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Abstract

There are two currently popular statistical frameworks for addressing test data an-
alyzing: Classical Test Theory (CTT) and Item Response Theory (IRT). Each of these
approaches has its advantages and disadvantages. The detailed description of CTT
was given in the previous paper of V. K. Avetisyan [1]. In this paper the description
of IRT models are provided to show the complex mathematical apparatus used. In
this investigation we suggest a new model of test quality evaluation based on infor-
mation measures such as Shannon entropy, conditional entropy and average mutual
information.We show that this approach is easier and more informative.

Keywords: Test quality, IRT models, Test information function, Shannon entropy,
Average mutual information.

1. Introduction

Test development is a very difficult and time-consuming process. It consists of the following
main steps: (a) establishing the purpose of a test, (b) defining the construct of interest, (c)
drafting test items, (d) conducting a pilot test, and (e) analyzing the item response data [9].
These steps are cyclical and the analysis of item response data leads to the identification of
good items and informs revision of bad ones. Revised items are then subjected to additional
rounds of pilot testing and analysis. Several authors provide detailed information about each
of these steps [2].

The analysis of item response data is an important step in the development of quality
characteristics of test and test items. Item analysis is a procedure for quantifying various
characteristics of test items. It helps us to identify items that are too easy or excessively
difficult for examinees, and ability to distinguish between low- and high-scoring examinees.

There are two currently popular statistical frameworks for addressing test data analyzing:
Classical Test Theory (CTT)[3] and Item Response Theory (IRT) [4]. Both theories enable
to predict outcomes of psychological tests by identifying parameters of item difficulty and
the ability of test takers. Both are concerned to improve the reliability and validity of
psychological tests [5]. Both of these approaches provide measures of validity and reliability.
There are some identified issues in the classical test theory that concerns with calibration
of item difficulty, sample dependence of coefficient measures, and estimates of measurement
error which in turn is addressed by the item response theory.
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CTT is regarded as true score theory. The central model of the classical test theory is that
the observed test scores (T'O) are composed of a true score (T') and an error score (E), where
the true and the error scores are independent. A mathematical expression of the model is as
follows: TO =T + E. Traditionally, methods of analysis based on classical test theory have
been used to evaluate tests. The focus of the analysis is on the total test score; frequency
of correct responses (to indicate question difficulty); frequency of responses (to examine
distracters); reliability of the test and item-total correlation (to evaluate discrimination at
the item level) [1, 8]. Although these statistics have been widely used, one limitation is that
they relate to the sample under scrutiny and, thus, all the statistics that describe items and
questions are sample-dependent [10].

IRT is a general statistical theory about the examinee item and the test performance and
how performance relates to the abilities that are measured by the items in the test. IRT
models show the relationship between the ability or trait (symbolized #)measured by the
instrument and an item response. IRT may be regarded as roughly synonymous with the
latent trait theory. In IRT each item on a test has its own item characteristic curve that
describes the probability of getting each particular item right or wrong given the ability of
the test takers [11]. The item response may be dichotomous (two categories), such as right or
wrong, yes or no, agree or disagree or, it may be polytomous (more than two categories).The
IRT score is often called an ability, trait, or proficiency. The probability of a correct response
is expressed as a function of . When the probability is calculated for a specific value of
6, it can be interpreted as the probability of a correct response for an examinee randomly
selected from a group of examinees with that value of 6.

Two of the fundamental advantages of IRT models are unidimensionality and local inde-
pendence. The unidimensionality means that a set of items and/or a test measure(s) only
one latent trait (), and local independence means that there is no statistical relationship
between examinees responses to the pairs of items in a test, once the primary trait measured
by the test is removed. What follows are various models that make different assumptions
about that relationship.

2. IRT Models

Within the general IRT framework, many models have been formulated for modeling of the
relationship between the trait measured by the test and item responses. and applied to real
test data [12]:

Unidimensional Dichotomous Models

e Normal Ogive Model

e One-Parameter Logistic Model (Rasch Model-1PLM)
e Two-Parameter Logistic Model (2PLM)

e Three-Parameter Logistic Model (3PLM)

e Nonparametric Model

Unidimensional Polytomous Models
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Partial Credit Model

Generalized Partial Credit Model

Rating Scale Model

Graded Response Model
e Nominal Response Model (Nominal Categories Models)

Multidimensional Dichotomous Model

Compensatory Three-Parameter Logistic Model.

