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Abstract

While finding the solutions of Hermitian matrix eigenproblem it is a key issue
to find an efficient version of algorithms of symmetric tridiagonal solutions. In this
paper these algorithms are compared for complex Hermitian matrices in hybrid
systems. The methods were carried out on the Tesla C1060 and Tesla K40 GPU
accelerators and the performances are presented as between the methods, as well as
between the accelerators.
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1. Introduction

Finding the matrix eigenvalues and eigenvectors is one of the central issues in linear algebra. In
particular, the solutions to the eigenproblem are in LaPACK, ScaLAPACK and PLaPACK
packages, in the systems with general and distributed memory, respectively. Matrix
eigensolutions can achieve a higher performance through MAGMA library in hybrid architecture
on GPU accelerators.
The aim of MAGMA [1,2] library is the realization of LaPACK library sub-programs in the
architecture of hybrid systems.
Due to the development of productivity of ranking algorithms, this problem is overcome in
hybrid architecture.
Finding of eigenproblem solutions of Hermitian matrix, as a rule, takes place through the
following three stages:
1. Through the Householder transformation the matrix is reduced to a tridiagonal form.
2. The tridiagonal matrix solutions are found through one of the following algorithms:
» QR iteration [3,4] ,
> Bisection for the eigenvalues and inverse iteration for the eigenvectors(Bl) [5,6],
» Divide & Conquer method (D&C) [7,8],

1. Back transformation to find the eigenvectors for the full problem from the eigenvectors
of the tridiagonal problem.
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In fact, the algorithm performance may depend on the matrix, platform, and on the
underlying linear algebra libraries BLAS, LaPACK, ATLAS and MAGMA. MAGMA library is
used to realize the projects on GPU accelerator. The reduction of matrix to tridiagonal form in all
cases is carried out through the Householder transformation, as well as through magma_chetrd
function of MAGMA library. It should also be noted that in all releases of MAGMA library for
complex Hermitian matrices the eigenproblem solving function with QR iteration is missing.
Therefore, only the remaining (D & C), (MRRR), (BI) three cases will be considered.

In this work the solutions of Hermitian problem are presented by means of three methods on
GPU accelerators. Moreover, the performance comparisons for three algorithms are presented as
between the methods, as well as between the accelerators.

Section 2 briefly presents the mentioned algorithms. Section 3 states about the resources
required for the implementation of programs. Sections 4 and 5 give the results of the mentioned
three algorithms on GPU accelerators for both standard and generalized forms of eigensolutions
of complex Hermitian matrices, respectively. Section 6 covers the conclusion of the obtained
results.

2. Description of Algorithms

2.1.Divide and conquer. The divide-and-conquer method can be described in terms of a binary
tree where each node corresponds to a submatrix and its eigenpairs, obtained through recursively
dividing the matrix in halves; see the exposition in [12].

The tree is processed bottom up, starting with submatrices of size 25 or smaller. DC uses
QR to solve the small eigenproblems and then computes the eigenpairs of a parent using the
already computed eigenpairs of the children.

A parent’s eigenvalues can be computed as solutions of a secular equation. The eigenvector
computation consists of two steps. The first one is a relatively inexpensive scaling step. The
second one, which is most of the work, multiplies the eigenvectors of the current matrix by the
eigenvector matrix accumulated so far. This step uses the level 3 BLAS (BLAS 3) routine
GEMM (dense matrix-matrix multiply). In the worst case, DC is an O(n®) algorithm.
2.2.Multiple relatively robust representations. Since its introduction in the 1990s, much has
been written about the MRRR algorithm, its theoretical foundation is discussed in several
publications [ 13, 14, 15, 16] and practical aspects of efficient and robust implementations are
discussed in [17, 18, 19, 20, 21, 22]. One could say, with an implementation of the algorithm in
the widely used LAPACK library and the description of (parts of) the algorithm in textbooks
such as [23], MRRR has become mainstream.

MRRR is a sophisticated variant of inverse iteration that avoids Gram-Schmidt
orthogonalization and thus becomes an O(n?) algorithm. The algorithm can be described in terms
of a (generally irregular) representation tree. The root node describes the entire spectrum of T,
and the children define gradually refined eigenvalue approximations. The overall complexity of
the algorithm depends on the clustering of the eigenvalues. If some eigenvalues of T agree to d
digits on average, then the algorithm has to do work proportional to dn?. The algorithm uses a
random perturbation to ensure with high probability that eigenvalues cannot be too strongly
clustered; see [24] for details. MRRR cannot make use of higher-level BLAS.
2.3.Bisection and inverse iteration. Bisection based on Sturm sequences requires O(nk)
operations to compute k eigenvalues of T. If the distance between the eigenvalues is large
enough (relative to |[T||), then computing the corresponding eigenvector by inverse iteration also
is an O(nk) process. If, however, the eigenvalues are not well separated, Gram-Schmidt
orthogonalization is employed to try to achieve numerically orthogonal eigenvectors. In this case
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the complexity of the algorithm increases to O(nk?). In the worst case where almost all
eigenvalues of T are “clustered,” the complexity can increase to O(n®). Furthermore, from the
accuracy point of view this procedure is not guaranteed to be reliable; see [11, 25]. Neither
bisection nor inverse iteration make use of higher-level BLAS.

