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Abstract

A tree with at most k leaves is called a k-ended tree. Let ¢; be the order of a
largest k-ended tree in a graph. A tree T of a graph G is said to be dominating if
V(G — T) is an independent set of vertices. The minimum degree sum of any pair
(triple) of nonadjacent vertices in G will be denoted by oo (03). The earliest result
concerning spanning trees with few leaves (by the author, 1976) states: (k) if G is a
connected graph of order n with g9 > n— k41 for some positive integer k, then G has
a spanning k-ended tree. In this paper we show: (i) the connectivity condition in ()
can be removed; (ii) the condition o9 > n — k + 1 in (%) can be relaxed by replacing
n with tg,1; (iéi) if G is a connected graph with o3 > 51 — 2k + 4 for some integer
k > 2, then G has a dominating k-ended tree. All results are sharp.

Keywords: Hamilton cycle, Hamilton path, Dominating cycle, Dominating path,
Longest path, k-ended tree.

1. Introduction

Throughout this article we consider only finite undirected graphs without loops or multiple
edges. The set of vertices of a graph G is denoted by V(G) and the set of edges by E(G).
A good reference for any undefined terms is in [1].

For a graph G, we use n, 0 and « to denote the order (the number of vertices), the
minimum degree and the independence number of G, respectively. For a subset S C V(G)
we denote by G[S] the subgraph of G induced by S. If a > k for some integer k, let oy be
the minimum degree sum of an independent set of k vertices; otherwise we let o, = +00.

If @ is a path or a cycle in a graph G, then the order of @, denoted by |Q], is |V (Q)].
Each vertex and edge in GG can be interpreted as simple cycles of orders 1 and 2, respectively.
The graph G is Hamiltonian if G' contains a Hamilton cycle, i.e. a cycle containing every
vertex of G. A cycle C of G is said to be dominating if V(G — C') is an independent set of
vertices. . .

We write a cycle Q with a given orientation by @ . For z,y € V(Q), we denote by = Qy
the subpath of @ in the chosen direction from z to y. For x € V(Q), we denote the successor
and the predecessor of z on 5 by T and z~, respectively.

A vertex of degree one is called an end-vertex, and an end-vertex of a tree is usually
called a leaf. The set of end-vertices of G is denoted by End(G) . For a positive integer k, a
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tree T is said to be a k-ended tree if |End(T)| < k. A Hamilton path is a spanning 2-ended
tree. A Hamilton cycle can be interpreted as a spanning l-ended tree. In particular, Ks is
Hamiltonian and a 1-ended tree. We denote by t; the order of a largest k-ended tree in G.
By the definition, ¢, is the order of a longest cycle, and ¢, is the order of a longest path in
G.

Our starting point is the earliest sufficient condition for a graph to be Hamiltonian due
to Dirac [2].

Theorem A ([2]): Every graph with 6 > % is Hamiltonian.
In 1960, Ore [3] improved Theorem A by replacing the minimum degree ¢ with the arith-
metic mean %ag of two smallest degrees among pairwise nonadjacent vertices.

Theorem B ([3]): Every graph with oo > n is Hamiltonian.
The analog of Theorem B for Hamilton paths follows easily.

Theorem C ([3]): Every graph with oo > n — 1 has a Hamilton path.

In 1971, Las Vergnas [4] gave a degree condition that guarantees that any forest in G of
limited size and with a limited number of leaves can be extended to a spanning tree of G
with a limited number of leaves in an appropriate sense. As a corollary, this result implies
a degree sum condition for the existence of a tree with at most k leaves including Theorem
B and Theorem C as special cases for k =1 and k& = 2, respectively.

Theorem D ([4], [5], [6]): If G is a connected graph with oo > n —k + 1 for some positive
integer k, then G has a spanning k-ended tree.

However, Theorem D was first openly formulated and proved in 1976 by the author [6]
and was reproved in 1998 by Broersma and Tuinstra [5]. Moreover, the full characterization
of connected graphs without spanning k-ended trees was given in [7] when oy > n — k
including the well-known characterization of connected graphs without Hamilton cycles when
o9 > n — 1. This particular result was reproved in 1980 by Nara Chie [§].

