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Abstract 
 

In this paper a construction of double ±1  error correcting linear optimal 
codes over rings 𝑍𝑍7 and 𝑍𝑍9 is presented.  
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1. Introduction 
 
From practical point of view the codes over rings 𝑍𝑍2𝑚𝑚 or 𝑍𝑍2𝑚𝑚+1 are interesting, because they can 
be used in 22𝑚𝑚 – QAM (Quadrature amplitude modulation) schemes. Codes over finite rings, 
particularly over integer residue rings and their applications in coding theory have been studied 
for a long time. Errors happening in the channel are basically asymmetrical; they also have a 
limited magnitude and this effect is particularly applicable to flash memories. 
         There have been a couple of papers regarding to optimal  ±1 single error correcting codes 
over alphabet 𝑍𝑍𝑚𝑚 [1,2]. Also there are many linear codes capable to correct up to two errors of 
type ±1 for different alphabets which have been found by computer search, but they are not 
optimal. The optimality criteria for the linear codes over fixed ring 𝑍𝑍𝑚𝑚  can be considered in two 
ways (see in [3]). First of all, recall that the code of the length n is optimal-1 if it has a minimum 
possible number of parity check symbols. Secondly, optimality-2 criteria for the code is that for a 
given number of parity check symbols, it has a maximum possible length. The linear code (12, 8) 
correcting double errors over ring 𝑍𝑍5  of value ±1 presented in [3] satisfies the optimality criteria 
-1: 
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𝐻𝐻 = �

1 1 1 1 1 0 1 2 3 4 1 1
0 1 2 3 4 2 2 2 2 2 1 1
3 2 4 4 2 3 2 4 4 2 1 1
1 1 1 1 1 3 2 4 4 2 0 4

�, 

 
this code was given by the parity check matrix H, which has 8 information and 4 parity check 
symbols. 
          At this point we do not know any codes that satisfy the optimality criteria-2. In [3] a 
method how to compare two code constructions over different size of alphabets when both 
satisfy the optimality –1 criteria has been presented. Two factors are considered, namely: 
 

1) The first factor should be the rate of the code, i.e., the ratio of the number of information 
symbols over the length of the code. 

2) Second, the ratio between the numbers of possible amplitude errors corrected by the 
code over the size of alphabet minus 1, which corresponds to the number of all possible 
amplitude errors. 

 The product of these two factors is chosen as a merit to compare optimal codes over different 
size of alphabets [3]. 
       For the code over ring 𝑍𝑍5 mentioned above the product is: (8/12) ∗ (2/4) = 0.3333.  
 
In this paper a constructions of the optimal-1 codes (16, 12) and (20, 16) over the rings  𝑍𝑍7 and 
𝑍𝑍9 correcting double ±1 errors is presented. For these codes the products will be (12/16) * (2/6) 
= 0.25 for code over 𝑍𝑍7  and (16/20) * (2/8) = 0.2 for  𝑍𝑍9 . These products are a little bit smaller 
than those for the code (12, 8) over ring 𝑍𝑍5, although there are much better ones compared to the 
codes over  𝑍𝑍16 and 𝑍𝑍128  in [2, 4, 5]. 
 
 
2. Construction of Optimal (16, 12) Linear Code over Ring 𝑍𝑍7 
      
Our purpose is to construct an optimal linear code over ring 𝑍𝑍7 correcting double errors of the 
type ±1. It is well known, that a linear code given by the parity check matrix 𝐻𝐻, can correct up 
to two errors of the type ±1, only when  𝐻𝐻 has a property according to which all the syndromes 
resulting from adding and subtracting operations between any two columns of the matrix 𝐻𝐻 are 
different �±ℎ𝑖𝑖 ± ℎ𝑗𝑗 ,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒  � ℎ𝑖𝑖 ≠ ±ℎ𝑗𝑗  ��. For constructing this kind of matrix H, at first we will 
find a difference set in 𝑍𝑍7. For example, a difference set for a linear code (12, 8) constructed in 
[3] is the set {3,2,4,4,2}.   A difference set is defined to have a property that the differences for 
any 2 components in the set are different in 𝑍𝑍5 given that difference is taken for the elements 
located at the same distance from each other where the distance itself can be from the set (1, 2, 3, 
4). Note also that the distance between positions of elements is calculated modulo 5 in this case. 
For an example if the distance is chosen to be three, we have to take a difference between the 4-
th and 1st positions of the set which is equal  to 1, a difference between the 5-th and 2 nd 
positions of the set will be 0, a difference between the 1 st(6-th) and 3 rd positions of the set will 
be -1(4), a difference between the 2 nd(7-th) and 4-th positions of the set will be -2(3), and 
finally a difference between the 3 rd(8-th) and 5-th positions of the set will be 2.  
       For the ring  𝑍𝑍7 it is easy to check that the difference set is a set − {4,3,6,6,3,4,2} of the 
length 7. For instance, for the distance equal to 1 all the corresponding differences resulting 
from�3– 4 = 𝟔𝟔, 6 − 3 = 𝟑𝟑, 6 – 6 = 𝟎𝟎, 3– 6 = 𝟒𝟒, 4 − 3 = 𝟏𝟏, 2 − 4 = 𝟓𝟓, 4 – 2 = 𝟐𝟐(𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎)� are 
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different. 4-corresponds to the position with index 0 and the last position 2 corresponds to the 
position with index 6 and 0 − 6 = 1(𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎) (all operations are in 𝑍𝑍7). 
    