3. Software Development

The GPU equipment in hybrid systems, due to its unique architecture, is used as an accelerator to
process the limited computational applications. The popularity of GPU-based hybrid systems
started with the release of the NVIDIA Compute Unified Device Architecture (CUDA) and the
extensions of industry-standard programming languages, such as C, C++ and Fortran, which
made the GPUs easier to program, allowing the developers to exploit the computational power of
modern GPU devices.

To realize the programs, the required software is presented on Tesla C1060 and Tesla K40
GPU accelerators.

The architecture of Tesla C1060 consists of 240 processor cores, using the maximum
capacity of parallelization. It is endowed with a high bandwidth transmission of messages
between CPU and GPU, and also has 4 GB of global memory, 512-bit GDDR3 memory interface
and CUDA C programming environment.

The operation system on Tesla C1060 is Ubuntu 12.04.5 LTS, and cuda4 programming
environment was used for realization of programs. MAGMA 1.3.0 package was installed.
lapack-3.4.2, clapack-3.2.1 and atlas-3.8.0 packages were installed for this library compilation.
gcc-4.4, gfortran-4.4 and nvcc compilers were used. During the compilation a number of
references of static and dynamic libraries were made in make.incfile, such as libf77blas.a,
libcblas.a, libf2c.a, libcublas.so, libcudart.so, libstdc ++.so, libpthread.so, libdl.so. MAGMA
1.3.0 package contains libmagma.a and libmagmablas.a libraries.

The architecture of Tesla K40 consists of 2880 CUDA processor cores. It is endowed with
much higher bandwidth 288 GB/s of message transfer between CPU and GPU, having 12 GB of
global memory, GDDR5 memory interface, and CUDA C programming environment.

The operation system of Tesla K40is Ubuntu 14.04.2 LTS.cuda7 programming environment
was used for the realization of programs. MAGMA 1.6.1 package was installed in accordance
with cuda7 environment. For the compilation of MAGMA library the lapack-3.4.2, clapack-3.2.1
and atlas-3.10.0 packages were installed. gcc-4.8, gfortran-4.8, g ++ - 4.8 and nvcc compilers
were used. Such references were made in make.inc file on libf77blas.a, libcblas.a, libf2c.a,
libcublas.so, libcudart.so, libstdc ++. so, libpthread.so, libdl.so static and dynamic libraries.
MAGMA 1.6.1 package contains libmagma.a and libmagma_sparse.a libraries.

4. Performance Results of Eigenproblem Solutions for a Standard Form

Finding of eigenproblem solutions of complex Hermitian matrices for Az = Az standard form
is carried out with the help of the following functions of MAGMA library:

» magma_xheevdx (D&C),
» magma_xheevr (MRRR),
» magma_xheevx (BI).

Moreover, x can be c or z in complex and double complex cases, respectively.
Figures 1 and 2 show the time-dependent graphs for three methods in the case of standard
form on Tesla C1060 and Tesla K40 GPU accelerators, respectively.
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Fig. 1. Tesla C1060, standard eingensolvers. Fig. 2. Tesla K40, standard eingensolvers.

Since the global memory of Tesla C1060 is 4 GB, and the matrix A should be wholly moved
to the global memory of GPU, hence, the maximum dimensionality of the input complex matrix
can be 12288*12288. In the case of Tesla K40 GPU accelerator it can be 31744 * 31744 as its
global memory is 12 GB.

The results show that MRRR algorithm, in a standard form, for 2-2.5 times concedes the DC
algorithm. For example, on Tesla C1060 accelerator in case of 12288*12288 maximum
dimensional input matrix, the DC algorithm is carried out at gpu_time = 258sec., and in the case
of MRRR algorithm it is fulfilled atgpu_time = 462sec. On Tesla K40 GPU accelerator in case of
31744*31744 maximum input-dimensional complex matrix, the DC algorithm is carried out
atgpu_time = 603sec., and in case of MRRR algorithm at gpu_time = 1680sec. .

Figures 3 and 4 show in a standard form case the comparisons of GPU accelerators of time-
dependent DC and MRRR algorithms with equal amounts of input matrices. The maximum
dimensionality of the input matrix will be equal to the possible maximum dimensionality of the
matrix used on Tesla C1060.
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Fig. 3. DC algorithm. Fig. 4. MRRR algorithm.

Obviously, Tesla C1060 much concedes the Tesla K40 by its architecture, but let’s present
the results in the case of these two algorithms. For example, in case of the input matrix with
12288*12288 maximum dimensionality on Tesla C1060 accelerator, the DC algorithm is
implemented atgpu_time = 258sec., whereas on Tesla K40 it is implemented atgpu_time =
50sec.. MRRR algorithm is implemented on Tesla C1060 accelerator atgpu_time = 462sec.,
whereas on Tesla K40 - at gpu_time = 150sec..
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5. Performance Results of Eigenproblem Solutions for Generalized Form

Finding of eigensolutions of complex Hermitian matrices for Az= ABz generalized form is
carried out with the help of the following functions of MAGMA library:

» magma_xhegvdx ( D&C),
» magma_xhegvr (MRRR),
» magma_xhegvx (BI).

