,2%") to the state (0,22M) when the value f(x) is defined, and is not applicable to the state

(1,2%") in the opposite case.

If some Q-algorithm has the property described in Theorem 3, then we say that this Q-
algorithm realizes the PtRF f(x). For example, the following Q -algorithm:

(0,end), (1,x3,2), (2,:6,1,3), (3,x2,0)

realizes the GRF f(x)=0.
We will use also another classes of algorithms, namely, I', -algorithms for n >1.

These algorithms are actually special cases of graph-schemes with memory ([18]), though
they will be described below in some other terms than the descriptions in [18].
Any I’ -algorithm consists of finite number of I', -operators. The set of all I',-operators

included in the considered I', -algorithm we call “scheme” of this I', -algorithm. The index »n in
the notation I, denotes that the objects transformed by the considered I', -algorithm are n-
tuples (x,,x,,...,x,), where x,e N for 1<i<n. The notion of identifier attached to the
considered I -operator is defined similarly to the notion of “identifier attached to the considered
Q -operator” which is given above; we suppose that different I' -operators have different
identifiers attached to them. If some identifier is attached to a I', -operator, we will say that this
I, -operator has the mentioned identifier.

The state of the computation process realized by a I' -algorithm is defined as an (n+1)-
tuple (&, x,,x;,...,x,,,), where & is the identifier attached to the I', -operator which is working
on the considered step of the process, and (x,,x;,...,x,,,) 1s the n-tuple of numbers obtained by
the previous steps of the process. I, -operators are algorithms having one of the following forms

(where the notations &, B, y have the same sense as &, [, ¥ in the description of Q-
operators given above):

(1) (a,end). This I' -operator we call “a final operator”; it finishes the process of

computation.
(2) (a,x;+1,5), where 2<i<n+l1. This I -operator transforms the state

(O, Xy s Xy ey Xy Xy Xy sees X, ) tO the state (B, X, Xq,e, X X, + L4 e X)) -
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(3) (a,x,- 1,5), where 2<i<n+1; we denote by the symbol —~ the PmRF such that x -
y=x—y when x>y, and x— y=0 when x<y (cf. [3]-[8]). This I' -operator

transforms the state (&, x,,X;,..., X, |, X;,X x,,,) to the state (5,x,,X;,....X,_,X; —

25 i—1°7%i

Lx, X, ).
4) (a,x; =0,8,y) ,where 2<i<n+1. This T -operator transforms the state
(a,x,y,%4,..,X,,,) to the state (f,x,,x;,....x,,,) Wwhen x, =0, and to the state

(7. x5, %5,...,%,,,) when x; #0.

We suppose that any scheme of I', -algorithm contains only a single final I', -operator which has
the identifier & =0. Among the I, -operators contained in the scheme of the considered T, -
algorithm we distinguish the initial I", -operator having the identifier & =1; the working of this
operator begins the process of computation. This process is described by a sequence of states
(@,0), (,,0,),..., (&,,0,),... where @, =1, and any Q, is an n-tuple (x{’,x{",....x\)).
Such a sequence is finite if the final I', -operator works during the mentioned process, and is
infinite in the opposite case. If the sequence of states is finite, then we say that the considered I",
-algorithm is applicable to the state (1,Q,); in this case we say also that I", -algorithm transforms
the state (1,Q,) to the state (0,0, ), where (0,0, ) is the last state in the considered sequence. If
the sequence of states (L,Q,), (2,0,),... is infinite, then we say that the considered I, -
algorithm is not applicable to the state (1,0,).

We say that a I, -algorithm (where n=>2) realizes a PtRF f(x), if for any xe N it
transforms the state (1,27,0,0,...,0) to the state (0,2f .0,0....,0) when the value f(x) is defined,
and is not applicable to the state (1,2%,0,0,...,0) when the value f(x) is not defined. For
example, the following I' -algorithm realizes the PtRF f(x) which is nowhere defined:

(0,end), (1x, = L1).

Lemma 3.1: If the initial state in the process of computation realized by some Q -algorithm has
the form (1,2",3"), where ue N, ve N, then any state («,,w,) included in this process

m

satisfies the condition w, =2'-3", where t,s€ N .
The proof is easily obtained from the definitions.

Lemma 3.2: For any Q -algorithm ¢ realizing some PtRF f(x) there exists a I',-algorithm y
realizing the same PtRF f(x).

