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Abstract

The notions of positive and strongly positive arithmetical set are considered in ([1]-[3]).
It is noted in [3] that the transitive closure of any 2-dimensional strongly positive set is
primitive recursive. In this article a more strong statement is proved: the transitive closure of
any 2-dimensional strongly positive set is defined by an arithmetical formula in the signature
(0,=,<,5), where S(x) = x + 1. Besides, it is proved that the class of two-dimensional
strongly positive sets and the class of transitive closures of such sets do not coincide with the
class of two-dimensional arithmetical sets expressible by the formulas in the signature (0, =
, <, S).
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1. Introduction

The notion of strongly positive arithmetical set is defined and investigated in [3]. It is proved in
[3] that for any n > 3 there exists a 2n-dimensional strongly positive set such that its transitive
closure is not recursive. It is noted in [3] (without a proof) that the transitive closure of any 2-
dimensional strongly positive set is primitive recursive. Below a stronger statement is proved: the
transitive closure of any 2-dimensional strongly positive set can be defined by an arithmetical
formula in the signature (0, =, <, S), where S(x) = x + 1(see below, Theorem 1). It is proved also
that the class of the mentioned transitive closures does not coincide with the class of sets
expressible by arithmetical formulas in the signature (0, =, <, S). For example, it is proved that
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the set {(x,y)/y = x + 2} is not strongly positive and cannot be represented as the transitive
closure of some strongly positive set (see below, Theorem 2).

2. Main Definitions and Results

By N we denote the set of all non-negative integers, N = {0,1,2,...}. By N", where n > 1, we
denote the set of n-tuples (x4, x5, ... x,,), Where x; € N for1 < i < n.
An n-dimensional arithmetical set, where n > 1, is defined as any subset of N™. An n-dimensional
arithmetical predicate is defined as a predicate P, which is true on some set A € N™ and false on
the set N™\A. If the mentioned relation between A and P takes place, then we say that P is the
representing predicate for A4, and A is the set of truth for P.

The notions of primitive recursive set and recursive set are defined in a usual way (see [4]-

[6]).

The notion of arithmetical formula on a given signature (on the base of logical operations
&V, D, —,V,3) is defined in a usual way, ([2]-[6]). We will consider arithmetical formulas in the
signatures (0,=,S) and (0, =,<,S), where S(x) = x + 1 forx € N.

The deductive systems in the signatures (0,=,5) and (0, =, <,S) are defined as in [6]; we
will denote these deductive systems correspondingly by Deds and Ded.. As it is proved in [6],
these deductive systems are complete. We say that the formulas F and G in the corresponding
signatures are equivalent if the formula (F © G)&(G > F) is deducible in the corresponding
deductive system. We will consider the formulas in the mentioned signatures up to their
equivalence.

The relation “n-dimesional arithmetical set A is defined by an arithmetical formula F” is
given in a usual way (see [2]-[6]) (in [2] this relation is called as follows: “k-dimensional
arithmetical set A is represented (or representable) by a formula F").

The notion of transitive closure A* for an arithmetical set A having an even dimension

2k (where k > 1) is defined in a usual way (see, for example, [3], [8]). Let us recall that the
following statement holds (see [3], lemma 3.4, and [8], p.72): if A is a 2k-dimensional set, A &
N2k where k > 1, then (X1, X3, ..., Xi, Y1, V2, -+, Vi) € A* if and only if there exists a sequence
(Q1,Qz, ..., Q) of k-tuples such that m =2, Q1 = (x1,%X2, -, Xk), Qm = V1, Y2, - Vi),
(Q;,Q;41) EAfor1l < i <m — 1. Below we will say that the sequence (Q4, @3, ..., Q;), having
the mentioned properties is a sequence establishing the value (Q4,Q,,) € A" of the transitive
closure A* (or, shortly, ETC-sequence). In what follows we will consider ETC-secuences only
for the case k = 1.

