On k-Ended Spanning and Dominating Trees

Zhora G. Nikoghosyan*

Institute for Informatics and Automation Problems of NAS RA e-mail: zhora@ipia.sci.am

Abstract

A tree with at most k leaves is called a k-ended tree. Let t_k be the order of a largest k-ended tree in a graph. A tree T of a graph G is said to be dominating if V(G-T) is an independent set of vertices. The minimum degree sum of any pair (triple) of nonadjacent vertices in G will be denoted by σ_2 (σ_3). The earliest result concerning spanning trees with few leaves (by the author, 1976) states: (*) if G is a connected graph of order n with $\sigma_2 \geq n - k + 1$ for some positive integer k, then k0 has a spanning k-ended tree. In this paper we show: (i) the connectivity condition in (*) can be removed; (ii) the condition $\sigma_2 \geq n - k + 1$ in (*) can be relaxed by replacing k1 with k2, then k3 has a dominating k4-ended tree. All results are sharp.

Keywords: Hamilton cycle, Hamilton path, Dominating cycle, Dominating path, Longest path, k-ended tree.

1. Introduction

Throughout this article we consider only finite undirected graphs without loops or multiple edges. The set of vertices of a graph G is denoted by V(G) and the set of edges by E(G). A good reference for any undefined terms is in [1].

For a graph G, we use n, δ and α to denote the order (the number of vertices), the minimum degree and the independence number of G, respectively. For a subset $S \subseteq V(G)$ we denote by G[S] the subgraph of G induced by S. If $\alpha \geq k$ for some integer k, let σ_k be the minimum degree sum of an independent set of k vertices; otherwise we let $\sigma_k = +\infty$.

If Q is a path or a cycle in a graph G, then the order of Q, denoted by |Q|, is |V(Q)|. Each vertex and edge in G can be interpreted as simple cycles of orders 1 and 2, respectively. The graph G is Hamiltonian if G contains a Hamilton cycle, i.e. a cycle containing every vertex of G. A cycle G of G is said to be dominating if G is an independent set of vertices.

We write a cycle Q with a given orientation by \overrightarrow{Q} . For $x, y \in V(Q)$, we denote by $x \overrightarrow{Q} y$ the subpath of Q in the chosen direction from x to y. For $x \in V(Q)$, we denote the successor and the predecessor of x on \overrightarrow{Q} by x^+ and x^- , respectively.

A vertex of degree one is called an end-vertex, and an end-vertex of a tree is usually called a leaf. The set of end-vertices of G is denoted by End(G). For a positive integer k, a

^{*}G.G. Nicoghossian (up to 1997)

tree T is said to be a k-ended tree if $|End(T)| \leq k$. A Hamilton path is a spanning 2-ended tree. A Hamilton cycle can be interpreted as a spanning 1-ended tree. In particular, K_2 is Hamiltonian and a 1-ended tree. We denote by t_k the order of a largest k-ended tree in G. By the definition, t_1 is the order of a longest cycle, and t_2 is the order of a longest path in G.

Our starting point is the earliest sufficient condition for a graph to be Hamiltonian due to Dirac [2].

Theorem A ([2]): Every graph with $\delta \geq \frac{n}{2}$ is Hamiltonian.

In 1960, Ore [3] improved Theorem A by replacing the minimum degree δ with the arithmetic mean $\frac{1}{2}\sigma_2$ of two smallest degrees among pairwise nonadjacent vertices.

Theorem B ([3]): Every graph with $\sigma_2 \geq n$ is Hamiltonian. The analog of Theorem B for Hamilton paths follows easily.

Theorem C ([3]): Every graph with $\sigma_2 \geq n-1$ has a Hamilton path.

In 1971, Las Vergnas [4] gave a degree condition that guarantees that any forest in G of limited size and with a limited number of leaves can be extended to a spanning tree of G with a limited number of leaves in an appropriate sense. As a corollary, this result implies a degree sum condition for the existence of a tree with at most k leaves including Theorem B and Theorem C as special cases for k = 1 and k = 2, respectively.

