Mathematical Problems of Computer Science 45, 44--52, 2016.

Performances of Methods for Solving a Linear System of
Equations in the Architecture of GPU Accelerator

Hrachya V. Astsatryan, Edita E. Gichunts

Institute for Informatics and Automation Problems of NAS RA
e-mail: hrach@sci.am, editagich@ipia.sci.am

Abstract

We consider some important issues related to the solution of linear system of
equations that arise in multi-processor and graphics processing unit architecture. A more
effective method for solving a linear system of equations is considered through the LU
factorization. Investigations are conducted in case of general complex matrices, because
for those matrices the random butterfly transformation is used. The paper presents
performances of several ways of solving methods on the graphic processor NVIDIA
K40c.

Keywords: LU factorization, linear system of equations, Random Butterfly
Transformation, GEPP, GENP, MAGMA, GPU accelerator.

1. Introduction

Similar to LAPACK, MAGMA [1, 2, 3] is being built as a community effort, incorporating the
newest developments in hybrid algorithms and scheduling, and aiming at minimizing
synchronizations and communication in these algorithms. The goal of these efforts is to redesign
the dense linear algebra algorithms in LAPACK to fully exploit the power of current
heterogeneous systems of multi/manycore CPUs and accelerators, and deliver the shortest
possible time to an accurate solution within the given energy constraints. Indeed, the algorithms
included so far in MAGMA 1.6 manage to overcome bottlenecks associated with just multicore
or GPUs, to significantly outperform the corresponding packages for any of these components
taken separately.

For the linear system solvers on current multicore or GPU architectures, a bottleneck in
terms of communication cost and parallelism comes from the pivoting, a technique used to
prevent divisions by too-small numbers in the Gaussian Elimination (GE) process. Current
libraries like LAPACK implement GE using a block algorithm, which factors the input matrix by
iterating over its blocks of columns (panels). Pivoting not only requires communication (or

44

H.Astsatryan, E.Gichunts 45

synchronization in a shared memory environment), but it also limits the exploitation of
asynchronicity between the block operations.

The solution of linear system of algebraic equations has the form AX = B, where A is a
square matrix, B is either a right side vector or a matrix, consisting of columns of the right sides.
X is the solutions of system equations and it is a vector if B is a vector and it is a matrix, if B is a
matrix.

Special block algorithms are used to solve the system equations. The system solution is
divided into two parts:

1. System matrix factorization,

2. System solution through factorization.

Depending on the matrix feature the case of factorization is different. The following two
cases of LU factorization are used for the general matrix:

1. The LU factorization with partial pivoting and row interchanges is used to factor A as
A=PLU, where P is a permutation matrix, L is a lower triangular matrix, the main
diagonal elements of which are 1, and U is the upper triangular matrix

2. The LU factorization with no pivoting is used to factor A as A = LU, where L is the
lower triangular unit, and U is the upper triangular one.

Several ways of solutions of linear system of equations on NVIDIA K40c GPU accelerator
are presented in the paper which are carried out through the two mentioned cases of LU
factorization. They are presented only for general matrices, because to get high performance for
them, Random Butterfly Transformation (RBT) was used which was repeatedly increasing the
solution performance of the system of equations. Note that RBT has been studied in the systems
with multicore [4] and distributed memory [5], but its performance has not been studied on GPU
accelerator. Section 2 of the paper describes the cases of solving the linear system of equations.
Section 3 presents the performances of solutions of the mentioned cases on GPU accelerator.
Section 4 presents the conclusion.

2. Solution Methods

2.1 LU Factorization with Partial Pivoting

The LU factorization (or decomposition) of a matrix A has the form A = PLU, where L is a unit
lower triangular matrix, U is an upper triangular matrix and P is a permutation matrix. The block
LU factorization algorithm [6] proceeds in the following steps: initially, a set of NB columns
(the panel) is factored and a pivoting pattern is produced. Then the elementary transformations,
resulting from the panel factorization, are applied in block fashion to the remaining part of the
matrix (the trailing submatrix). First, NB rows of the trailing submatrix are swapped, according
to the pivoting pattern. Then a triangular solve is applied to the top NB rows of the trailing
submatrix. Finally, matrix multiplication of the form Ajj«Ajj —Aik XAy is performed, where Aix
is the panel without the top NB rows, Ay is the top NB rows of the trailing submatrix and Ajj is
the trailing submatrix without the top NB rows. Then the procedure is applied repeatedly,
descending down the diagonal of the matrix.