The notion of strongly positive arithmetical set is defined as in [3]. Let us recall that an

m-dimensional arithmetical set, where m > 1, is said to be strongly positive if it is defined by
an arithmetical formula F which is constructed by logical operators & and V from subformulas
having the forms (x = a) (where a is a constant,a € N),x = y,y = S5(x), =(x = 0), where x

and y are variables.
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Theorem 1: The transitive closure of any 2-dimensional strongly positive set can be defined by
an arithmetical formula in the signature (0,=,<,5).
Theorem 2: The set {(x,y)/y = S(S(x))} is not strongly positive and cannot be represented

as a transitive closure of some strongly positive set.

3. Proofs of Theorems

We consider the properties of 2-dimensional strongly positive sets. Let 7 be any set of such kind.
By n we denote the representing predicate for . Using the definition of strongly positive set we
conclude that the predicate n can be expressed by an arithmetical formula F having the form F; v
F, v ...V E,, where any F; is the conjuction of subformulas having the following forms: x = a,
y = b, (where a and b are constants, a € N, b € N), x =y, y = 5(x), x = S5(y), =(x = 0),
—(y = 0). The predicate expressed by the formula F; we denote by n;; the set of truth for n; we
denote by ;. The following equalities hold:
ne,y) =m@xy) Vn (6 y) V..V iy (x, y);
T=m Um, U ..UT,,.

Clearly, all the predicates n,n4,7,, ..., nm, and all the sets «, 7y, 7y, ..., T, are expressible
by arithmetical formulas in the signature (0,=,S). Let us note that if some F; includes
simultaneously some two subformulas of the forms x =y, y = S(x), x = S(y), then the
corresponding predicate n; is identically false, hence, F; can be deleted from the structure of F,
similarly, F; can be deleted from the structure of F if it includes subformulas of the forms x = a;
and x = a, where a; # a, or subformulas of the forms y = b, and y = b, where b; # b,.

Let us consider possible forms of the formula F;. We do not consider the cases mentioned
above when F; can be deleted from the structure of F.

(Case 1). F; contains the subformulas x = a, y = S(x), and, possibly, =(x = 0), =(y = 0).
In this case m; is either empty, or contains the single pair (a,a + 1) (for example, r; is empty if
F; hasthe form (x =0 &y = S(x)& = (x = 0))).

(Case 2). F; contains the subformulas y = b, y = S(x), and, possibly, =(x = 0), =(y = 0).
In this case m; is either empty or contains the single pair (b — 1, b), where b > 0.

(Case 3). F; contains the subformulas y = S(x), and, possibly, —=(x = 0), =(y = 0) (we
suppose that F; contains no subformula having one of the forms x = a,y = b, x =y, x = S(y)).
In this case all pairs of numbers having the form (x,x + 1), where x > 0, belong to ;. The
statement (0,1) € m; is true if and only if the subformula = (x = 0) is not included in F;.

(Case 4). F; contains the subformulas y = b, x = S(y), and, possibly, =(x = 0), =(y = 0).
In this case m; is either empty, or contains the single pair (b + 1, b).

(Case 5). F; contains the subformulas x = a, x = S(y), and, possibly, =(x = 0), =(y = 0).
In this case m; is either empty, or contains the single pair (a,a — 1), where a > 0.

(Case 6). F; contains the subformulas x = S(y), and, possibly, —=(x = 0), =(y = 0) (we
suppose that F; contains no subformulas having one of the formsx = a,y = b, x =y, y = §(x)).
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In this case all pairs of numbers having the form (x + 1, x), where x > 0, belong to ;. The
statement (1,0) € m; is true if and only if the subformula —(y = 0) is not included in F;.

(Case 7). F; contains the subformulas x = a, y = b, and, possibly, x = y =(x = 0), =(y =
0). In this case m; is either empty, or contains the single pair (a, b).

(Case 8). F; contains the subformulas x = a, x = y, and, possibly, =(x = 0), =(y = 0). In
this case m; is either empty, or contains the single pair (a, a).

