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Abstract

Numerical estimation of the Kolmogorov-Smirnov discrepancy Dy in high
dimensional space is an extremely time and memory consuming problem. New
approach with the minimal bin number, which essentially reduces the time and
memory requirements, to perform the Dy tests in two and more dimensional space
is discussed.
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1. Introduction

One of the most important tasks nowadays is the numerical experiments on super computers with
the modeling of the sophisticated physics system. The Monte Carlo method is used for solving
the problems where the high dimensional integration is involved. To use the Monte Carlo
method for analysis of the high energy physics experimental and theoretical problems we have to
solve the problem of the quality of the pseudo-random generators, which should have a strong
statistical feature, also a large period of sequences and a high speed of generating of the pseudo-
random number.

The Kolmogorov-Smirnov (KS) test is used to compare how well the empirical cumulative
distribution function (ECDF) of a sample fits the cumulative distribution function (CDF) of the
reference distribution by computing the maximum distance D,,,, between these two functions.
The KS test is applied to exactly continuous data, and for dimensions d > 2 we have to compute
the distance on infinite points then take a maximum, because when d > 2 for CDF and ECDF
we have d-dimensional surfaces. The KS test is widely used as a powerful statistical test to check
the quality of different pseudo-random number generators (PRNGS).
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Several algorithms for computing the two-dimensional KS test were proposed [1-3]. We
propose another approach for 2 and higher dimensions. Our method is based on discretization of
the space introducing a binning technique applied to continuous multidimensional data. This
technique does not correspond to the usual KS test principle, but we show that it is possible to
compute D,,,,, Very precisely with the quite computationally efficient algorithm taking minimal
bin number.

Here our KS test results are obtained using the well-tested uniform Mersenne Twister PRNG
[4], which is included in CERN library [5].
In the proposed paper we describe a new technique, which allows to reduce essentially the
number of the bins and correspondingly decrease the needed time and memory used.

2. Formalism

In one-dimensional (1D) case with N random numbers to check if they come from uniform
distribution in the (0, 1) range, for which the CDF is equal to:

F(x) = x,
we need to compute Dy . Usual (unbinned) approach [6- 8] in 1D case looks as follows:

» N numbers should be sorted in increasing order {x;,x,, ..., xy}, X; < X;41

» then Dy is computed in the following way defining ECDF as:
k
FN(x) x11x21 ---rle

where k is the number of random points out of N with x;, x5, ..., x, <x

5=
_xl' .

The unbinned approach can be also applied for 2D case following the algorithm described in [1],
which has been used for the performed studies.

In the 1D binned approach the (0, 1) interval is divided into n bins, then N random numbers are
distributed in n bins according to their values. The ECDF is again defined as:

Dy = maxI(FN(x) —x)| = max{
<XxX< 1<i<N

k
Fy(x) = N

The difference is that here x is already the bin edge: x = il = 1,2,...,n. For example, if n =

10, we have the bins edges like: {0.1,0.2,...,0.9,1} . Therefore, the advantage of the method is
that if N is quite large then ECDF can be defined with a relatively small number of points (n <
N).
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In 1D case there exists the theoretical distribution function for the value of Ky = /N Dy (also
the mean value and dispersion for Kj), which is used to make a decision to accept or reject the
hypothesis concerning the uniform distribution of the tested sample of random numbers.

This binned method can be generalized for dimensions 2, 3 and higher. In two-dimensional case
for x; < X4, x, < X, the corresponding expression for Dy is:

Z;.C:l Zin:l Ykm l]
N nz|

Dy = jmax |(Fy (x1, ;) — x12,)| = max
0<x,<1 1<js<n

where Yy,,,, is the number of observations that actually do fall into category {k, m}, N is the count
of all observations, n is the number of bins used along the x and y.

In d-dimension case of x; < X;,x, < X5, ... ..., Xxqg < X4 the expression for KS test is as
follows:
D N Z;(dd Yikykg  lqig nig
Dy = Og?§1|(FN(x1:x2: v Xg) — X1X3 Xg)| = 1@?;% N T |
0sx,<1 1<izsn
0sxgs1 151"(;571

With any of schemes to calculate the average K, described above (binned and unbinned) we can
estimate also the statistical uncertainties AKy making sampling for calculated values of K, and
K3 with the certain number M of the used samples. The mean value for K, averaging over M
samples is given by:

1 M
< Ky >= MZ Ky,
=

and mean squared K is defined as:
M
1 .
< KZ>= MZ(K;V)Z,
1=

then we can calculate o, as:

ogy =< Kf > —< Ky >2.
And finally, based on the central limiting theorem we can calculate the statistical uncertainty
AK) as:

1
AKN :W O_I%N.

3. Results and Discussion
The first set of the obtained results is related to the unbinned approach, where in 1D case we can

compare not only the obtained average < Ky > with the predicted theoretical value of
0.8687311605.. [7], but also the observed and theoretical (TH) distributions for K (see Fig. 1).
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Fig 1. TH (curve) and observed (red points) for Ky distributions.