Proof: We will consider the process of computation realized by the Q -algorithm ¢ . Any initial

state in such a process has the form (1,2%') that is (1,2> -3%). As it is proved in Lemma 3.1 any
state included in such a process has the form (e,,,2'-3") where ¢,s€ N . For any Q -operator
included in the scheme of Q-algorithm ¢ we will construct some subscheme of the supposed
I', -algorithm y which has the following property: if the considered Q -operator transforms the

state («,2"-3") to the state (£,2"-3") then the corresponding subscheme of the supposed T, -
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algorithm y transforms the state (a,u,v) of I,-algorithmy to the state (f,z,5). We will
consider the following cases.

Case 1. The considered Q -operator has the form (a,x2, ) . In this case the required subscheme
of the supposed I, -algorithm y consists of the single I, -operator (&, x, +1,5) .

Case 2. The considered Q -operator has the form (a,x3, £) . In this case the required subscheme
of the supposed I, -algorithm y consists of the single I, -operator (&, x, +1,).

Case 3. The considered Q -operator has the form («,:6,0,7). In this case the required
subscheme of the supposed I,-algorithm y consists of the following I, -operators:
(a,x,=0,7,0,), (,,x,=0,7,6,), (0,,x,-18,), (8,,x,-1,8). Here 6, 0,, I, are
identifiers attached to additional I, -operators which are included in the scheme of the supposed

I', -algorithm for modeling the working of the considered € -operator. Of course, these
identifiers should be different in different subschemes of this kind.

Case 4. The considered Q -operator has the form (0,end). This Q -operator does not transform
the states of Q -algorithm. So, the corresponding I, -operator has the same form (0,end) .

The scheme of the supposed I’,-algorithm is obtained as the union of subschemes of the
mentioned forms constructed for all Q-operators included in the scheme of the given Q-
algorithm. It is easily seen that such I, -algorithm satisfies the conditions of Lemma 3.2. This
completes the proof.

Corollary 1: For any PtRF f(x) and any n=>?2 there exists a I, -algorithm realizing the PtRF
f .

The proof is based on Theorem 3 and is similar to that of Lemma 3.2.

Note: The statements established in Lemma 3.2 and in its Corollary 1 are similar to Theorem 7.1
in [18], where it is proved that any PtRF may be realized by some graph-scheme with memory
constructed on the base of the functions x+1, x =~ 1 and of the predicate x=0. However,
graph-schemes with memory corresponding to I -algorithms are essentially simpler than the
graph-schemes considered in Theorem 7.1 in [18]. Besides, the definition of realizability of PtRf
by I -algorithm differs from the corresponding definition in [18].

Now let us define for any I, -algorithm, where n =1, the predicate describing one step of
computation process realized by this I' -algorithm. Such a predicate we will call “a step
describing predicate”, or, shortly, “SD-predicate” for a given I', -algorithm. Namely, if 7 is the
SD-predicate for a given I', -algorithm, then 7(x,,x,,...,x,,,,) is true if and only if the given I, -

algorithm transforms the state (x,,x,.,...,x,,,) to the state (x

n+2’x

n+3%°°"?

X,,.,) by one step of the
corresponding computation process. Let us note the following property of the predicate 7: if
(x,,x,,...,x,,,) 18 a state of the computational process realized by the considered I', -algorithm,
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such that x,# 0, then there exists a single (n+1)-tuple (x,,,,x,,5,....%,,,,) such that
(X, %, ,.... X,,,,) 18 true.

The set of truth for the mentioned predicate 17 we will call “SD-set” for the considered I, -
algorithm. Clearly, such a set 7 has the following property: (x,,x,.,...,X,,,,)€ 7 if and only if
(x,,X,,...,x,,,) 1s a state of computation process realized by the considered I, -algorithm, and

this I', -algorithm transforms the state (x,,x,,...,x,,,) to the state (x,,,x

n+33°*

..X,,,,) by one step

n+2°
of the computation process.
Now let us define the forms of SD-predicates and SD-sets for I', -algorithms. We suppose

that some I', -algorithm y, where n =1 is fixed. We will define the forms of SD-predicates for

any I' -operator included in the scheme of y .