          A linear (16, 12) code over ring   𝑍𝑍7  is given by the following parity check matrix H: 

𝐻𝐻 = �

1 1 1 1 1 1 1 0 1 2 3 4 5 6 1 1
6 5 4 3 2 1 0 2 2 2 2 2 2 2 1 1
4 3 6 6 3 4 2 4 3 6 6 3 4 2 1 6
1 1 1 1 1 1 1 4 3 6 6 3 4 2 0 0

�.        (1) 

 
An approach how this matrix is designed is similar to one in [3]. It consists of three parts, 

namely the first 7 columns, the next 7 columns and a tail of two last columns. The first two rows 
of the first and second parts is  a code correcting one error of the  type ±1, the third rows of the  
parts 1 and 2 as well as the forth row of the second part are a difference set for   𝑍𝑍7. It can be 
checked that a linear code over 𝑍𝑍7, given by the parity check matrix 𝐻𝐻 in (1) can correct up to 
two errors of the type ±1. This can be done in the similar manner demonstrated in [3] and, of 
course, also by computer.  
 
Lemma 2.1: A linear code (16, 12) correcting up to two errors of the type  ±1 is optimal in the 
sense that it has a minimal possible number of parity check symbols. 
 
Proof: In this case the number of combinations for each code word that can be corrected is  
 

(1 +  16 ∗ 2 +  (16 𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑒𝑒 2) ∗ 4)  = 513. 
 
 
Thus, we have that  513 ∗ 712 ≤ 716  and the cardinality of the best possible code is  

    
716/513 < 713 . 

 
 

3. Construction of Optimal (20, 16) Linear Code over Ring 𝒁𝒁𝟗𝟗 
 
 In this section we will construct an optimal (20, 16) linear code over ring 𝒁𝒁𝟗𝟗. As in previous 
construction we need to find a difference set of length 9 for 𝒁𝒁𝟗𝟗. In this case we could not find a 
difference set of length 9. So, to fix this problem we find a difference set of the    length 
8: {7, 3, 2, 4, 4, 2 ,3, 7}. Similarly, in this set, for all distances (1, 2, 3, 4…) the differences of any 
2 components should be different in 𝑍𝑍9. For instance, for the distance - 1 all the corresponding 
differences resulting from�3 – 7 = 𝟓𝟓, 2 − 3 = 𝟖𝟖, 4 – 2 = 𝟐𝟐, 4– 4 = 𝟎𝟎, 2 − 4 = 𝒎𝒎, 3 − 2 =
𝟏𝟏, 7 – 3 = 𝟒𝟒  (𝒎𝒎𝒎𝒎𝒎𝒎𝟗𝟗)� are different (all operations are in 𝑍𝑍9).         
       In the previous construction, sequences consisting of all integers  
in 𝑍𝑍7- {0, 1, 2, 3, 4, 5 ,6} have been used in rows of the matrix.   Since we have for 𝑍𝑍9  a 
difference set with only 8 components, we should take either a 
sequence {0, 1, 2, 3, 4, 5 ,6,7} 𝑜𝑜𝑒𝑒 { 1, 2, 3, 4, 5 ,6,7,8 }. 