One-Parameter Logistic Model (1IPLM a.k.a. Rasch Model)[8] has been devel-
oped by the mathematician George Rasch [4]. In this model the probability of a randomly
chosen examinee at an ability level # obtaining a correct answer on item ¢ can be expressed
as

1
Fi(0) = T e Do (1)

where P;(6) is the probability of a randomly chosen examinee at ability level § answering
the item ¢ correctly, e is an exponential constant whose value is about 2.718, D is a scaling
factor whose value is 1.7, and b; is the difficulty parameter of item 1.

P;(#) is a monotonic increasing function, which means that the probability of a correct
answer increases as the latent trait increases. An examinee with a high level of ability has a
greater chance of answering an item correctly as compared to an examinee with low ability.

Item characteristic curve (ICC) illustrates the relationship between the latent trait
and the probability of a correct answer. Figure 1 illustrates an item characteristic curve
for the One-Parameter Logistic Model Item. Person ability is on the z-axis of this figure,
and the probability of a correct response is on the y-axis. Item difficulty is also referred to
as the location parameter because it affects how far the curve is shifted left or right along
the z-axis. The difficulty parameter b tells how difficult the item is. Its value equals
the 0 value where the slope of the function is steepest. Low difficulty values shift the entire
curve to the left, and high difficulty values shift the whole curve to the right. That is, small
values of item difficulty represent easy items because moving the curve to the left increases
the probability of a correct response at a given level of ability. Conversely, large values of
item difficulty represents difficult items because moving the curve to the right lowers the
probability of a correct response for a given level of ability. This interpretation of difficulty
is opposite to that of item difficulty in a classical item analysis, but it is in the more intuitive
direction: small values correspond to easy items, and large values— to difficult items. Because
item difficulty affects the location of the item characteristic curve, one can obtain the item
difficulty parameter value directly from a plot of the item characteristic curve. For the Rasch
model, difficulty is the point on the z-axis where the probability of a correct answer is 0.5.
You can find item difficulty from a plot (Figurel) by drawing a horizontal line from the value
0.5 on the y-axis until it reaches an item characteristic curve. Then, draw a vertical line
down to the z-axis to obtain the difficulty value.

Figure 2 shows two 1PLM items with different b parameters. Item 1 is more difficult
than item 2; for any given value of y, the probability of getting item 1 right is lower than
the probability of getting item 2 right.
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Fig. 2. 1PLM items with different b-parameters. Item1 is more difficult.

Two-Parameter Logistic Model (2PLM) is a generalization of the 1IPLM. In this model
test item is characterized by two parameters: the difficulty b parameter and the discrimi-
nation a parameter. Instead of having a fixed discrimination of 1 across all items as in
1PLM, in the 2PLM, each item has its own discrimination parameter. Thus, the model is

mathematically expressed as

1
Pl(e) - 14+ e—Dai(Q—bi)’ (2)
where a; is the discrimination parameter of item 4.

The discrimination parameter, or slope a, tells how steeply the probability of correct
response changes at the steepest point on the curve. Figure 3 shows two items with different
a parameters; item 1 has a higher discrimination than item 2. Thus, item 1 can better
differentiate (discriminate) between an examinee with a moderately high 6 and a moderately

low 6.
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Fig. 4. 2PLM items. The items have different a-parameters and different b-parameters.

In Figure 4 items 1 and 2 are 2PLM items. They have different a and b parameters, but
both functions approach a lower asymptote of zero.
Three-Parameter Logistic Model (3PLM) allows an ICC to have non-zero lower

asymptotes. This model is more suitable for response data with those items in which ex-
aminees at the extremely low proficiency level may get the items correctly by chance; for
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example, a multiple choice item. In this model

1

1 + e—Dai(0=bi)’ (3)
where ¢; represents the probability that examinees at extremely low levels of the trait answer
item ¢ correctly. This third item parameter c¢; is often called either the pseudo-chance-
level parameter or the guessing parameter, although ”pseudo-chance-level parameter” is
theoretically more appropriate (Hambleton, Swaminathan, & Rogers, 1991). The 2PLM is
a special case of 3PLM when ¢ = 0, and 1PLM is a special case of 2PLM when a = 1.