The next two results on this subject are not included in the recent survey paper [9]. We
call a graph G hypo-k-ended if G has no spanning k-ended tree, but for any v € V/(G), G —v
has a spanning k-ended tree.

Theorem E ([10]): For each k > 3, the minimum number of vertices (edges, faces, respec-
tively) of a simple 3-polytope without a spanning k-ended tree is 8 + 3k (12 + 6k, 6 + 3k,
respectively).

Theorem F ([11]): For each n > 17k and k > 2, except possible for n = 17k + 1, 17k + 2,
17k +4 and 17k + 7, there exist hypo-k-ended graphs of order n.

In this paper we prove that the connectivity condition in Theorem D can be removed,
and the conclusion can be strengthened.

Theorem 1: If G is a graph with 09 > n — k + 1 for some positive integer k, then G' has a
spanning k-ended forest.

Next, we show that Theorem D can be improved by relaxing the condition o9 > n—k+1
to o9 Ztk+1—l€—|—1.
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Theorem 2: Let G be a connected graph with oo >ty 1 — k+ 1 for some positive integer k.
Then G has a spanning k-ended tree.

The graph (§ + k)K; + K shows that the bound #;41 — k + 1 in Theorem 2 cannot be
relaxed to t; — k + 1. Finally, we give a dominating analog of Theorem D.

Theorem 3: If G is a connected graph with o3 > tp 1 — 2k +4 for some integer k > 2, then
G has a dominating k-ended tree.

The graph (0 +k —1) K5+ Ks_1 shows that the bound ¢, — 2k 44 in Theorem 3 cannot
be relaxed to t;, — 2k + 4.

The following corollary follows immediately.

Corollary 1: If G is a connected graph with o3 > n — 2k + 4 for some integer k > 2, then
G has a dominating k-ended tree.

The graph (§ +k — 1) K5 + Ks5_1 shows that the bound o5 > t;41 — 2k + 4 in Theorem 3
cannot be relaxed to o3 > tp11 — 2k + 3.

2. Proofs

Proof of Theorem 1: Let GG be_a> graph_)with oo >n—k+1 and let Hy,..., H,, be the
connected components of G. Let P = x Py be a longest path in Hy. If |[P| > n—Fk+2
then |G — P| = n — |P| < k — 2, implying that G has a spanning k-ended forest. Now
let |P| < n—k+ 1. Since P is extreme, we have N(z) U N(y) C V(P). Recalling also
that o9 > n — k + 1, we have (by standard arguments) N(z) N N*(y) # (), implying that
G[V(P)] is Hamiltonian. Further, if |V(P)| < |V(H;)| then we can form a path longer than
P, contradicting the maximality of P. Hence, |V (P)| = |V (H;)|, that is H; is Hamiltonian
as well. By a similar argument, H; is Hamiltonian for each i € {1,...,m} and therefore, has
a spanning tree with exactly one leaf. Thus, G' has a spanning forest with exactly m leaves.

It remains to show that m < k. If m = 1 then G has a spanning l-ended tree and
therefore, has a spanning k-ended tree. Let m > 2 and let z; € V/(H;) (i = 1,...,m). Clearly,
{21, x9,...,x,,} is an independent set of vertices. Since d(z;) < |V (H;)| — 1, we have

0y S0 <Y _d(xy) <D |V(H)| —m=n—m.
i=1 i=1
On the other hand, by the hypothesis, 0o > n — k + 1, implying that m < k — 1. [

Proof of Theorem 2: Let GG be a connected graph with o9 > t;.,1 —k+ 1 for some positive
integer k.

Case 1: G is Hamiltonian.
By the definition, G has a spanning l-ended tree 77. Since k > 1, T} is a spanning
k-ended tree.

Case 2: (G is not Hamiltonian.
Let T be a longest path in G.

