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Abstract

Chemical mechanical polishing/planarization (CMP) is the primary process used for
modern integrated circuits (IC) manufacturing. Modeling of the post-CMP surface profile
is critical for detecting planarity hotspots prior to manufacturing and avoiding fatal
failures of chips. Electrochemical deposition (ECD) is a key process for the void-free
filling of interconnection wires and vias in modern chips. Large surface topography
variations generated after ECD affect the post-CMP surface profile. In this paper, several
machine learning approaches are used to model surface profiles after ECD that are used
as input to CMP models. Different combinations of deep neural networks, long-short-
term-memory (LSTM) recurrent networks, convolutional neural networks and XGBoost
algorithms are investigated and compared. The model based on the XGBoost library
showed superior performance and accuracy.
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1. Introduction

Chemical mechanical planarization/polishing (CMP) is a crucial technology used during the
manufacturing of multi-level interconnections of semiconductor chips and electronic devices [1,
2]. Many process steps used for chip manufacturing require planar surfaces for correct pattern
printing during lithography to generate structures for the next layer. CMP is the key process used
in the chip production flow for achieving surface planarity required for depth of focus (DOF),
lithography requirements, further etch steps for construction of multi-level interconnection wires,
high-k replacement metal gate transistors, 3D stacked chips, 3D NAND memory cells, etc.

During CMP, a polishing pad is pressed against the rotating wafer. A chemical slurry containing
abrasive particles and chemical agents is added between the pad and the wafer. Combined
mechanical and chemical interactions that take place simultaneously at the wafer pad contact area
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result in material removal from the wafer surface, leading to wafer surface profile planarization
[1, 2]. The post-CMP surface profile depends on the applied pressure, slurry chemistry, and the
pattern printed on the wafer. An inappropriate combination of these parameters can lead to non-
uniform material removal, which can lead to defects like dishing of metal lines and erosion of
dielectrics, causing hotspots such as open contacts, circuit shorting, timing delays, and RC
violations.

In modern chips, copper interconnection lines are built using dual damascene processes.
During the copper dual damascene process, both wires and vias are filled with copper
simultaneously. The electrochemical deposition (ECD) process is then used to fill the wires and
vias with copper [3]. After ECD, copper is not only deposited over trenches, but also between
them. CMP is used after ECD to remove the excess copper over oxides and isolate wires to avoid
fatal electrical shorts. Large surface topography variation created after ECD introduces additional
challenges for Cu CMP (Fig. 1), making modeling of the ECD surface profile critical for high-
accuracy CMP modeling.

Modeling of the post-CMP surface profile enables the detection of possible CMP hotspots
prior to manufacturing [4, 5]. On the other hand, modeling of deposition surfaces prior to CMP is
crucial for correct CMP simulation, since the post-deposition surface profile is used as input for
CMP simulation, and may affect the final surface profile. Even with advanced deposition
processes, the pre-CMP profile on a patterned wafer is non-uniform and affects the surface
planarity after CMP. A fully connected neural network (NN)-based full-chip deposition model for
predicting post-deposition surface profile for shallow trenches isolation (STI) and inter-level
dielectric (ILD) deposition steps has been developed [6]. However, the post-ECD surface profile
shows even complicated topography variation, depending on the underlying layer pattern
geometries [3].

To predict these complicated topography variations, the use of more advanced machine
learning (ML) modeling techniques should be investigated. ML is a sub-area of artificial
intelligence (Al) that enables computer systems to recognize patterns using algorithms and data
sets, and use that information to develop solutions. ML is used in a wide variety of applications,
including fraud detection, computer vision, transportation, bioinformatics, etc. [7, 8]. The ML
algorithms make predictions based on initially gathered (training) data without being explicitly
programmed for that task. Typical ML applications use neural networks (NNs), which consist of
layers of artificial “neuron” data processing elements with an input layer, several hidden
processing layers, and an output layer, with weighted connections between the layers. Training an
NN means finding values for the weights of connections (based on minimization of a cost function)
that best fit the training and validation data. There are multiple types of NN architectures, including
deep neural networks (DNN), convolutional neural networks (CNN), and recurrent neural
networks (RNN) [7, 8].

A gradient boosted decision tree (GBDT) is another class of prediction technique widely
used in ML modeling [9]. A GBDT model consists of an ensemble of decision trees the predictions
of which are combined and optimized based on the prediction error on training data to reduce the
error of the overall model. Extreme gradient boosting (XGBoost) is one of the implementations of
GBDT algorithms, popular for its ability to learn non-linear decision relations and used in both
industry and academia alike [9].