The lower asymptote parameter ¢, provides the probability that an examinee with a very
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Fig. 5. 3PL items with different c-paramaters. Item 2 has a higer c-parameter.

low level of # will answer the item correctly. The b-parameter is the point on the ability
scale, where an examinee has (1 + ¢)/2 probability of a correct answer. The a- parameter is
proportional to the slope of the ICC at the point b on the ability scale.
Polytomous models. Items that have more than two categories are labeled polytomous,
or polychotomous. Several models have been proposed and used for polytomous items.
Partial Credit Model (PCM) is an extension of the 1PLM. Equation (1) for the
1PLM can be rewritten as

1 exp(D(0 — b)) P (6)
£i(0) = —D(O—b;) —u) P (D)’ (4)
l+e D 1+exp(D(0 = b))  Po(f) + Pa(0)
where P;;(0) is the probability of a randomly chosen examinee, whose proficiency level is
0, scoring 1 on item 4, and Pj(6) is the probability of a randomly chosen examinee, whose

proficiency level is #, scoring 0 on item <.

Thus, the probability of a person at 6, scoring x over x — 1 can be computed as
Pis(6) __exp(D(0 — b))




M. Haroutunian and V. Avetisyan 13

where P;,(0) and P,,_1(0) refer to the probabilities of an examinee at 6, scoring  and = — 1,
respectively. It should be noted that the number of item difficulty parameters are now m;
(one less than the number of response categories) in (5). The probability of a randomly
chosen examinee, who has ability 6, scoring = on item ¢ can be expressed as

__ Xp > heo(D(0 = bix))
Soriexp > o_o(D(0 — by))

The function of (6) is often called a score category response function (SCRF).

Figure 6 shows option characteristic curves for a partial credit item with four categories.
In this figure, there are three places, where the curves for two adjacent categories intersect.
The first intersection occurs at an ability level of about —1.7. This value is the step parameter
for transitioning from a score of 0 to a score of 1. The next intersection point is at about
0.8, and it represents the point where the probability of scoring in category 1 is the same
as scoring in category 2.  The remaining step parameter is located at about 1.8 on the

P,.(0) , x=1,2,...,m,. (6)
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Fig. 6. Option characteristic curves for a partial credit item with four categories.

0— =1=- —2- - =3

latent scale. Beyond this level of ability, examinees are most likely to obtain the highest
possible item score. There are two aspects to consider when evaluating threshold parameters
for a polytomous item response model. The first is the spread of threshold estimates. A
nice feature of the item graphed in Figure 6 is that the step parameters range from about
—1.7 to +1.8. A consequence of this spread of step parameters is that the item will provide
information throughout most of the scales range.

Generalized Partial Credit Model (GPCM) [14] is a generalization of the PCM with
a parameter for item discrimination added to the model. Muraki [14] expressed the model
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mathematically as follows:

exp Zi:o(Zikw))
dontexp ZZZO(Zik (0))

Pzz(e) = ) (7)

where

and d;, is the relative difficulty of score category x of item ¢. Although Muraki followed the
same way of parameterization for item and score category difficulty as Andrichs rating scale
model, the item difficulty parameters for each score category can be simply rewritten as

biz = b; — diz, 9)
and so the equation (8) will become

The only difference between the PCM and GPCM is the additional discrimination pa-
rameter for each item (a;).

There are various approaches in the construction of tests using IRT. Some approaches use
the two-dimensions that plot item discriminations and item difficulties. Other approaches
use a three-dimension for the probability of test takers with very low levels of ability getting
a correct response. Other approaches use only the difficulty parameter (one dimension) such
as the Rasch Model. All these approaches characterize the item in relation to the probability
that those who do well or poorly on the exam will have different levels of performance.

3. Information Function

Characteristic curves are useful tools for illustrating the relationship between the probability
of a response and person ability, but there is another function that describes the quality of
measurement more directly. The item information function, I;(#), describes an items contri-
bution to measurement of person ability such that the greater the amount of information,
the more precision there is in estimating the person ability.