(Case 9). F; contains the subformulas y = b, x = y, and, possibly, =(x = 0), =(y = 0). In
this case m; is either empty, or contains the single pair (b, b).

(Case 10). F; contains the subformulas x = a, and, possibly, =(x = 0), =(y = 0) (we
suppose that F; contains no subformulas having one of the forms, y = b, x =y, y = S(x), x =
S(¥)). In this case r; is empty when a = 0 and the subformula =(x = 0) is included in F;. In the
opposite case m; contains all pairs (a, y), where y> 0. The statement (a, 0) € m; is true (for a >
0) if and only if the subformula —(y = 0) is not included in F;.

(Case 11). F; contains the subformulas y = b, and, possibly, =(x = 0), =(y = 0) (we
suppose that F; contains no subformulas having one of the forms, x=a, x =y, y = S(x), x =
S(¥)). In this case m; is empty when b = 0, and the subformula —(y = 0) is included in F;. In the
opposite case m; contains all pairs (x, b), where x> 0. The statement (0, b) € m; is true (for b #
0) if and only if the subformula —(x = 0) is not included in F;.

(Case 12). F; contains the subformulas x =y, and, possibly, —(x = 0), =(y = 0) (we
suppose that F; contains no subformulas having one of the forms, x=a,y = b, y = S(x), x =
S()). In this case mr; contains all the pairs having the form (x, x), where x > 0. The statement
(0,0) € m; is true if and only if the subformulas —(x = 0) and —(y = 0) are not included in F;.

It is easily seen that all the variants of the structure of m; are exhausted in the cases 1-12.

Now we will consider the variants of the structure of *. As it is proved in [3] (see [3],
Lemma 3.4) the statement (x,y) € m*is true if and only if there exists an ETC-sequence
(91,92, ---,q+) such that g, = x, g, =y, (qi,qi+1) € w for 1 < i < r. Without loss of generality
we may suppose that any considered ETC-sequence (q4, 95, ---, q-) Where r > 3, satisfies the
condition q; # q; when i # j (otherwise the given ETC-sequence may be replaced by a shorter
sequence having the same properties).

Let us consider the number d such that d = d; + 1, where d; is the maximum of the
numbers a and b in the formulas x = a and y = b included in F. If no formula of such forms is
included in F, then we admit d = 3.

We will use below some classification of pairs (x,y) such that x € N, y € N. We say that
(x,y) belongs to the subset S1 if x < d, y < d. In a similar way we define the subsets S2, S3, S4
as sets of pairs (x,y) suchthat (x,y) € S2ifx >d,y <d; (x,y) € S3ifx <d,y>d; (x,y) €
S4ifx>d,y>d.

The sets S1*, §2%, §3*, S4* are defined coorrespondingly as S1n=n*, S2Nnr*, S3N
", S4Nmn*.

A pair (x,y) is said to be increasing if x < y and decreasing if x > y.