Theorem D ([4], [5], [6]): If G is a connected graph with $\sigma_2 \ge n - k + 1$ for some positive integer k, then G has a spanning k-ended tree.

However, Theorem D was first openly formulated and proved in 1976 by the author [6] and was reproved in 1998 by Broersma and Tuinstra [5]. Moreover, the full characterization of connected graphs without spanning k-ended trees was given in [7] when $\sigma_2 \geq n - k$ including the well-known characterization of connected graphs without Hamilton cycles when $\sigma_2 \geq n - 1$. This particular result was reproved in 1980 by Nara Chie [8].

The next two results on this subject are not included in the recent survey paper [9]. We call a graph G hypo-k-ended if G has no spanning k-ended tree, but for any $v \in V(G)$, G-v has a spanning k-ended tree.

Theorem E ([10]): For each $k \geq 3$, the minimum number of vertices (edges, faces, respectively) of a simple 3-polytope without a spanning k-ended tree is 8 + 3k (12 + 6k, 6 + 3k, respectively).

Theorem F ([11]): For each $n \ge 17k$ and $k \ge 2$, except possible for n = 17k + 1, 17k + 2, 17k + 4 and 17k + 7, there exist hypo-k-ended graphs of order n.

In this paper we prove that the connectivity condition in Theorem D can be removed, and the conclusion can be strengthened.

Theorem 1: If G is a graph with $\sigma_2 \ge n - k + 1$ for some positive integer k, then G has a spanning k-ended forest.

Next, we show that Theorem D can be improved by relaxing the condition $\sigma_2 \ge n - k + 1$ to $\sigma_2 \ge t_{k+1} - k + 1$.

Theorem 2: Let G be a connected graph with $\sigma_2 \ge t_{k+1} - k + 1$ for some positive integer k. Then G has a spanning k-ended tree.

The graph $(\delta + k)K_1 + K_{\delta}$ shows that the bound $t_{k+1} - k + 1$ in Theorem 2 cannot be relaxed to $t_k - k + 1$. Finally, we give a dominating analog of Theorem D.

Theorem 3: If G is a connected graph with $\sigma_3 \ge t_{k+1} - 2k + 4$ for some integer $k \ge 2$, then G has a dominating k-ended tree.

The graph $(\delta + k - 1)K_2 + K_{\delta-1}$ shows that the bound $t_{k+1} - 2k + 4$ in Theorem 3 cannot be relaxed to $t_k - 2k + 4$.

The following corollary follows immediately.

Corollary 1: If G is a connected graph with $\sigma_3 \ge n - 2k + 4$ for some integer $k \ge 2$, then G has a dominating k-ended tree.

The graph $(\delta + k - 1)K_2 + K_{\delta-1}$ shows that the bound $\sigma_3 \ge t_{k+1} - 2k + 4$ in Theorem 3 cannot be relaxed to $\sigma_3 \ge t_{k+1} - 2k + 3$.

2. Proofs

Proof of Theorem 1: Let G be a graph with $\sigma_2 \geq n - k + 1$ and let $H_1, ..., H_m$ be the connected components of G. Let $\overrightarrow{P} = x \overrightarrow{P} y$ be a longest path in H_1 . If $|P| \geq n - k + 2$ then $|G - P| = n - |P| \leq k - 2$, implying that G has a spanning k-ended forest. Now let $|P| \leq n - k + 1$. Since P is extreme, we have $N(x) \cup N(y) \subseteq V(P)$. Recalling also that $\sigma_2 \geq n - k + 1$, we have (by standard arguments) $N(x) \cap N^+(y) \neq \emptyset$, implying that G[V(P)] is Hamiltonian. Further, if $|V(P)| < |V(H_1)|$ then we can form a path longer than P, contradicting the maximality of P. Hence, $|V(P)| = |V(H_1)|$, that is H_1 is Hamiltonian as well. By a similar argument, H_i is Hamiltonian for each $i \in \{1, ..., m\}$ and therefore, has a spanning tree with exactly one leaf. Thus, G has a spanning forest with exactly m leaves.