Item (Fisher) information function [8] mathematically is expressed as
(P(6))?

7

Fi(0) - Qi)

where Q;(0) = 1 — P;(0) is the probability of incorrect answering to item i and is defined by

1;(0) = (11)

1

Qi(0) = T3 705 (12)

The item information function of the 1PL model is actually quite simple:

1;(0,b;) = P;(0,0;)Qi(0, b;). (13)
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It is easy to see that the maximum value of the item information function is 0.25. It
occurs at the point, where the probabilities of correct and incorrect responses are both equal
to 0.5. In other words, any item in the 1PLM is most informative for examinees, whose ability
is equal to the difficulty of the item. As ability becomes either smaller or greater than the
item difficulty, the item information decreases. This relationship is illustrated in Figure 7.
The item in this figure has a difficulty of 0.04, and the information function reaches its peak,
when the ability level is 0.04. Thus, the item in Figure 7 provides the best measurement
of people with an ability level of 0.04. It also provides useful information for examinees
with ability between —1.0 and 1.0. Outside this range, the item does not contribute much
to measurement of the latent trait. Additional items are needed to improve measurement
precision at other parts of the scale.

For the 2PL model, the item information function becomes
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Fig. 7. An item characteristic curve and item information function.

In the 1PL model, all item information functions have the same shape, the same maximum
of 0.25, and are simply shifted along the ability axis such that each item information function
has its maximum at the point, where ability is equal to item difficulty. In the 2PL model, the
item information functions still attain their maxima at item difficulty. However, their shapes
and the values of the maxima depend strongly on the discrimination parameter. When
discrimination is high (and the item response function is steep), the item provides more
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information on ability, and the information is concentrated around item difficulty. Items
with low discrimination parameters are less informative, and the information is scattered
along a greater part of the ability range.

The item information function of the 3PL model is

I(0,a,b,c) = aZQ(e) [

P(0) — cr.

1—c¢

Item information functions combine in a simple way to summarize measurement precision
for an entire test. Specifically, the test information function (TIF) is the sum of item
information functions:

1(6) = I;(6). (16)

Test information guides the test development in IRT. It is used to design a test with
maximal precision at important parts of the scale. An item from the Rasch family of models
will contribute maximum information at the point where person ability equals item difficulty.
As a result, if you need more information at a particular point on the scale, then choose
items with that level of difficulty.

Maximizing information at an important region of the scale allows to minimize measure-
ment error in that region because of the relationship between information and measurement
error. The standard error (SE) of the examinee ability estimate is inversely related to infor-
mation, SE (0) = 1/4/1(#). Small values of information translate to large standard errors,
and large values of information result in small standard errors.

As Figure 8 shows in locations where there is more information, the standard error is
lower.
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Fig. 8. Relationship between test information and standard error of the proficiency estimate.
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4. Application of Shannon Information Theory Elements for Test Item Qual-
ity Evaluation

We suggest a new approach for test quality evaluation based on the information measures.
Particularly, Shannon entropy, conditional entropy, average mutual information
[16] are used for estimation. Suppose that the test consists of N items, each item can be
considered as a random variable (RV). These variables we denote by X, X5, .., Xy. Each
RV can have two values: 1 for correct answer and 0 for incorrect with the corresponding
probabilities p and 1 — p, where p is the frequency of correct answers in the total number of
examinees:

1 with probability p;,
0 with probability 1 — p;,

I
=

Shannon entropy of RV X;

H(X;) =— ZP(%) log p(z;) (17)

T

can be rewritten as

H(X;) = —pilogp; — (1 — pi) log(1 — p;) = H(p;). (18)

We use logarithms of base 2.
The H(p) function is illustrated in Figure 9.
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We will consider also the conditional entropies of X; given X;.

1
H(X;|X;)=— p(x;, ;) log ———, 19
where p(z;,x;) is the joint frequencies of two items and p(z;|z;) = p(x;, ;) /p(x;).
The average mutual information of two items is defined as:
p(s, Ij)
I(X;NX;) = p(x;, z;) log ————— =
H(X;) — H(Xi|X;) = H(X;) — H(X;|X)). (20)

For formulating the suggested evaluation methods we use the following properties.