Lemma 3.1: If the number h satisfies the condition h > d, and the pair (x,y) € n* satisfies the
conditions x < h, y < h, then there exists an ETC-sequence (q4, g2, ---, q,-) for the value (x,y) €
m*suchthat g =x,q, =v,(qi,qiv1) Enforl1 <i<r,q;<hfor1<i<r.
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Proof: As it follows from the condition (x,y) € m*, there exists an ETC- sequence
(91,92, -, qr) suchthat q; = x,q, =y,(Qi,qi+1) En for 1 <i<r. if g <hfor1<i<r,
then the statement of Lemma is satisfied. In the opposite case let k be the minimal index in the
sequence (q,qx, ---,qr) Such that k > 1, g, > h. Let [ be the minimal index such that [ > k,
q1+1 < h. Clearly, any number q;, where k < j <[ satisfies the condition q; > h(note that the
case k =1 is not excluded). The following statements hold: q,_; < h, q;4+1 < h, the pair
(qx-1,qyx) 1s increasing, the pair (q;, q;+1) 1S decreasing. But any increasing pair (x,y) € m such
that x > h, y > h, x < y should satisfy the conditions of (Case 3) or (Case 10) mentioned above.
Therefore, either q;,_; = h, q, = h + 1 (Case 3) or qx_, = a, where a is the number contained in
a formula x = a included in F. Similarly, any decreasing pair (x,y) € mw such that x > h, y = h,
x >y, satisfies the conditions of (Case 6) or (Case 11) mentioned above. Therefore either q; =
h+1, q;41 = h (Case 6) or q;,; = b, where b is the number contained in a formula y = b
included in F (Case 11). Now if qx_1 = q14+1 = h, qx = q; = h + 1, (Case 3, Case 6) then the
segment (qx—_1, 9k Gk+1, - 9, 1+1) OF the ETC-sequence (q4, 92, ---, qr) can be replaced by the
single number q,_1 = q;4+1 = h. If gx_; = a, then the mentioned segment can be replaced by the
segment (a, q;4+1) (Case 10). If q;,; = b, then the mentioned segment can be replaced by the
segment (qi_1,b) (Case 11). Clearly the sequence obtained by these replacements is an ETC-
sequence for the value (x,y) € ™.

Transforming in this way any segment of the sequence (q4, 92, ---, ;) containing members
greater than h, we obtain the ETC-sequence satisfying the conditions of Lemma. This completes
the proof.

Corollary 1: There is only finite number of ETC-sequences obtained by the transformations
described in Lemma 3.1. Indeed, the length of such sequence (without repetitions of members) is
< h + 1, and any member of such sequence is < h.
Corollary 2: The set S1* can be defined by arithmetical formula in the signature (0, =, <, S) (even
in (0,=,5)). Indeed, applying Corollary 1 to the case when h = d, we conclude that the set of
pairs (x,y) such that x < d, y < d, (x,y) € n* is finite, hence, it can be defined by a formula
having the form

((x =x)&(y = Y1)) \% ((x =x)&(y = 3’2)) V..V ((x = X)) &y = Ym));
where all x; and y; are constants. If this set is empty, then it can be defined by the formula
(x = y)&(x = S(¥)).
Note. If x < d, y < d, then the statement (x,y) € m* may be tested constructively. The method
of testing is actually given in Corollary 1.
Lemma 3.2: If some pair (x4, y,), Where x, > d, y, < d belongs to *, then any pair (x, y,),
where x > d, belongs to ™.
Proof: If some pair (x,, y,) satisfies the conditions of Lemma, then there exists an ETC-sequence
(91,92, ---, q+) such that q; = xq, q = Yo, (qi,qi+1) Em for 1 < i <r. Let k be the minimal
index in the sequence (q4, 93, ---,q,) Such that k < r, qx4+1 < d (the case k = 1 is not excluded).
Without loss of generality we may suprose that g; < d for k + 1 < i < r (indeed, in the opposite
case the segment (qx+1, Gx+2, ---» G--) €an be transformed by the method described in the proof of
Lemma 3.1).
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The pair (qx, q,+1) IS decreasing, hence, either q,, = b, where b is the number in a formula
y = b included in F, (Case 11 considered above), or g1 = qx — 1 (Case 6 considered above).
Now the ETC-sequence for the pair (x,y,) where x > d is obtained from the sequence
(91,92, ---,q,) as follows: if g,,4 = b, then the segment (q4,q5, -, qx+1) 1S replaced by the
segment (x, q,+1) (See Case 11); if g, = qr4+1 + 1, then any pair (x + 1, x), where x > 0, belongs
to m (see Case 6) hence, we can obtain the required ETC-sequence replacing in the sequence
(91,92, ---,q,) the segment (q4, gy, ---, qr+1) Dy the segment (X, X = 1, ..., Qrs+1 + 1, qr41)- 1L S
easily seen that the sequence obtained by the mentioned replacements is an ETC-sequence for the
value (x,y,) € m*. This complets the proof.