The solution of linear system of equations, where the LU factorization is made with Partial
Pivoting, is performed by MAGMA 1.6.1 library through cgesv and cgesv_gpu functions. The
difference between these two functions is as follows: in the first case the function itself carries
the matrices from the CPU to GPU and vice versa, while in the second case it is realized by the
user. The solution sequence is as follows:

46 Performances of Methods for Solving a Linear System of Equations in the Architecture of GPU Accelerator

= A and B matrices are transferred from the CPU to the global memory of GPU.

= LU factorization of the matrix A is performed through cgetrf_gpu function of MAGMA
library using a partial pivoting with row interchanges.

= A * X =B issolved through the function cgetrs_gpu of MAGMA library.

= X derived solutions are transferred from the GPU to CPU.

To implement cgetrs_gpu function, claswp subprojects of lapackf77 library and ctrsm
subprojects of MAGMA library are used. The claswp routine swaps rows of the trailing
submatrix according to the pivoting pattern, established in the panel factorization. This operation
only performs data motion and the GPUs are very sensitive to the matrix layout in memory. In
raw-major layout, threads in a warp can simultaneously access consecutive memory locations.
The ctrsm routine uses the lower triangle of the NB x NB diagonal block to apply triangular
solve to the block of right-hand-sides formed by the top NB rows of the trailing submatrix. An
efficient implementation of this routine on a GPU is difficult due to the data-parallel nature of
GPUs and small size of the solve (32 < NB < 288) [7].

The claswp routines are implemented in LAPACK [8], while the ctrsm routines are the part
of the Basic Linear Algebra Subroutines (BLAS [9]) standard. LAPACK is an academic project
and, therefore, the source code is freely distributed online. BLAS is a set of standardized
routines, and it is available in commercial packages (e.g., MKL [10] from Intel, ACML [11]
from AMD, ESSL [12] from IBM), in academic packages (e.g., ATLAS [13]) and also as a
reference implementation in FORTRAN 77 from the Netlib software repository.

2.2 LU Factorization without Pivoting

The LU factorization (or decomposition) of a matrix A consists of writing of that matrix as a
matrix product A = LU, where L is the lower triangular and U is the upper triangular. It is a
central kernel in linear algebra because it is commonly used in many important operations such
as solving a nonsymmetric linear system, inverting a matrix, computing a determinant or an
approximation of a condition number. LU decomposition is an algebraic process that transforms
a matrix A into a product of a lower triangular matrix L the elements of which are only on the
diagonal and below, and an upper triangular matrix U the elements of which are only on the
diagonal and above determinant and the inverse of a matrix.

The solution of linear system of equations, where the LU factorization is made without
Pivoting, is performed by MAGMA 1.6.1 library through cgesv_rbt and cgesv_nopiv_gpu
functions. Here also in the first case the function itself carries the matrices from the CPU to GPU
and vice versa, while in the second case it is realized by the user.

In case of xgesv_nopiv_gpu.cpp functions the solution sequence is as follows:

= A and B matrices are transferred from the CPU to the global memory of GPU.

» LU factorization of the matrix A is performed through cgetrf_nopiv_gpu function of
MAGMA library without any pivoting.

= A * X =B issolved through the function cgetrs_nopiv_gpu of MAGMA library.

= X derived solutions are transferred from the GPU to CPU.

To implement cgetrs_nopiv_gpu function, only the ctrsm subproject of MAGMA library is
used.

The cgesv_rbt function is the optimized version of the solution of linear system of equations.

The GENP algorithm can be unstable due to a potentially large growth factor. This is why
we systematically perform iterative refinement on the computed solution of the randomized
system. Algorithm 1 describes how the iterative refinement is performed in our implementations.