Property 1. In case of dichotomous data
0< H(X) <1,

where the left equality takes place if and only if p; = 0 or p; = 1, and the right equality
takes place if and only if p; = 1/2.
Property 2. The following inequalities take place

where the left equality takes place if and only if X; and X; are independent.
Property 3. The conditional entropy does not exceed the non—conditional entropy.

where the equality takes place if and only if X; and X; are independent.

Based on these properties we formulate our test quality evaluation model.

Method 1. If value of H(Xj;) is close to 0, it means that we have a bad test item, which
can be very easy or very difficult. If value of H(X;) is close to 1 we have a good test item.

Method 2. If value of I(X; A X;) is close to 0, it means that there is independency of
test items X; and X;. In case of values close to min[H (X;), H(X;)], X; and X items repeat
each other.

Method 3. If value of conditional entropy (H(X;|Xj;)) is close to H(X;), then X; and
X; are independent.

The error of measurements goes to 0 when the number of examinees grows. We can calculate
the mentioned characteristics based on the test data.

Example. Let the experiment consist of 1000 examinee and 10 items.
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Response data and calculated H(p), CTT item difficulty and IRT item b parameter values
are presented in Table 1.

Table 1:
P; for 1 — P; for H(p) entropy | CTT item | IRT item
correct answers | incorrect answers difficulty | b parameter
X4 0.558 0.442 0.99 0.5580 0.34
Xs 0.408 0.592 0.98 0.4080 0.83
X3 0.633 0.367 0.95 0.6330 0.72
X4 0.850 0.150 0.61 0.8500 2.07
X5 0.597 0.403 0.97 0.5970 0.64
X6 0.446 0.554 0.99 0.4460 0.57
X5 0.486 0.514 1 0.4860 0.06
Xg 0.754 0.264 0.81 0.7540 1.05
Xy 0.516 0.484 1 0.5160 0.10
X0 0.532 0.468 1 0.5320 0.29

According to CTT test items have average difficulty (good items) if difficulty values are
between 0.3 and 0.74. In our case X4 and X8 items are easy. The same conclusion can be
drawn based on calculated H(p) values. Also we can see that H(p) value of X4 is smaller
than the value of X8 item. It means that X4 item is easier than X8 item. If we compare
IRT b parameters values we can see that X4 and X8 items differ with their values, too. The
correlation between test items can be calculated in the scope of CTT. Results are presented
in Table 2.

Table 2:

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

Xy | 1.0000 | 0.0915 | 0.1244 | 0.0716 | 0.0898 | 0.0816 | 0.1926 | 0.1462 | 0.1212 | 0.0530
X5 0.0915 | 1.0000 | 0.0411 | 0.0923 | 0.0059 | 0.0370 | 0.1495 | 0.0868 | 0.0630 | 0.0528
X3 10.1244 |1 0.0411 | 1.0000 | 0.0927 | 0.1104 | 0.0404 | 0.1509 | 0.2106 | 0.1261 | 0.1216
X4 1 0.0716 | 0.0923 | 0.0927 | 1.0000 | 0.1173 | 0.0727 | 0.0835 | 0.2087 | 0.0863 | 0.1111
X5 | 0.0898 | 0.0059 | 0.1104 | 0.1173 | 1.0000 | 0.0810 | 0.1381 | 0.1366 | 0.1099 | 0.0752
Xg | 0.0816 | 0.0370 | 0.0404 | 0.0727 | 0.0810 | 1.0000 | 0.1258 | 0.0781 | 0.0196 | -0.0253
X7 10.1926 | 0.1495 | 0.1509 | 0.0835 | 0.1381 | 0.1258 | 1.0000 | 0.1745 | 0.1290 | 0.0740
Xg |0.1462 | 0.0868 | 0.2106 | 0.2087 | 0.1366 | 0.0781 | 0.1745 | 1.0000 | 0.1763 | 0.0925
Xy [0.1212 ] 0.0630 | 0.1261 | 0.0863 | 0.1099 | 0.0196 | 0.1290 | 0.1763 | 1.0000 | 0.0701
X0 | 0.0530 | 0.0528 | 0.1216 | 0.1111 | 0.0752 | -0.0253 | 0.0740 | 0.0925 | 0.0701 | 1.0000