Corollary: The set S2* can be defined by an arithmetical formula in the signature (0,=,<,S).
Indeed, applying Lemma 3.1 and its corollaries to the case when h =d + 1, we obtain the
complete list of pairs (x,y) € #* such that x < d + 1, y < d + 1. In particular we obtain the
complete list of pairs having the property (d + 1,y,) € S2*, where y, < d. Using Lemma 3.2 we
conclude that any pair (d + 1,y,) € S2* where y, < d generates the set {(x,y)/(x > d)&(y =
Yo)}, contained in S2*, so the set S2* is the union of sets having this form for all y, < d such that
(d+1,y,) € 52*. But any set {(x,y)/(x > d)&(y = y,)} is defined by the formula (x >
d)&(y = y,), so the set S2* is defined by the disjunction of these formulas. This completes the
proof.

Lemma 3.3: If some pair (x,,y,), Where x, < d, y, > d, belongs to *, then any pair (x,,y),
where y > d belongs to rr*.

The proof is similar to that of Lemma 3.2. We use the ETC-sequence (q4, g5, -.-, ) Such
that q; = xg, ¢ = Vo, (g1, qi+1) Ew for 1 < i < r. Let [ be the maximal index in the sequence
(91,92, -, ) such that q; < d. Without loss of generality we may suppose that g; < d when 1 <
i <[ (otherwise the segment (g4, g2, -.-, q;) may be transformed by the method used in the proof
of Lemma 3.1).

The pair (q;, q;+1) 1s increasing, therefore either q; = a, where a is the number in a formula
x = aincluded in F (Case 10) or q;+1 = q; + 1 (Case 3). The ETC-sequence for establishing the
statement (x,,y) € m* (where y > d) is obtained from the sequence (qi,q3, ..., qr) by the
following replasements: either the segment (q;, q;+1, ---,q,) 1S replaced by the segment (a,y)
(Case 10), or this segment is replased by the segment (q;,q; + 1, ...,y — 1,y) (Case 3). This
completes the proof.

Corollary: The set $3* can be defined by an arithmetical formula in the signature (0, =, <, S).

The proof is similar to the proof of corollary of Lemma 3.2.

In what follows we will say that a formula having the formy = S(x), x = S(y),orx =y is
contained in a special way in some F; if this formula is contained in F; and the conditions
described correspondingly in (Case 3), (Case 6) or (Case 12) mentioned above are satisfied.
Lemma 3.4: If the formula y = S(x) is contained in a special way in some F; then any pair (x, y)
such that x < y, x > 0, belongs to *.

Indeed, for establishing this statement it is sufficient to consider the ETC-sequence (x, x +
1,..,y—1y).

Lemma 3.5: If the formula x = S(y) is contained in a special way in some F;, then any pair (x, y)
such that x > y, y > 0 belongs to *.
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For establishing this statement it is sufficient to consider the ETC-sequence (x,x —
1,..,y—1Ly).
Lemma 3.6: If the formula y = S(x) is contained in a special way in some F;, and the formula
x = S(y) is contained in a special way in some F;, where i # j, then any pair (x,y), where x >
0, y > 0 belongs to *.

For establishing this statement it is sufficient to consider the ETC-sequence (x,x +
1,..,2,..,y —1,y), where z = max(x,y) + 1.

Lemma 3.7: The set S4* can be defined by an arithmetical formula in the signature (0, =, <, S).
Proof: If the set S4*is empty, then it is defined, for example, by the formula (x = y)&(y = S(x)).
Otherwise, there exists a pair (xg, yo) € S4*, that is x, > d, y, > d, (x4, Yo) € m*. Hence, there
exists an ETC-sequence (q4, g3, ..., qr) Such that q; = xq, ¢, = vo, (qi,qi+1) Emfor1 <i<r.
We will distinguish two cases:

(a) Thereexistssuchithat1 <i<r,q; <d.

(B) q; >dforanyi,where1 <i<r.