X can be ¢ or z in complex and double complex cases, respectively.
Figures 5 and 6 show the time-dependent graphs for three methods in the case of generalized
form on Tesla C1060 and Tesla K40 GPU accelerators, respectively.
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Since for a generalized form A and B matrices should be wholly moved to the global
memory of GPU accelerators, therefore in case of Tesla C1060 the maximum dimensionalities of
input matrices will be 9216*9216, and in case of Tesla K40 they will be 21504*21504.

The results show that for a generalized form together with the increase in dimensionalities of
input matrices the MRRR algorithm concedes the DC algorithm for 1.5-4times. For example, on
Tesla C1060 accelerator in case of 9216*9216 maximum dimensional input matrices, the DC
algorithm is carried out at gpu_time=150sec., and in the case of MRRR algorithm it is fulfilled at
gpu_time = 265sec. On Tesla K40 GPU accelerator in case of 21504*21504 maximum input-
dimensional complex matrices, the DC algorithm is carried out at gpu_time = 603sec., and in
case of MRRR algorithm at gpu_time = 1005sec..

Figures 7 and 8 show in a generalized form case the comparisons of GPU accelerators of
time-dependent DC and MRRR algorithms with equal amounts of input matrices. The maximum
dimensionality of the input matrix will be equal to the possible maximum dimensionality of the
matrix used on Tesla C1060.
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For the generalized form the results of these two algorithms will be presented. For example,
in the case of input matrices with 9216*9216 maximum dimensionality on Tesla C1060
accelerator, the DC algorithm is implemented at gpu_time = 150sec., whereas on Tesla K40 it is
implemented at gpu_time = 29sec. MRRR algorithm is implemented on Tesla C1060 accelerator
at gpu_time = 266sec., whereas on Tesla K40 - at gpu_time = 106sec..

6. Conclusion

The performance studies of solutions of a symmetric tridiagonal matrix were carried out on both
accelerators Tesla C1060 and Tesla K40. Our assessment on this issue considers the speed of the
bisection and inverse iteration (BI), the divide-and-conquer method (DC), and the method of
multiple relatively robust representations of (MRRR) algorithms in complex Hermitian matrices.
The conclusions are as follows:
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Uhdtwnphly ptp wilniimgduwyhtt dwnphgh ubthwjuib jnisnudutph
wgnphpUubph wpununpnnqujuinipjnibttph hwdbdwwnnipyniiubkpp

GPU wipuquqgnpshsutph dpw

Z. Uugunpjut b E. Ghyniug
Udthnthnid

Zipdhnjut dwinphgh ubthuut  (nsnudubpp quubjhu pwwn uplnp ugphp
hwtunhuwtnid uhubwnnphly Epbpwiljnittiugsuyhe dwwnphgh nénidubph
wgnphpdubkphg wpnnibwybn wnwppkpuljh npnonuup: Ugjuwinwipnid
hwdbdwwnynid ki wyju wignphpdutpp Ynduytpu Zkpdhnjut dwwnphgutph phypnid
hhpphnuyhtt hwdwlwpgbpnud: Ukpnnutpp jhpwnydt) Eu Tesla C1060 L Tesla K40 GPU
wpwquqnpshsutph Ypw b thpluyugusd bt wpunwnpnpujubnipniubpp husybu
Ubkpnnubnh dhol, wyybu k| wmpuquqgnpshsubph dholi:

CpaBHeHHe MPON3BOANTEILHOCTH AJITOPUTMOB BBIYHMCIEHUS COOCTBEHHBIX
pellieHuil CHMMEeTPHYHBIX TPEeXIMATOHAJIbHBIX MATPHIl HA rPadUYecKUX
npoueccopax GPU

I'. Acuatpsin u 3. ['muyHII
AHHOTALUSA

[lpn HaXOXIEHWH pPEUICEHUH COOCTBEHHBIX 3HAYEHUH M BEKTOPOB APMHTOBBIX MATPHUI]
OOJBIIYI0 BAaXXHOCTh TpEACTaBIsIeT mpobiema onpenencHus 3()(EKTHBHOrO BapuaHTa U3
ITOPUTMOB HAXOXJICHHUS PEUICHUH CHMMETPUYHBIX TPEXIHaroHaJbHBIX MaTpull. B maHHOMN
paboTe 5TH AIrOPUTMBI CPaBHHUBAIOTCA JUISL CIy4as KOMIUICKCHBIX 3PMHUTOBBIX MAaTpHIl B
THOPUIHBIX cucTeMaX. MeTobl ObLIH MPUMEHEHBI Ha rpadudeckux npoueccopax TeslaC1060 u
TeslaK40 wu npencraBiieHbI TPO3BOAUTEIBHOCTH KaK JUIsl METOAOB, TaK U MEXKIY TpadHueCKUMH

ImpoueccopamMu.