Correlation coefficient ranges from -1 +1. Coefficient value should be small or equal to
0.3. If coefficient value is close to +1, it means that test items repeat each other and one
of those items should be removed from the test. In our case we have a negative correlation
between X6 and X10 items. It means that those items are more independent. Also we
have calculated mutual information function and conditional entropies between some items.
Results are presented in Table 3 and Table 4. It is easy to see that mutual information
function between X6 and X 10 items is close to 0, which is an indicator of independency
(method 2). The same conclusion can be drawn on X6 and X10 items based on method
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3. As we can see condtional entropy of X6 and X10 items is maximum in case of X6 and
X10 items, and conditional entropy is close to entropy of X10 item and it means that those
items are not correlated.

Table 3:
I(X; N X5) X2 X4 X8 X10
X3 0.006067595 | 0.1777555 0.01534219 | 0.002029427
Xs 0.007993387 | 0.003867708 | 0.004439025 | 0.0004612132
Table 4:
H(X;|X;) X2 X4 X8 X10
X1 0.9693708 | 0.5652201 | 0.7895343 | 0.9950139
Xs 0.9708462 | 0.6059726 | 0.8004375 | 0.9965821

5.  Conclusion

So, besides existing CTT and IRT models, we have developed a new approach based on
Information Theory Measures. Its application is not very complex and is sufficiently infor-
mative.
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hnnquond  [1]: Uyju hnpJuwonmd  Guwpugpynud G0 dwdwlwluyhg wbunipjul
unnbjGipp’  Jwpbdvwnmhjuwywli wywpwwwh pwupnuipynilp Geipujwuglbnt hwdwp: Uju
httmwgnump nilnd  dtlp wnwowpymd bGlp phumbph npwyh qGwhwwmdiwG Gnp
unnb]s  hhdGwo hGbnpiwghwjh swihh dhompjniGGtph Jpw, dwlwynpuwwtiu, ChlnGh
LGunpnuwhwjh, wgwjdwlwlwbi LGunpnwhwjh L dhohlG thnjuwnupd hGpnpiwghwjh Ypuw:
Utilip gnijg tlp mwihu, np wju dnntigniG wytih ywnpq L L pGpnpiwmnmhpy:

HoOBEIV IIOAXOA K OILIEHKE KaueCTBa TECTOB HA OCHOBE Mep
nH(popmMmanuu lllenHOHa

M. ApyTioHaH u B. ABeTUCAH

AnHoTanus

B Hacrogiee BpeMs eCTb ABA NOIYAIPHBIX CTATUCTUYECKUX ITOAXOAA AN QHAAM3A
TECTOBBIX AQHHBIX: KAQCCHUYECKas TEOpUsl U COBPeMeHHass Teopusd. Kaxabli U3
3THUX MOAXOAOB MMeEeT CBOM IIPEeMMYyIeCTBa U HeAOCTAaTKU. [loppoOHOe ommcaHume
KNAQCCUYECKOU Teopuu OBINO IPUBEAEHO B IIPEABIAYILEN cTaThe B. ABeTtucana [1]. B
AQHHOU CTaThe IPUBEAECHO ONIMCaHNE MOAEAEN COBPEMEHHOU TeOPUH, YTOOBI ITOKA3aTh
CAOKHOCTb HCIIOAB3yeMOI'O MaTeMaTH4YeCKOro allapara. B AaHHOM MCCAepOBaHUU
MBI IIpEAAATaeM HOBYIO MOAEAB OIleHKM KadeCTBa TeCTOB, OCHOBAHHYIO Ha Mepax
nH@OpMAIUY, TAaKWX, KakK 3HTponus [lleHHOHA, YCAOBHAsA JHTPONIUS U CPEAHSIS
B3auMHasA uHopManusa. Mel MOKa3bIBAEM, UTO 3TOT IIOAXOA ABASIETCS OOAE€e IIPOCTBIM
1 UHPOPMATUBHBIM.
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