Let us consider the case (a).We denote the number g; such that q; < d by z. The pair (x,, 2),
where x, > d belongs to *, therefore, using Lemma 3.2 we conclude that any pair (x, z), where
x > d, belongs to *. The pair (z,y,), where y, > d, belongs to *, therefore, using Lemma 3.3
we conclude that any pair (z, y), where y > d belongs to *. Hence, any pair (x, y), where x > d,
y > d, belongs to *.

So in the case (a) the set S4* is defined by the formula (x > d)&(y > d).

Let us note that similar conclusion concerning the set S4* can be made if there exists any
ETC-sequence (q4,95, ..-,q,) Suchthatq, > d,q- >dandq; < d forsomei,1<i<r.

Now let us consider the case (). We will investigate the properties of all ETC-sequences
(91,92, -, qr) such that q; > d for 1 <i < r, and (q;,q;31) € mw for 1 < i < r. We distingmish
the following subcases: (81), (B2), (83), (B4)-

(B1) In some ETC-sequence (g1, 92, ---,q,) Of the mentioned kind there exists an index i
such that 1 <i<r, qi41 =q; +1, but there is no ETC-sequence of the mentioned kind
containing an index j such that g;; = q; — 1.

(B,) In some ETC-sequence (g1, g2, ---,q,) Of the mentioned kind there exists an index i
such that 1 <i<r, gqi;1 =q; —1, but there is no ETC-sequence of the mentioned kind
containing an index j such that ;.1 = q; + 1.

(B3) In some ETC-sequence (g1, g2, ---,q,) Of the mentioned kind there exists an index i
such that 1 <i<r, qi;+1 = q; +1; besides, in some ETC-sequence (qi,9z,-..,q;) Of the
mentioned kind there exists an index j suchthat1 < j <t, q;;; = q; — 1.

(B4) There is no ETC-sequence of the mentioned kind satisfying the conditions described in
the subcases (5;)-( Bs).

Clearly, the subcase (B;) takes place if some F; in the structure of F has the form (y = S(x)),
but there is no F; having the form (x = S(y)). Similarly, the subcase (/5,) takes place if some F; in
the structure of F has the form (x = S(y)), but there is no F; having the form (y = S(x)). The
subcase (f3) takes place if some F; and F; in the structure of F have the forms, correspondingly
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(y = S(x)) and (x = S(y)). The subcase (B,) takes place if the formula F contains no F; having
one of the mentioned forms.

It is easily seen that in the subcase (f;) the set S4* is defined by the formula
(x > d)&(y > d)&(x < y) or by the formula (x > d)&(y > d)&(x < y) (see Lemma 3.4). In
the subcase () the set S4* is defined by the formula (x > d)&(y > d)&(x > y) or by the
formula (x > d)&(y > d)&(x = y) (see Lemma 3.5). Let us note that the inequalities x < y and
x = y are obtained in the subcases (f;) and (S,) if some F; in the structure of F has the form x =
y (see Case 12 mentioned above). In the subcase (f3) the set S4* is defined by the formula
(x > d)&(y > d) (see Lemma 3.6). In the subcase (8,) the set S4* is either empty or is defined
by the formula (x > d)&(y > d)&(x = y). This completes the proof.

Proof of Theorem 1.

As it is established in Lemmas 3.1-3.7, the sets S1*, §2*, §3*, S4*, are defined by formulas
in the signature {0,=,<,S}. Hence, the set " =S1* U S2* U S3* U S4" is defined by the
disjunction of the mentioned formulas. This completes the proof.

Proof of Theorem 2.

Let A be the set {(x,y)/y = S(S(x))}, let B be any 2-dimensional strongly positive set, let
B be the transitive closure of B. We define the number d for the set B by the method given above.
By D we denote the set {(x,y)/(x > d)&(y > d)}. Using Lemma 3.7 we conclude that the set
B* N D either is empty or is defined by one of the following formulas: (x > d)&(y > d)&(x >
y), (x > d)&(y > d)&(x <y), (x >d)&(y > d)&(x = y), or by the disjunction of some of
these formulas. Similarly, using Lemmas 3.4-3.6 we conclude that the set B n D either is empty
or is defined by one of the following formulas: (x > d)&(y > d)&(y = S(x)), (x > d)&(y >
d)&(x =S)), (x > d)&(y > d)&(x = y), or by the disjuction of some of these formulas.
Therefore, in all the cases the set A n D is different form B n D and B* N D. Hence, A # B and
A # B*. This completes the proof.