In this paper, we apply ML methods such as CNN, long short-term memory (LSTM), RNN,
and XGBoost to model surface profiles after ECD for CMP modeling.
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2. Electrochemical Deposition Process

Dual damascene is a state-of-the-art technique containing copper deposition and CMP steps used
in the manufacturing of back-end-of-line (BEOL) wiring. To date, ECD is the most suitable copper
deposition method for the copper deposition step. Using ECD, the vias and trenches can be filled
simultaneously. To avoid air gaps, voids or defects during trench filling, chemical additives are
used during the ECD process. These additives strongly affect the local deposition rate, leading to
superfill, where the copper deposition rate at the trench bottom is higher than on trench sidewalls.
These chemical additives are mainly categorized into two types: suppressors and accelerators.
Accelerators consist of surfactant molecules that are absorbed on the surface and have the feature
of forcing out more weakly-absorbed additives. For a given voltage, they enhance the current
value, resulting in a higher copper plating rate. Suppressors consist of polymer-like molecules. In
contrast to accelerators, they reduce current value and passivate the copper plating rate. Levelers
are a subordinate class of suppressor additives that polarize the areas with high current densities
and even out current distribution. They are commonly used to reduce overburden thickness or
bumps. During the ECD process, the trench bottom surface area shrinks, causing the accelerator
molecules to displace more weakly-absorbed suppressor molecules. This leads to a higher
concentration of accelerator molecules at the bottom of the trenches than on trench sidewalls and
non-trench areas, resulting in the desirable void-free superfill effect. The side effect of this process
Is that the sites with narrow trenches fill up faster and continue to grow at a higher rate than sites
with wider trenches. This causes a formation of bumps. When narrow trenches are located close
to each other, these bumps accumulate into a single large bump. These bumps lead to a large profile
surface variation (Fig. 1) and require excessive polishing, introducing additional challenges for the
CMP. The effect of bump formation can be weakened by adding levelers; however, in general,
bump formation cannot be avoided.

Single Large Bump

Isolated Bumps

T L U

ZNT ZT

Fig. 1. Schematic plot of post-ECD surface profile.

The ECD process is complicated and continuously evolving. It is hard to follow all the
effects of chemistry and physics in physics-based models. Meanwhile, even minimalistic
chemistry and physics-based models should keep track of deposition rate changes during ECD to
properly model the surface profile. This tracking requires a huge number of computations for
solving a large system of differential equations needed to track surface profile evolution during
ECD. The runtime of chemistry- and physics-based ECD models may take several minutes up to
hours for a layer, depending on the chip size.

To model the ECD process, the design is first divided into fixed-size tiles and for each tile,
average values of geometrical characteristics like width, space, pattern density, and perimeter are
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extracted. Using these characteristics, the surface dynamic transformations are modeled using the
“effective trench” (ET) approximation for each tile.

In ET approximation, the tile surface profile is characterized by previously extracted
characteristics together with parameters describing the height of the profile surface material inside
(ZT) and outside (ZNT) of the trenches. All these parameters are determined dynamically and
passed to the ECD model for simulation. During the simulation, ZT, ZNT, and the geometric data
are updated for each tile. After the ECD simulation, the surface profile data for each tile are used
as input for the CMP model.

3. Training Data Generation for Machine Learning

The ML training data should include topography height and geometry data of patterns collected
from design layouts. When collecting geometry data for ML model input, both specially designed
test chips and production design layouts were used to provide sufficient coverage of possible
geometry patterns supported by the technology. For training an ML model, large amounts of data
are required for separation into training, validation, and test data. We carried out a series of
experiments using Calibre™ CMP ModelBuilder and CMPAnalyzer tools. First, we created
physics-based models using data collected at the factories. We then used these physics-based
models to generate the training, validation, and test data for ML model building.

To generate input and output data, we extracted six grids with geometry characteristics of
patterns (width, space, pattern density, perimeter, etc.) for input, and surface profile grids ZT and
ZNT for output, from different test chip and production design layouts.

4. Results and Discussion

We experimented with different architectures of DNN, CNN, RNNs and GBDT methods and their
combinations for modeling post-ECD surface profiles (Fig. 2). In this section, we review the
architectures and models that provided the best combination of running time and accuracy.
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Fig. 2. NN input and output data.