H.Astsatryan, E.Gichunts 47

We improve the computed solution until we reach the required accuracy or we reach a defined
maximum number of iterations.

Algorithm 1 Iterative refinement.

Input: A the original matrix.

Input:b the right hand side.

Input:x the computed solution.
Input:L and U the factorized form of A
Input:N size of the matrix A
Result: An improved solution x

1: EPS = Machine precision
2: ITERMAX =30
3:ITER=0

4: ANRM = ||A]|»
5: XNRM = max|x|
6

7

8

9

: Cte = ANRM * EPS * VN
r=b-Ax
: RNRM = max|r|
: while RNRM > XNRM and ITER < ITERMAX do
10: Solve: Ly =r
11: Solve:Uz =y
12: X = X+r
13: r=b - AX
14: XNRM = max|x|
15: RNRM = max]r|
16: ITER=ITER + 1
17: end while

The iterative refinement process is stopped if ITER > ITERMAX or for all the RHS we
have:
RNRM < SQRT(n)*XNRM*ANRM*EPS*BWDMAX where
ITER is the number of the current iteration in the iterative refinement process

RNRM is the infinity-norm of the residual

XNRM is the infinity-norm of the solution

ANRM is the infinity-operator-norm of the matrix A

EPS is the machine epsilon returned by SLAMCH('Epsilon’)

The values ITERMAX and BWDMAX are fixed to 30 and 1.0D+00, respectively.

YV VVYVYY

Note that EPS is determined by xlamch("Epsilon™) function of the lapackf77 library, and
ANRM is determined by the xlange() function of the magmablas library.
The following consecutive steps are made for the solution of this case:
= A and B matrices are transferred from the CPU to the global memory of GPU.
= LU factorization of the matrix A is performed through cgetrf_nopiv_gpu function of
MAGMA library without any pivoting.
= The cgesv_rbt function of the MAGMA library is called.

48 Performances of Methods for Solving a Linear System of Equations in the Architecture of GPU Accelerator

Note that the cgesv_rbt function takes the factorized A matrix and by the cgetrs_nopiv_gpu
function it gets the solutions of linear system of equations, afterwards for iterative refinement it
improves the computed solution to a system of linear equations.

Random Butterfly Transformation (RBT) is a randomization technique initially described by
Parker and recently revisited for dense linear systems. The method for randomizing has been
described in [14, 15]. It consists of a multiplicative preconditioning UTAV where the matrices U
and V are chosen among a particular class of random matrices called recursive butterfly
matrices. Then Gaussian Elimination with No Pivoting (GENP) is performed on the matrix
UTAV and, to solve Ax = b, we instead solve (UTAV)y= UTb followed by x = Vy.

The solution of linear system of equations, where the random butterfly transformation is
applied on A and B matrices and the LU factorization is made without Pivoting, is implemented
through the cgerbt_gpu function of the MAGMA 1.6.1 library.

The implementation of this form of solution is realized in the following sequence:

= We generate the random matrices U and V in packed storage on the CPU.

= The matrix A and the packed representation of U and V are sent from the host memory to
the device memory.

= Randomization is performed on the GPU, updating A in the device memory.

= Perform Partial Random Butterfly Transformation on the GPU with magmablas_cprbt()
function.

= We compute UTb on the GPU, Ary= U'b is solved on the GPU, followed by the solution
x = Vy with magmablas_cprbt_mtv() function.

= The solution is sent to the host memory.

3. Results of Experiments

The experiments were conducted on NVIDIA K40c GPU. The architecture of NVIDIA K40c
consists of 2880 CUDA processor cores. It is endowed with much higher bandwidth 288 GB/s of
message transfer between CPU and GPU, having 12 GB of global memory, GDDR5 memory
interface, and CUDA C programming environment. The operation system of K40c is Ubuntu
14.04.2 LTS. MAGMA 1.6.1 package is installed. The code is compiled using the GNU gcc
version 4.8, gfortran-4.8, g ++ - 4.8 and the nvcc version 7.0 with the optimization flag -O3 and
linked with the Atlas Library.