It remains to show that $m \leq k$. If m = 1 then G has a spanning 1-ended tree and therefore, has a spanning k-ended tree. Let $m \geq 2$ and let $x_i \in V(H_i)$ (i = 1, ..., m). Clearly, $\{x_1, x_2, ..., x_m\}$ is an independent set of vertices. Since $d(x_i) \leq |V(H_i)| - 1$, we have

$$\sigma_2 \le \sigma_m \le \sum_{i=1}^m d(x_i) \le \sum_{i=1}^m |V(H_i)| - m = n - m.$$

On the other hand, by the hypothesis, $\sigma_2 \geq n - k + 1$, implying that $m \leq k - 1$.

Proof of Theorem 2: Let G be a connected graph with $\sigma_2 \ge t_{k+1} - k + 1$ for some positive integer k.

Case 1: G is Hamiltonian.

By the definition, G has a spanning 1-ended tree T_1 . Since $k \geq 1$, T_1 is a spanning k-ended tree.

Case 2: G is not Hamiltonian. Let T_2 be a longest path in G.

Case 2.1: $\sigma_2 \ge t_2$.

By standard arguments, $G[V(T_2)]$ is Hamiltonian. If $t_2 < n$ then recalling that G is connected, we can form a path longer than T_2 , contradicting the maximality of T_2 . Otherwise G is Hamiltonian and we can argue as in Case 1.

Case 2.2: $\sigma_2 \leq t_2 - 1$.

If k=1 then by the hypothesis, $\sigma_2 \geq t_2$, implying that G is Hamiltonian and we can argue as in Case 1. Let $k \geq 2$. Extend T_2 to a k-ended tree T_k and assume that T_k is as large as possible. If T_k is a spanning tree then we are done. Let T_k be not spanning. Then $|End(T_k)| = k$ since otherwise we can form a new k-ended tree larger than T_k , contradicting the maximality of T_k . Now extend T_k to a largest (k+1)-ended tree T_{k+1} . Recalling that T_k is a largest k-ended tree, we get $|End(T_{k+1})| = k+1$ and therefore,

$$t_{k+1} \ge |T_{k+1}| = |T_2| + |T_{k+1} - T_2|.$$

Observing that $|T_2| = t_2$ and $|T_{k+1} - T_2| \ge |End(T_{k+1})| - 2 = k - 1$, we get

$$t_{k+1} \ge t_2 + k - 1 \ge \sigma_2 + k$$
,

contradicting the hypothesis.

Proof of Theorem 3: Let G be a connected graph with $\sigma_3 \geq t_{k+1} - 2k + 4$ for some integer $k \geq 2$, and let $\overrightarrow{T_2} = x\overrightarrow{T_2}y$ be a longest path in G. If T_2 is a dominating path then we are done. Otherwise, since G is connected, we can choose a path $\overrightarrow{Q} = w\overrightarrow{Q}z$ such that $V(T_2 \cap Q) = \{w\}$ and $|Q| \geq 3$. Assume that |Q| is as large as possible. Put $T_3 = T_2 \cup Q$. Since T_2 and Q are extreme, we have $N(x) \cup N(y) \subseteq V(T_2)$ and $N(z) \subseteq V(T_3)$. Let w^+ be the successor of w on T_2 . If $xy \in E$ then $T_3 + xy - w^+w$ is a path longer than T_2 , a contradiction. Let $xy \notin E$. By the same reason, we have $xz, yz \notin E$. Thus, $\{x, y, z\}$ is an independent set of vertices.

Claim 1: $N^-(x) \cap N^+(y) \cap N(z) = \emptyset$.

Proof: Assume the contrary.