Case 2.1: 0y > i9.
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By standard arguments, G[V (7T%)] is Hamiltonian. If ¢ < n then recalling that G is con-
nected, we can form a path longer than 75, contradicting the maximality of T,. Otherwise
(G is Hamiltonian and we can argue as in Case 1.

Case 2.2: 09 <ty — 1.

If £ = 1 then by the hypothesis, oo > t5, implying that G is Hamiltonian and we can
argue as in Case 1. Let £ > 2. Extend T, to a k-ended tree T} and assume that T} is as
large as possible. If T} is a spanning tree then we are done. Let T} be not spanning. Then
|End(Ty)| = k since otherwise we can form a new k-ended tree larger than 7T}, contradicting
the maximality of 7. Now extend T}, to a largest (k + 1)-ended tree Ty, ;. Recalling that
Ty, is a largest k-ended tree, we get |End(Ty+1)| = k + 1 and therefore,

ter 2 T = |To| + |Thyr — Tal.
Observing that |Ty| =ty and [Ty1 — To| > |End(Tk41)| — 2 = k — 1, we get
lpp1 > to+k—12> 09+ F,

contradicting the hypothesis. [

Proof of Theorem 3: Let G be a connected graph with o3 > tx1 — 2k + 4 for some
integer £ > 2, and let 7_“; = xﬁ)y be a longest path in G. If T; is a %minati_n}g path then
we are done. Otherwise, since (G is connected, we can choose a path ) = w (@ z such that
V(To N Q) = {w} and |Q| > 3. Assume that |@Q| is as large as possible. Put T5 = T, U Q.
Since Ty and @ are extreme, we have N(z) U N(y) C V(Ty) and N(z) C V(T3). Let w*
be the successor of w on Ty. If zy € E then T3 + xy — ww is a path longer than T3, a
contradiction. Let zy ¢ E. By the same reason, we have xz,yz ¢ E. Thus, {z,y, 2} is an
independent set of vertices.

Claim 1: N~ (z)NNT(y) N N(z) = 0.
Proof: Assume the contrary.

Case 1: v € N~ (z) N N*(y).

If v = w then zvt € E and T3 + zv™ — vv™ is a path longer than T5, a contradiction.
Suppose without loss of generality that v € V(w*ﬁy). If v =w" then T3 + 20" —wv —vv™
is a path longer than T3, a contradiction. Finally, if v € V(w“ﬁy) then

+ +

Ty +avt +yv~ —ovv” — vt —ww

is a path longer than 75, a contradiction.

Case 2: v e N~ (z) N N(2).
Ifve V(xﬁw”) then
Ty + avt + 20 — oot —ww™
is a path longer than 75, a contradiction. Next, if v = w™ then T, + zw™ — ww™ is a path
longer than T3, a contradiction. Further, if v = w then T, + zvt — ww™ is a path longer
than T3, a contradiction. Finally, if v € V(w+7_“>2y) then

Ty +zvt + 20 —ww™ — oot
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is a path longer than 75, a contradiction.

Case 3: v € Nt (y) N N(z).
By a symmetric argument, we can argue as in Case 2. Claim 1 is proved. [

By Claim 1,
ts 2 [T5] = [N~ (2)] + [NT(y)] + [N (2)] + [{z}]

=d(z)+dy)+dz)+1>05+1. (1)

If k& = 2 then by the hypothesis, o3 > t;11 — 2k + 4 = t3, contradicting (1). Let k > 3. If T3
is a dominating 3-ended tree then clearly we are done. Otherwise G — T3 contains an edge
and we can extend T3 to a largest 4-ended tree T, with |T| > |T3| + 2. If k = 3, then by the
hypothesis, o3 > t11 —2k-+4 = t;—2. On the other hand, by (1), t; > |Ty| > |T3|+2 > 03+3,
a contradiction. Hence, k > 4. If T, is dominating, then we are done. Otherwise we can
extend Ty to a largest 5-ended tree Ts with |T5| > |Ty| + 2 > |T3]| 4+ 4. This procedure may
be repeated until a dominating (r + 1)-ended tree 7,1 is found. If r + 1 < k then we are
done. Let r > k. Then
thar 2 |Toga| = |Ts[ +2(k — 2)