Figures 1 and 2(a,b) show the time and performance schedules of methods for solving of
linear system of equations.

The obtained results show that the performance of solutions defined by LU factorization
without pivoting is higher than that with pivoting, especially when the solutions of Random
Butterfly Transformation are repeatedly endowed with high performance. The results show that
the performance of solutions defined by cgesv_rbt function is the lowest of the mentioned cases
but it is the optimized version of solutions because for iterative refinement it improves the
computed solution to a system of linear equations. For the solutions defined by LU factorization
with pivoting the cgesv_gpu function performance is higher than that of cgesv function. This is
because the data have been loaded into the global memory of GPU before the function appeal.

H.Astsatryan, E.Gichunts

200
180 f ”
160
- 140 / / == Cgesv
-
s 120 // / cgesv_gpu
§ 100 / / /)(==fe=cgesv_rbt
GE-' 80 === CgEeSV_NopiVv|
i 60 /}A/L =ie=cgerbt_gpu
40 /
20 %
O nn /: /:I :\ T : : i:A: 1
0 5000 10000 15000 20000 25000
N
Fig. 1.
200000
180000)(\K
160000
140000 \'/ ceesv
120000 f cgesv_gpu
< 100000 /,\l === cgesv_rbt
o
..% 80000 / cgesv_nopiv
O 60000
== cgerbt_gpu
40000
20000
o | .
0 10000 20000 30000
N

Fig. 2(a)

49

50 Performances of Methods for Solving a Linear System of Equations in the Architecture of GPU Accelerator

1200

1000
f =@ cgesv
800
/ cgesv_gpu
600 == cgesv_rbt

<

S

g == Cgesv_nopiv
(G} 400 - ®

200 -~
O i T T 1
0 10000 20000 30000
N

Fig. 2(b) without cgerbt_gpu.
3. Conclusion

We presented methods for solving of linear system of equations on GPU accelerator where the
LU factorization is performed with and without pivoting. The received performance results lead
to the following conclusion that to achieve high performance in solutions of linear system of
equations, Random Butterfly Transformation solution method is definitely in the first place.

References

[1] R. Nath, S. Tomov and J. Dongarra, “An improved MAGMA GEMM for Fermi
GPUs”, International Journal of High Performance Computing Applications, vol.
24, no. 4, pp. 511-515, 2010.

[2] S. Tomov, J. Dongarra and M. Baboulin, “Towards dense linear algebra for hybrid
GPU accelerated manycore systems”, Parallel Computing, vol. 36(5&6), pp. 232—
240, 2010.

[3] S. Tomov, R. Nath and J. Dongarra, “Accelerating the reduction to upper
Hessenberg, tridiagonal, and bidiagonal forms through hybrid GPU-based
computing”, Parallel Computing, vol. 36, no. 12, pp. 645-654, 2010.

[4] M. Baboulin, D. Becker and J. J. Dongarra, “A parallel tiled solver for dense
symmetric indefinite systems on multicore architectures”, Parallel & Distributed
Processing Symposium (IPDPS), 2012.

[5] M. Baboulin, D. Becker, G. Bosilca, A. Danalis and J. J. Dongarra, “An efficient
distributed randomized algorithm for solving large dense symmetric indefinite linear
systems”, Parallel Computing, vol. 40, no. 7, pp. 212--223, 2014.

[6] J. W. Demmel, Applied Numerical Linear Algebra, SIAM, 1997. ISBN: 0898713897

[7] J. Kurzak, P. Luszczek, M. Faverge, and J. Dongarra, “LU factorization with partial
pivoting for a multicore system with accelerators”, IEEE Transactions on Parallel
and Distributed Systems, vol. 24, no. 8, pp. 1613—1621, 2013.

H.Astsatryan, E.Gichunts o1

[8] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A.
Greenbaum, S. Hammarling, A. McKenney and D. Sorensen, LAPACK User’s Guide,
SIAM, 1999, Third edition.