Case 1. The considered I, -operator has the form («,x, +1,8) . Such I, -operator transforms the

state (a’ x2’x3 ""’xi—l’xi’xi+1"“’xn+l) to the state (IB’ 'xn+3’xn+4 """xn+i"xn+i+l"xn+i+2""’x2n+2) 4

where X, =X, X, =X X, =X 0 X =X H L X0 S X X0 =X

The SD-predicate for such a I -operator is expressed by the following formula:
(=) & (x,, =) & (x,,, =x,) & (x,,, =x;,) & ... & (x,,, = x,_,) & (x =S(x)) &

&(x =x,)& .. & (x5,,, =%,,,)-

Case 2. The considered I', -operator has the form (&, x, - 1, 8). Such I, -operator transforms the

n+i n+i+l

n+i+2

state (&, Xy, Xypeees Xy X, X, ,X,,) to the state (f,x,,;,x X ... X

n+3° 7 n+42°00 Fn+i® n+i+1’x

. Xy,,,) ;Where

i+1o°° n+i+2°°"

X

n+3 x2’ X

wrd = Xz X T X s X =X L X S X e Xy =X,

The SD-predicate for such a I’ -operator is expressed by the following formula:
(x, = a) & (x =p)& (x,,, =x,) & (x =x)& .. & (x,,;, =x,_,)& (x =x.,,)&..

n+2

& (X5, = %,,)) & ((x,,,,, =0) & (x; =0)) v (=(x; =0) & (x;, = S(x,,:1,)))

n+4 n+i n+i+2

Case 3. The considered T, -operator has the form (&, x, =0, 3,%). Such I, -operator transforms

the state (&, x,,x;,...,X,,;) to the states (B,X, .3,%,, 45 X5,15) OF (¥V,X,3,X wX5,.,) (where

n+d o
X3 =Xys X, =X3,...,%,,,, = X,,;) 10 the cases, when, correspondingly, x, =0 or x;, #0. The
SD-predicate for such a I -operator is expressed by the following formula:
(x, =a)& (x,,;, = x,) & (x =x)& .. &(x,,,,=x,,)& ((x,,, =0)& (x,=0)) v
((x,., = 7) & = (x; = 0))).

n+4

Case 4. The considered I, -operator has the form (0,end). Such I', -operator does not transform
the states of I', -algorithm, so, an SD-predicate is not considered for such I', -operator.

The SD-predicate for I -algorithm y is expressed by the formula obtained as the
disjunction of formulas expressing SD-predicates constructed above for all I, -operators
contained in the scheme of y and different from the operator (0,end). The SD-set for I -

algorithm y is obtained as the set of truth for the corresponding SD-predicate. Clearly, such SD-
set is a (2n + 2)-dimensional arithmetical set.
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Lemma 3.3: SD-predicate and SD-set constructed for any I -algorithm, where n2>1, are

strongly positive.

The proof is obtained evidently from the definitions.

Lemma 3.4: (cf. [13], p.72). If A is a 2k-dimensional set, AC N**, then 2k-tuple
(Xys Xyseees Xps Vy» Yauees ¥, ) belongs to the transitive closure A" of the set A if and only if there
exists a sequence (Q,,0,.....0,) of k-tuples, such that m=22, Q, =(x,X,,...X,),
0, =, ¥y ¥,) and any 2k -tuple (Q,,0,,,) for 1<i<m—1 belongs to A.

The proof is easily obtained using the definition of the transitive closure A".

4. Proof of Theorem 1

Let M be any one-dimensional creative set ([3], [S], [7], [8]). We consider the PtRF f(x) such
that f(x)=0 when xe M, and the value f(x) is indefined when x¢ M . For any fixed n>2
we construct (using Corollary of Lemma 3.2) a I, -algorithm y realizing the PtRF f(x);
clearly, ¥ transforms the state (1,2%,0,0,...,0) to the state (0,1,0,0,...,0) when xe M and is not
applicable to the state (1,2%,0,0,...,0) when x& M . Now, let us consider the SD-predicate 77 and
SD-set & for y. Clearly, n is true for (2n+2)-tuple (X,X,,...;%, 15 Vs Vsees Vo) (and the
statement  (X;,Xy,..., X, Vs Yase-s Y,y )€ Z holds) if and only if w transforms the state
(x,,%,,...,x,,,) to the state (y,,y,,....y,,,) by one step of the process of computation. Let us
consider the transitive closure 7~ of the SD-set 7.