Case 1: $v \in N^{-}(x) \cap N^{+}(y)$.

If v = w then $xv^+ \in E$ and $T_3 + xv^+ - vv^+$ is a path longer than T_2 , a contradiction. Suppose without loss of generality that $v \in V(w^+ \overrightarrow{T_2} y)$. If $v = w^+$ then $T_3 + xv^+ - wv - vv^+$ is a path longer than T_2 , a contradiction. Finally, if $v \in V(w^{+2} \overrightarrow{T_2} y)$ then

$$T_3 + xv^+ + yv^- - vv^- - vv^+ - ww^+$$

is a path longer than T_2 , a contradiction.

Case 2: $v \in N^-(x) \cap N(z)$.

If $v \in V(x\overrightarrow{T_2}w^{-2})$ then

$$T_2 + xv^+ + zv - vv^+ - ww^-$$

is a path longer than T_2 , a contradiction. Next, if $v = w^-$ then $T_2 + zw^- - ww^-$ is a path longer than T_2 , a contradiction. Further, if v = w then $T_2 + xv^+ - ww^+$ is a path longer than T_2 , a contradiction. Finally, if $v \in V(w^+\overrightarrow{T_2}y)$ then

$$T_2 + xv^+ + zv - ww^+ - vv^+$$

is a path longer than T_2 , a contradiction.

Case 3: $v \in N^{+}(y) \cap N(z)$.

By a symmetric argument, we can argue as in Case 2. Claim 1 is proved.

By Claim 1,

$$t_3 \ge |T_3| \ge |N^-(x)| + |N^+(y)| + |N(z)| + |\{z\}|$$

= $d(x) + d(y) + d(z) + 1 \ge \sigma_3 + 1.$ (1)

If k=2 then by the hypothesis, $\sigma_3 \geq t_{k+1} - 2k + 4 = t_3$, contradicting (1). Let $k \geq 3$. If T_3 is a dominating 3-ended tree then clearly we are done. Otherwise $G-T_3$ contains an edge and we can extend T_3 to a largest 4-ended tree T_4 with $|T_4| \geq |T_3| + 2$. If k=3, then by the hypothesis, $\sigma_3 \geq t_{k+1} - 2k + 4 = t_4 - 2$. On the other hand, by (1), $t_4 \geq |T_4| \geq |T_3| + 2 \geq \sigma_3 + 3$, a contradiction. Hence, $k \geq 4$. If T_4 is dominating, then we are done. Otherwise we can extend T_4 to a largest 5-ended tree T_5 with $|T_5| \geq |T_4| + 2 \geq |T_3| + 4$. This procedure may be repeated until a dominating (r+1)-ended tree T_{r+1} is found. If $r+1 \leq k$ then we are done. Let $r \geq k$. Then

$$t_{k+1} \ge |T_{k+1}| \ge |T_3| + 2(k-2)$$

 $\ge \sigma_3 + 2k - 3 \ge t_{k+1} + 1,$

a contradiction. The proof is complete.

References

- [1] J. A. Bondy and U. S. R. Murty, *Graph Theory with Applications*, Macmillan, London and Elsevier, New York, 1976.
- [2] G. A. Dirac, "Some theorems on abstract graphs", Proceedings of the London Mathematical Society, vol. 2, no. 3, pp. 69-81, 1952.
- [3] O. Ore, "A note on hamiltonian circuits", American Mathematical Monthly, vol. 67, p. 55, 1960.
- [4] M. Las Vergnas, "Sur une propriété des arbres maximaux dans un graphe", Comptes Rendus de l'Académie des sciences Paris Sér. A 272, pp. 1297-1300, 1971.
- [5] H. Broersma and H. Tuinstra, "Independence trees and Hamilton cycles", *J. Graph Theory*, vol. 29, no. 4, pp. 227-237, 1998.
- [6] Zh.G. Nikoghosyan, "Two theorems on spanning trees", *Uchenie Zapiski EGU (Scientific Transactions of the Yerevan StatUniversity)*, Ser. Matematika, (in Russian), no. 3, pp. 3-6, 1976.
- [7] Zh. G. Nikoghosyan, "Theorems on Hamilton cycles and spanning trees", Molodoi nauchnii rabotnik, Ser. Natural Sciences, Yerevan State University, (in Russian), vol. 24, no. 2, pp. 15-20, 1976.
- [8] N. Chie, "On sufficient conditions for a graph to be hamiltonian", *Natural Science*, Ochanomizu University, vol. 31, no. 2, pp. 75-80, 1980.
- [9] K. Ozeki and T. Yamashita, "Spanning trees A survey", *Graphs Combinatorics*, vol. 27, no. 1, pp. 1-26, 2011.
- [10] Zh. G. Nikoghosyan, "Spanning trees on 3-polytopes", *Kibernetika*, (in Russian), no. 4, pp. 35-42, 1982.