5. RNN-Based Modeling

For the first model, we considered a model based on the combination of DNN and LSTM RNN
networks. The DNN part consists of a feed-forward neural network with three hidden layers and
10 neurons per layer. Six-dimensional geometry data (width, space, pattern density, etc.) are used
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as input to the network. Two-dimensional output is used for modeling post-ECD profiles. A
sigmoid activation function is used for all layers. The model is trained using a stochastic gradient
descent optimization method for reverse Huber (berHu) loss function [1], which has the form

lx| x|l <
B(x) =4 x? + c?
o |x|] > ¢

Here, c is a scalar related to 10% of the maximum error on the batch. This method has been
proved to have several advantages over other standard loss functions usually used for regression
models, such as the mean square error function, etc. [1].

The output of the DNN model is then used as input to a bidirectional LSTM RNN. This
input is extended to include several neighbor sites as a new input to LSTM RNN, to take into
account weak long effects inherent to ECD process (i.e., the effects of neighbor site patterns on
the local surface profile heights after deposition). Using the DNN output values of neighbors, the
new input dimension becomes 7*7*2. For each site, we use as input an extended block containing
three neighbor sites, from left, right, top and bottom, or radius 3 neighbors of a given site. The
goal of this block of data is to improve the predictions of the DNN results by taking into account
the effects of neighbors. In Fig. 3, scatter plots of height data of predictions vs. targets are presented
after the application of LSTM RNN.
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Fig. 3. Scatter plots of combined DNN and LSTM RNN model predictions vs. targets for ZNT and ZT
height data.

6. CNN-Based Modeling

The next model was based on CNN [7-8]. The architecture we used consists of two blocks, as
shown in Fig. 4. The first block is a separate feature extraction for each input parameter through
CNN. The collection of all outputs from the first phase serves as an input to the second block of
the network. The second block consists of a DNN with three hidden layers and 10 neurons per
layer. Again, the berHu function is used for the loss function.
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Fig. 4. Schematic plot of the combined CNN-DNN model.

The accuracy of the model predictions on the test set is analyzed using scatter plots of prediction
vs. target data for surface heights, as shown in Fig 5. Red lines show 10% deviations from the

target.
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Fig. 5. Scatter plots of predictions vs targets for ZNT and ZT using NN model.

7. XGBoost Method for Modeling ECD Surface Profiles

Finally, algorithms of the XGBoost library [9] were used for ECD surface profile modeling. The
motivation for using XGBoost is that it uses fewer resources compared to DNN and CNN
approaches. XGBoost is a form of a gradient tree boosting or a gradient boosting machine. It is
implemented with a high-level optimization strategy for fast execution speed and high
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performance [9]. A gradient boosting algorithm is a sequential combination of several predictors,
where each predictor is an improvement on its predecessor (e.g., by fitting to the errors of its
predecessor). This algorithm uses a number of hyper-parameters. We tune the parameters using a
greedy search. We use a linear regression model as the objective function, and choose the best
results by minimizing the root mean squared error. We use the same training, validation, and

testing datasets for these experiments as for the previous models.

ZNT ZT
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Fig. 6. Scatter plots of predictions vs targets for ZNT and ZT using XGBoost.

A significant improvement in prediction accuracy is obtained with the XGBoost algorithm, as
shown in scatter plots in Fig 6-7. Moreover, we noticed a significant reduction in model training

time with XGBoost compared to the other approaches we tried.
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Fig. 7. Linescan (for fixed x value) predictions vs targets plots for ZNT and ZT using XGBoost.

8. Conclusion

In this paper, different ML methods were used to model surface profiles after electrochemical
deposition of copper over patterned wafers for the creation of interconnection wires for chips.
Weak long-range interactions of patterns on the design are inherent for post-ECD surface profiles,
which means that the surface height above the given pattern is not defined solely by the pattern
itself, but is affected by neighbor patterns. Using physics and chemistry-based electrochemical
deposition simulation, training, validation, and test data was generated for the ML model building.
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Several ML models were used for modeling, including combined DNN-LSTM RNN, combined
CNN-DNN, and XGBoost-based models. It was found that the XGBoost-based model provided
the best accuracy in surface height prediction, as well as correct data trends and high correlation
with simulated linescans. It also has a much shorter training time (a couple of hours) compared to
other methods (several hours or several days).
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Udthnthnid