Note 1. The statement of Theorem 2 is true also for any set defined by the formula y =
S(S...5(x) ...), where the symbol S is repeated n > 2 times. The proof is similar to that of
Theorem 2.

Note 2. Obviously, any set defined by a formula in the signature (0,=, <,S) is primitive
recursive, however, the reverse is not true (for example, the set of even numbers is primitive
recurcive, but it cannot be defined by arithmetical formula in the signature (0, =, <, S) (see [6])).
So the statement of Theorem 1 is stronger than the statement of Theorem 2 in [3].
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uhuwnn ywnqhwnhy Epljswth pyupwbwljut puqunipniuutph
wnpwtqhwnhy hwinidubph dwupt

U. Uwtiniljjut
Udthnthnid

NMnghunhy b juhun wnghwnhy pupubwlut puqunipniuubph qunutwpubpp
uwhdwudwsé tu [1]-[3] hnpdwstbtpnid: [3] hnpuédnid tpws k, np gmuljugus tplswth
huhuwnn ynghwnpy puqunipjut mputqhwnhy hwuljnidp qupqugnybh winpunupd t: Uju
hnnJwénid wyugnigynid wdbjh nidbn winnud, wyuhbipt' guljugus kpljswth jahun
wynqghunhy pwqunipjutt wpwiuqhnhy thwlynudp tqupugpynd £ puputulut
puwiwdlih dhongny (0, =, <, S) upquwwnnipuymd (npuntn S(x) = x + 1): Pugh npuihg
wyuwgnigymud E, np Eplswth juhunn wynghwnhy pwqunipjniiibph nuup b wyy
puqunipniiuiph  wmpwtqhnhy thwynudubph nuwup skt hwdpuljunmd (0,=,<,S)
uhquuunnipuynid wpinwhwjnynn pyupwbwut puqunipjniuutph puuh htwn:
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O TPaH3UTUBHBIX 3aMBIKaHHUAX CTPOI'O ITIO3UTUBHBIX apH(bMETH‘IECKHX

MHOXXECTB Pa3sMEepPHOCTH 2

C. ManykaH
Annoramusa

[ToHATHA TO3UTUBHOTO U CTPOTO ITO3UTUBHOTO MHOXECTBA paccMaTpuBatorcs B [1]-[3]. B
[3] ykaszaHO, YTO TpPaH3UTHBHOE 3aMBIKAHHE BCIKOTO CTPOTO IIO3UTHBHOTO MHOXECTBA
pasMepHOCTH 2 IPUMHTHBHO PeKypCHBHO. B 3Toil craTbe mokaspiBaeTca 0Oojiee CHIIBHOE
yTBEpXKZEHHe: TPAaH3UTUBHOE 3aMbIKaHHE BCAKOTO CTPOTO IIO3UTHBHOTO MHOXECTBA
pasmepHocTu 2 3azaercs apudmermdeckoir popmysoit B currarype (0,=,<,S), rge S(x) =
x + 1. JloxassIBaeTcs TaKKe, YTO KJIACC CTPOTO ITO3UTUBHBIX MHOXECTB PasMePHOCTH 2 U KJIacC
TPAaH3UTUBHBIX 3aMbIKAHUN TaKMX MHOXECTB He COBIAJAIOT C KJIACCOM apUbMeTHYeCKUX
MHO>XECTB Pa3MePHOCTH 2, 331aBaeMBbIX IIOCPeICTBOM apudmMeTruecKuX GOpMYJI B CUTHATYpe
0,=<9).