On Fig. 2 one can see the observed distribution obtained for 2D case, which is systematically
shifted in respect to 1D TH distribution.
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Fig 2. TH distribution (curve) for 1D and observed distribution (red points) for 2D cases.

Then the next set of results, which is related to the binned method, is shown in Figs. 3-4. In Fig.3
one can see that for N = 10> the number of n = 10* bins is enough to get the exact distribution
which was the goal of this paper.
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Fig 3. 1D case: TH distribution (curve) and binned distributions (colored points).

In Fig. 4 the < Ky > dependence on the number of bins is presented for 1, 2 and 3D cases. Here
one can recognize the clear dependence of the obtained values for < K > on the number of the
bins (n) used. Taking into account the obtained saturating shape on the n for such dependences
we performed the fit with the following fitting function:

ff?t(x) = p; + p2 exp(—p3x).

The meaning of the parameter p, corresponds to the saturation level, which can be achieved with
quite large value of n. Although, using very high values for the bins number it is impossible in
practice to calculate the Ky in the sense of the needed CPU time and memory, especially in case
of higher (>4) dimensional space. That is why the idea to use a limited number of points over the
n, then estimate the saturation parameter (p,), and then make a correction for the average value
ofK), estimated with e.g., n=10, introducing the correction factor: C;, = p; — < Ky(n = 10) >,
seems to be very interesting and effective in order to realize the procedure of the < Ky >
estimation in case of high dimensional space. Also the exponential coefficient (p3), which
regulates the speed of convergence to the saturation level, can be used to check the quality of
different PRNGs.

It should be noted, that the used fitting function is quite stable in respect to the variation of
the fitting points used. In 3D case with the total number of points (nwta=11), this variation was
11, 9,7, 5. In 2D case with the nyta=19: 19, 15, 11, 7, and in 1D case with nwta=75: 75, 55, 35,
15. This is an important feature of the functional form used for a fit, because in case of
essentially higher dimensions one can compute with the binned method a limited number of
points, perform the fit and estimate the saturation level. In further studies the authors are going to
provide the <Kn> dependence as a function of the space dimension, which is very interesting due
to the lack of knowledge on TH distribution for high dimension space.
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Fig. 4. Average Ky dependence on the number of bins (n). The 1, 2 and 3D cases are presented with the fit
parameters for each case. Different colors along the curves correspond to the variation of the number of fitting
points used (see explanation in the text).

4. Conclusion

The optimization of the Kolmogorov-Smirnov discrepancy Dn calculation with the binned
method for high dimensional spaces by means of reducing the used bin number is performed.
Developed approach allows to extend the estimation of Dy to very high dimensional spaces with
reasonable requirements to the CPU time and memory, and, thus, to provide very important tests
of the PRNGs, which are used to apply the Monte Carlo method for solving of essentially high
dimensional physics problems.
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Ouywnhdw) Uninkgnd Unjungnpny-Udhpuny ptunh hwyduplyh hwdwp
paupdp suthnpuljuin pjudp mwpwdnipnLunid

U. Ulnwny b L. Uwupwnhpnujui
Udthnthnid

Unjungnpny-Udhpuny phtunh Dy pduyhtt quwhwwnwluwip pwpdp swthnpuljw-
unipjudp  wnwpwdnipniind puduljuitht dudwiwljuwnwup b hhonnnipnit
wwhwbonn fuunhp E: Unwowplynn hnnuénid puttmplynid £ tjuqugnyu phutbph
pwiuwlny unp uUnwnbkgnidp, npp tuwybu twjwuqbgunid b dwdwbtwlh b hhonnnipjut
wwhwbetpp Dy Ubdnipmnitp 2 b wydbh pwpdp swhnpuljuinipjudp wnwpwsdnt-
pintuntd hwpybnt hwdwnp:

OnTuMaJbHBIA MOAX0 AJIs1 YUCACHHBIX peaju3auuil Tecra Koamoroposa-
CMHpHOBa B POCTPAHCTBAX BHICOKOH Pa3MepPHOCTH

H. AxonoB u H. Maptupocsa
AHHOTAIUA

Uucnennele oueHku auckpenanca Konmoroposa-CmupHoBa Dy B IpOCTpaHCTBaX BBICOKOM
pa3MepHOCTH SBISIOTCS CYIIECTBEHHON MPOOIEMOii B IIaHEe HEOOXOAUMBIX PECYPCOB MaMSTH U
BpeMeHU. B crathe o00CyXkIaeTcs HOBBIMH NOIXOA JUISL BBIYMCICHUS BeIMYMHBI Dy B
IPOCTPAHCTBAX JIBYX M 0Oojiee BBICOKMX pPa3MEpHOCTEH C MMHUMAJIbHBIM YHCIOM pa30ueHUi,
KOTOPBII CYIIECTBEHHO CHUXKAET TPEOOBaHMS K NAMATH U BPEMEHH.
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