Lhuhw-dbjuwthjulut thuybgniudp/yuuuphqughwt (CMP) hwinhuwbnid E
dudwbwlulhg hunbgpuwy  Jdhypnuppbdwtbph wpunwngpnipjutt hhdbwlub
gnpépupugn: CMP-hg wnwowgwsd dwlbkplbnyph wpndhh dnphjuynpnidu nith
J&nnpny  pwbwlnipimit  wpunwngpnipiniithg  wnpwy  shybph  wwbwpnippub
nhbtlntnh, «awp Yhwnkph» (hotspots) unwugdwt b Yphnhjuljut juwthwunidbpp
pugwhwynbnt hwdwp: EjEjupuphdhwuljwt  tunbkgnidp (ECD)  dudwbwljulhg
dhipnujubdwubnh dhpdhwugnidutph b vhowughll vhwgnidubph (vias) wupbtph jgnudwt
Jupunpugny ypngtu k: ECD-hg hbnn wnwowunid Eu dwljiplinyph mnyngpudphuwh
qquih thnthnjunipnibtp, npnup wqpnid tu CMP-hg htinnn winwowgus dwljiplinyph
wpnppih Jpu:

Uju hnpjuénid nunidbwuppyws Gu dhphktwjuljut ntumgdwt dh pwtih
Unnbgnuditp’ ECD-hg unwug]us dwlkplinygph wypndhyp dnpbjudnptynt hwdwp, npl
ogqnnugnpséybnt L npyhku  dntnpuyht mfjuyp CMP  Unphjuynpdwt  hwdwnp:
Zknmwugqnunjus Lu junpp upntughtt gwugkph, tpup jupdwdwdljtn hhonnnipjut
(LSTM) ntinipptun gwbgbph, thwpnypuhtt uEpnuughtt gwugiph b XGBoost
gpunhbunughti pniuphtigh wignphpdubph nwwuppbp hwdwlgnipniuubp: Uy dngbjukph
tjuundwdp XGBoost gpunupwup Ypw hhdttdws dnnbkip gnyg wdkg wdbuwpwpdp
wpununpnnuljubnipntt b £onnipjnii:

Puttwh puwntp’ CMP, ECD, dbpkuwjwuljut nitunignid, ubjpntughtt guigtp,
LSTM, XGBoost.
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AHHOTANUA

XuMHKO-MeXaHu4eckoe mnoaupoBanue/mianapuzanus (CMP) - ocHOBHO#H mporiece,
UCTIONIb3YEMBIA B TMPOHM3BOJCTBE COBPEMEHHBIX HMHTETPATbHBIX MHUKpOCXeM. MopaenupoBaHue
npoduins moBepxHocTu nociae CMP mmeer pemaroniee 3HaueHue ais 1e(PEKTOB IIIaHAPHOCTH,
«ropsiaux Touek» (NOtSpots) mepea HavamoOM MPOU3BOACTBA YUIIOB M BBISIBICHHS WX (aTaabHBIX
0TKa30B. Dnekrpoxumuyeckoe ocaxacHue (ECD) - a1o kmroueBoii mporece 6e3meheKTHOro
3aMOJIHEHHUSI MEKCOCIUHCHUI U CKBO3HBIX COCAMHEHHH (ViaS) B COBPEMEHHBIX MUKPOCXEMaX.
[Tocie ECD BO3HMKAIOT 3HAYUTEIIbHBIC W3MEHEHHUS TOMOrpaduu MOBEPXHOCTH, KOTOPHIC BIUSIIOT
Ha npoduns moBepxHoctu nocie CMP. B nmanHOW cTarbe, JUIsi MOJENIMPOBAaHUS Mpoduieit
noBepxHoctu mocie ECD, wucnomp3yembix B KadecTBe BXOAHBIX fJaHHBIX i1 CMP
MOJICTTUPOBAHUS, PACCMOTPEHBI HECKOJBKO MOIXOJ0B MamMHHOrO oOyueHus. Mccnemyrorcs
pa3uyHble KOMOWHAIMKA TIYOOKMX HEHUPOHHBIX CETEeH, PEKyppPEHTHBIX HEHUPOHHBIX CETEeH C
nonroi kparkocpouHoil mamsaTeio (LSTM), cBepTOYHBIX HEHPOHHBIX CeTell M aNrOpPUTMOB
rpaguenTHoro 0yctuara XGBoost. [lo cpaBHeHHIO C IPyrUMHU MOJAEISMH, MOJCIIh Ha OCHOBE
6ubmmorexn XGBOOSt mposiBuIIa HAaMBBICITYIO TPOU3BOJUTEIBHOCTh U TOYHOCTb.

KimroueBbie ciaoBa: CMP, ECD, mammnaHOe oOydenwe, HeWpoHHBIE ceTH, LSTM,
XGBoost.
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