[11] Zh. G. Nikoghosyan, "n-spanning and hypo-n-spanning graphs", *Tanulmanyok*, Budapest, (in Russian), no. 135, pp. 153-167, 1982.

Submitted 06.11.2014, accepted 28.01.2015.

Գրաֆում k-ավարտ կմախքային և դոմինանտ ծառերի մասին Ժ. Նիկողոսյան

Ամփոփում

Ծառի մեկ աստիճան ունեցող գագաթը կոչվում է տերև։ Գրաֆում k-ից ոչ ավել տերև ունեցող ծառը կոչվում է k-ավարտ ծառ։ Գրաֆում ամենամեծ k-ավարտ ծառի գագաթների քանակը նշանակվում է t_k -ով։ G գրաֆի T ծառը կոչվում է դոմինանտ, եթե V(G-T)-ն գագաթների անկախ բազմություն է։ Դիցուք, σ_2 -ը (σ_3 -ը) գրաֆում ոչ հարևան զույգ (եռյակ) գագաթների աստիճանների հնարավոր ամենափոքր գումարն է։ Քիչ տերևներով կմախքային ծառերին առնչվող ամենավաղ արդյունքը (որը ստացվել է հեղինակի կողմից 1976-ին) պնդում է՝ (*) եթե n գագաթանի G կապակցված գրաֆր բավարարում է $\sigma_2 \geq n-k+1$ պայմանին ինչ- որ մի k դրական ամբողջ թվի համար, ապա G-ն ունի k-ավարտ կմախքային ծառ։ Ներկա աշխատանքում ապացուցվում է, որ (*)-ում կապակցվածության պայմանը կարելի է բաց թողնել։ Երկրորդ արդյունքը (*)-ի ուժեղացումն է՝ n-ը փոխարինելով t_{k+1} -ով (ընդհանրապես $t_{k+1} \leq n$)։ Երրորդ արդյունքը երկրորդի տարբերակն է՝ դոմինանտ k-ավարտ ծառերի համար։ Քերված բոլոր արդյունքները ենթակա չեն բարելավման։

О k-висячих остовных и доминантных деревьях

Ж. Никогосян

Аннотация

Дерево с не более чем k-висячими вершинами называется k-висячим деревом. Число вершин максимального k-висячего дерева обозначается через t_k . Через σ_2 (σ_3)обозначается минимальная сумма степеней двух (трех) попарно несмежных вершин. Дерево T в графе G называется доминантным, если V(G-T) является независимым множеством вершин. В 1976 году доказано (автором): (*) если п вершинный связный граф G удовлетворяет условию $\sigma_2 \geq n-k+1$ для некоторого целого числа k, то G содержит k-висячое остовное дерево. В настоящей работе доказывается, что условие связности в (*) можно опускать. Второй результат является усилением (*) с помощью замены п через t_{k+1} (напомним, что $t_{k+1} \leq n$). Приводится также версия второго результата для доминантных k-висячих деревьев. Все результаты неулучшаемы.