In this case the parity check matrix for an optimal linear code (20, 16) correcting double 
errors of the type ±1 has the following form: 
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 𝐻𝐻 = �

1 1 1 1 1 1 1 1 8 7 6 5 4 3 2 1 1 1 2 4
7 6 5 4 3 2 1 0 2 2 2 2 2 2 2 2 1 1 2 4
7 3 2 4 4 2 3 7 7 3 2 4 4 2 3 7 1 1 2 4
1 1 1 1 1 1 1 1 7 3 2 4 4 2 3 7 6 3 7 2

�. (2) 

 

As for previously constructed codes a corresponding parity check matrix (2) also consists of 
three parts. Since a difference set in this case has only 8 elements a corresponding split between 
those parts will be (8, 8, 4). This is because our target is to have a code of the length 20 which 
will be optimal and, therefore, we will need for the tail part to have 4 columns which are, in fact, 
the last four columns of the matrix (2). A linear code over 𝑍𝑍9, given by the parity check matrix 𝐻𝐻 
(2), can correct up to two errors of the type ±1. The proof of this statement can be made in a 
similar manner demonstrated in [3], as well as by computer. 

 
Lemma 3.1: A linear code (20, 16) given by (2) correcting up to two errors of the type  ±1 is 
optimal in the sense that it has a minimal possible number of parity check symbols. 
 
Proof: In this case the number of combinations for each code word that can be corrected is  
 

           
   (1 +  20 ∗ 2 +  (20 𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑒𝑒 2) ∗ 4) = 801 . 

 
Thus, we have that  801 ∗  916  ≤  920  and the cardinality of the best possible code is   
 920/801 < 917 . 
 
 
 
4. Conclusion 
 
In this paper a construction of optimal double ±1 error correcting linear optimal codes over rings  
𝑍𝑍7 and 𝑍𝑍9 are constructed. We plan to investigate if an approach presented in this paper can be 
extended for the construction of codes for larger alphabets as well as for the construction of near 
optimal codes with higher code rates. 

 
 
 

References 
 

[1] S. Martirossian, “Single error correcting close packed and perfect codes”, Proc.1st 
INTAS Int. Seminar Coding Theory and combinatorics, Armenia, pp.90-115,1996. 

[2] H. Kostadinov, N. Manev and H. Morita, “On ±1 error correctable codes”, IEICE 
Trans.Fundamentals, vol.E93-A, pp.2578-2761, 2010.  



Construction of Double ±1  Error Correcting Linear Optimal Codes over Rings 𝑍𝑍7 and 𝑍𝑍9 
 

110 

[3] G. Khachatrian and H. Morita,  “Construction of optimal ±1  double error correcting 
linear codes over ring  Z5”,  3th International Workshop on Advances in 
Communications, Boppard, Germany, pp. 10-12,  May 2014. 

[4] A. J. Han Vinck and H. Morita, ”Codes over the ring of integers modulo m,” IEICE 
Trans.Fundamentals , vol. E81-A,  pp. 2013-2018,1998.  

[5] H. Kostadinov, N. Manev and H. Morita, “Double ±1-error correctable codes and their 
applications to modulation schemes”, Proc. Elev. Intern. Workshop ACCT,  
Pamporovo, June 16-22, pp. 155-160, 2008. 

 

 
Submitted 17.11.2015, accepted 10.02.2016 
 
 
𝑍𝑍7 և 𝑍𝑍9 օղակներում  ±1 մեծությամբ կրկնակի սխալ ուղղող 

օպտիմալ կոդերի կառուցում 
 

Գ. Խաչատրյան և Հ. Խաչատրյան 
 

Ամփոփում 

Այս հոդվածի շրջանակներում ներկայացված են 𝑍𝑍7 և 𝑍𝑍9 օղակներում  ±1 մեծությամբ 
կրկնակի սխալ ուղղող օպտիմալ կոդերի կառուցումներ: 
 

 
 

Построение оптимальных кодов в кольцах  𝑍𝑍7 и 𝑍𝑍9  
исправляющие двойные ошибки размера ±1 

 
Г. Хачатрян  и  Г. К. Хачатрян 

 
Аннотация 

В данной статье представлено построение оптимальных кодов в кольцах  𝑍𝑍7 и 𝑍𝑍9   исправ-
ляющие двойные ошибки размера ±1. 
 

 


	Construction of Double ±1  Error Correcting Linear Optimal Codes over Rings ,𝑍-7. and ,𝑍-9.
	Gurgen H. Khachatrian, Hamlet K. Khachatrian
	In this paper a construction of double ±1  error correcting linear optimal codes over rings ,𝑍-7. and ,𝑍-9. is presented.