[9] K. Goto, GotoBLAS. Texas Advanced Computing Center, University of Texas at
Austin, USA. http: // www. otc. utexas. edu/ ATdisplay. jsp, 2007.

[10] Intel. Math Kernel Library (MKL). http://www.intel.com/software/products/mkl/.

[11] AMD. AMD Core Math Library (ACML). [Online]. Available: http://developer. amd.
com/acml. jsp, 2012.

[12] IBM Corporation. IBM Parallel Engineering and Scientific Subroutine Library. Guide
and Reference. (GC23-3836), 1995.

[13] R. C. Whaley and J. Dongarra. Automatically Tuned Linear Algebra Software.
Technical Report UT-CS-97-366, University of Tennessee, December 1997. [Online].
Available: http://www.netlib.org/lapack/lawns/lawn131.ps.

[14] D. S. Parker, “Random butterfly transformations with applications in computational
linear algebra”, Technical Report CSD-950023, UCLA Computer Science Department,
1995.

[15] D. S. Parker and B. Pierce, “The randomizing FFT: an alternative to pivoting in
Gaussian elimination”, Technical Report CSD-950037, Computer Science Department,
UCLA, 1995.

Submitted 04.09.2015, accepted 12.01.2016

QGdwhtt hwjwuwpnidubph hwdwljupgh jnsdwt dkpnnubtph
wpunuwnpnuljuinipniitipp GPU wpuwqugnpsdsh
Jupunupuybwnnipiniunid

Z. Uuguunpjut, k. @hynig
Udthnthnid

Utklp nphuwplnud Gup qdéwyhtt hwjwuwpnidubph hwdwlupgh jnisdwbp
Jbpwptpnny npnp Jupbnpugnyu hwipgtp, npnlp wnwewnid ku
puquuuypngbunpujhtt b gpubhjuljut ywpngbunpwihtt fwpunwpuybnnipmniund:
Thunupyynid £ LU JbEpnwdnipjut vhongny qéwjhtt hwjwuwpnidubph hwdwlwpgh
nodwtt dbpnnubphg wiybjh wppymbwdbn Eqwbwlp: Munidbwuehpnipyniutbpp
juunwupynmd ko Yndykpu pugphwunip dwwnphgubph phwpnud, pwth np wyy
dwwnphgubph hwdwp Jhpweynud b phpinthyh yquwnwhwlwt Abwihnpjnipiniup:
Ugjpwnnwiupnmid ubpluyugymd i Jh pwuh dbpnnubpny nmsdwt Enwbwlubkph
wpununpnnulijuinipinitupp NVIDIA K40c gpubhljujut ypngkunph Jpu:

52 Performances of Methods for Solving a Linear System of Equations in the Architecture of GPU Accelerator

[Tpon3BOAUTENBHOCTH METOJOB PEUICHUS CUCTEM JIMHEMHBIX YPABHEHUH
B apxutektype GPU yckopurens

I'. Acuarpsn, 2. 'muyHn

AHHOTAIUSA

PaccMoTpeHbI HeKOTOpBIe BaXKHbIE BOIIPOCHI, CBA3aHHBIE C pellleHUeM CHCTeM JTUHEeHHBIX
ypaBHEeHHII, BO3HMUKAIOWIMX B MHOTOIIPOLIECCOPHBIX M TIpapHUUeCcKUX IPOIECCOPHBIX
apxurtektypax. C momomsio LU daxropusauuu paccmarpusaercs 6oee 3ppeKTHBHBIN METOZ
IJIsS pelleHus JWHEeHHOH cucTeMsl ypaBHeHWi. VccremoBaHus mpoBoaATCA AJA Cirydas
O0IIMX KOMIUIEKCHBIX MATpHII, IIOTOMY YTO [AJA 3THUX MATPHUI] UCIOJIb3yeTCs CIydaiiHoe
mpeoOpasoBaHue 0Oabouku. B craTtke 1mpexcTaBiIeHBI IPOU3BOAMUTEIBHOCTH METOJOB
HECKOJIBKUX CIIOCO00B pemeHus Ha rpaduyeckoM npoueccope NVIDIA K40c.