>o03+2k—3> 1 +1,

a contradiction. The proof is complete. [
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Gnudnid k-wjuwpn Ydwfupwjhl L npnihGwln owntiph dwuhG
d". Lhynnnujwa

Udthnthnid

Ownh Uty wumpdwl niltgnn ququpp Yngynd t wmbpl:  Gpudmd k-hg ny wyby
wmbtipl niGtgnn ownp Yngynud E A-wjupn own: Gpudmd wikGwito k-wjwpun ownp
ququpltph pwlwyp GuGwyymui t tx-ny: G qpudbh 7' dwnp Yngynd £ nnihGulwm,
tipti V(G-T)-G ququwpltph wGyuwju pwqinpmb L: “‘thgnip, ox-p (03 -n) qpupnid ny
hwplwG qniyq (tnjuly) ququpltph wunmhdwGGiph hGupuwynp wikGuihnpp gnudwnpG k:
£hy wmbplltpny Yuwjupwjhl dwnbphlG wnlsynn wikGwywn wpyniGpp (npp unnwgyty k
htnhGwyh Yynnihg 1976-hG) wlnmd b (%) tph n ququpwlh G Juwwlygwd gqpupn
pujwpwpnd £ oy > n — k 4+ 1 wquyiwGhG hGs- np dh £ ngpujul wdpnng pyh hwdwp,
wyw G-0G mGh A~wjupn Yuwfupwghl own: Lhpjuw wyfuwnmwipnid wywgnigyma L,
np (%)-md Juwuwlygyuwonipjul wuwyiwlpn Jupbh b pwg pnnGhp: Gpypnpn wpynilpn
(¥)-h nidtnugniG t°  n-p hnfuwphGhny ¢x41-ny (pGphwGpuybu ¢z, < n): Gpponpy
wnpryniGpp tpypnpph wwpptpuwyl B° gndhGwln A-wjwpn dwntph hwdwp: Pipquo
pninp wpynilpGhpp Gpwyw s66 pwpbuwydiwd:

O k-BUCSAYUX OCTOBHEIX U AOMHWHAHTHEIX A€PEBBIAX
XK. Hukorocsx

AnHoTanus

AepeBo ¢ He OOAee ueM k-BUCIYUMU BEPIIWHAMU Ha3bIBAETCH k-BUCAYUM AEPEBOM.
Yucao BepIIMH MaKCUMAaABHOTO k-BUCAYEro AepeBa 0003HadaeTcd uepes t;. Uepes o
(03)0003HaYaeTCcsT MUHMMAABHAsA CyMMa CTelleHeM ABYX (TpeX) IIOIIapHO HeCMEe>KHBIX
BepuiuH. AepeBo T B rpade G Ha3bIBaeTCsa AOMUHAHTHBIM, ecAau V(G-T) saBasiercsa
HE3aBUCHUMBIM MHOXXeCTBOM BepiInH. B 1976 ropy AoKasaHo (aBTOpPOM): (%) eCAM n
BEPILIMHHBIN CBA3HBIU I'pad G yAOBAETBOPSET YCAOBHIO 02 > N —k+1 AAI HEKOTOPOT'O
1leAoTo yucAa k, To G COAEp>XUT k-BUCsS4Oe OCTOBHOEe AepeBo. B HacTosleil paboTte
AOKa3bIBAeTCsI, YTO YCAOBHE CBSI3HOCTH B (%) MOJKHO OIIyCKaTh. BTOpOM pe3yAbrar
SBASIETCSI YCUAEHUEM (k) C TIOMOIIBIO 3aMeHBI N 4epe3 tj,; (HAlOMHUM, YTO tpiq <
n). IIpUBOAWUTCSA TaK)Ke BEPCHS BTOPOTO PE3YAbTATa AAS AOMHMHAHTHBIX k-BHUCIYUX
AepeBbeB. Bce pe3yAbTaThl HEyAyUlllaeMEbl.