Using Lemma 3.4 we conclude that (x,,X,,..., X,,;» V;»Y s Vi )€ Z  if and only if there
exists a sequence (0,,0,,...0,) of (n+1)-tuples such that Q =(x,x,,..,X,,),
0, =Yy Y,) > and (Q;,0,,,)€ # for any i such that 1<i<m. But in this case the
sequence (Q,,0,.....Q0,,) is a sequence of states of the I' -algorithm y which describes some
part of a process of computation implemented by the I' -algorithm i .

Hence, the (2n+2)-tuple (1,2,0,0,...,0,0,1,0,0,...,0) belongs to z°if xe M . Ttis easily seen
that the mentioned (271 +2)-tuple does not belong to 7~ if x& M . Let us consider the set
7" eN such that its (2n +2) -dimensional image is . Then
¢,,.,(1,2%,0,0,...,0,0,1,00.,...,0) € £~ if and only if xe M . So the set M is m-reducible to the set
7" . Using the corresponding theorem concerning m -reducibility (see, for example, [8], p. 161),

we conclude that the set 7~ is creative, the set 7z~ is creative in the generalized sense, and the
set 7 is strongly positive (see Lemma 3.3). This completes the proof.

Note: It is seen from Theorem 1 that the transitive closures of some strongly positive sets having
the dimensions 6, 8, 10, ... are creative in the generalized sense. On the other side (Theorem 2)
the transitive closure of any 2-dimensional strongly positive set is primitive recursive. Similar
problem concerning 4-dimensional strongly positive sets remains open.
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huwn ynqhwnhy puquuswth pyupwiwljut puqunipniuubph
dwuhl

U. Uwlnijjul
Udthnthnd

[1]-nid b [2]-nid uwwhdwiynid b hbwnwgnuynid E wynqhnhy pdupwbuljui
pwtwdlh  qunuthwpp 0,=,5)  uhquwwnipuynid,  (npnbkny  S(x)=x+1):
Puquuswthpupwbuljut puqunipiniup Ynsynid £ ynqhwnhy, tph wjt npnoynd k
nplk ynghwnhy pwtwdlh dhongny: thunnwplynid £ ynghinhy pwqunipiniuutph npuup
nplk Eipunwu, wjuhtpt® juhun wnghwnhy puqunipniuubph nuup: Uywugnigynud E,
np gwulwugwé n-h hwdwp, npnbn 723, gnmipnit mth 2z-swihwih juhuwn
wynqhwnphy pwqunipinil, nph wpwiqhwnhy thwlnudp ntlnipuhy sk Upniu Ynnuhg
wynud k, np gumujugws 2-swthwtth fpthun wynghwnhy puqunipinit nith wwupqugnyu
nkinipuhy nnpwtghwnhy thwlnid:

O CTPOIro NO3UMTUBHBLIX MHOI'OMEPHBIX apﬂ(l)MeTquCKHX
MHOKECTBaAX

C. Manyxksx

AHHOTanus

[TonsiTe no3utuBHON apudmerndeckoil popmynsl B curnarype (0,=,5), rme S(x)=x+1,
ompezneneHo u wucciaefoBaHo B [1] u [2]. MuoromepHoe apudmerudyeckoe MHOXECTBO
Ha3pIBaeM IIO3UTHBHBIM, €CJIM OHO 3aJaéTcA TO3HUTHBHOM dopmysoi. PaccmarpuBaercs
TOJKJIacC KJIacca MOSUTHUBHBIX MHOXECTB, 2 MIMEHHO, KJIACC CTPOTO IMO3UTHBHBIX MHOXECTB.
JlokaspiBaeTcsa, 4TO Mg BCAKOTO 1 =3 CyIecTByeT CTPOrO IIO3UTHBHOE MHOXECTBO
pasMepHOCTH 21, TaKoe, YTO €ro TPAaH3UTHUBHOe 3aMbIKaHHe HepeKypcuBHO. C mpyroit
CTOPOHBI, YKa3bIBaeTCHA, YTO TPAaH3UTUBHOE 3aMBIKaHUE BCAKOIO CTPOrO IO3UTUBHOIO
MHOXeCTBa Pa3MepHOCTH 2 IPUMHUTUBHO PeKyPCUBHO.



