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Abstract

Most known fundamental theorems in hamiltonian graph theory (due to Dirac,
Ore, Nash-Williams, Bondy, Jung and so on) are related to the length of a longest
cycle C' in a graph G in terms of connectivity x and the length p of a longest path in
G — C, for the special cases when kK < 3 and p < 1 (if p = —1 then V(G - C) = ()
and C is called hamiltonian; and if p = 0 then V(G — C) is an independent set of
vertices and C is called dominating). Bondy (1980) and Jung (2001) conjectured a
common generalization of these results in terms of degree sums including 7 and « as
parameters. These conjectures still are open in the original form. In 2009, the minimum
degree ¢—versions (¢ - the length of a longest cycle in V(G — C)) of Conjectures of
Bondy and Jung are shown to be true by the author (Discrete Math, v.309, 2009, 1925-
1930). In this paper, using another result of the author (Graphs and Combinatorics,
v.29, 2013, 1531-1541), a number of analogous sharp results are presented including
both p and ¢—minimum degree versions of Conjectures of Bondy and Jung without
connectivity conditions, inspiring a number of new strengthened and extended versions
of conjectures of Bondy and Jung.

Keywords: Hamilton cycle, Dominating cycle, Long cycles, Bondy’s conjecture,
Jung’s Conjecture.

1. Introduction

The generalized conjectures of Bondy [1] (1980) and Jung [2] (2001) include a number of
most known fundamental results (the minimum degree and the degree sum versions) in
hamiltonian graph theory concerning Hamilton and dominating cycles as special cases due
to Dirac [3], Ore [4], Nash-Williams [5], Bondy [6],[1] Jung [7],[8],[9] and so on. These
conjectures still are open in the original form. Using some earlier results of the author [10],
[11] (2009, 2013), in this paper some versions of conjectures of Bondy and Jung are shown to
be true, inspiring a number of new strengthened and extended versions of these conjectures.
All results are sharp.

Throughout this article we consider only finite undirected graphs without loops or mul-
tiple edges. A good reference for any undefined terms is [12].

The set of edges of a graph G is denoted by E(G). If @ is a path or a cycle, then the
length of @, denoted by |Q|, is |F(Q)|. Each vertex and edge in G can be interpreted as
simple cycles of lengths 1 and 2, respectively. For a longest cycle C' in G, let p and ¢ denote
the lengths of a longest path and a longest cycle in G\C, respectively. Put p = —1 when
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V(G\C) = 0. If either p = —1 or ¢ = 0, then C is called a Hamilton cycle. Next, if either
p=0or¢=1, then C is called a dominating cycle. Further, if ¢ < A — 1 for an integer
A, then C'is called a C'D) (cycle dominating)-cycle. In particular, C'D;-cycles are Hamilton
cycles and C'D,-cycles are dominating cycles.

Let GG be a graph of order n and minimum degree . The degree sum of s smallest degrees
among s pairwise nonadjacent vertices will be denoted by o5.

In 1980, Bondy [1] conjectured a common generalization of well-known theorems of Ore
[4] (1960, A = 1) and Bondy [1] (1980, A = 2) in terms of .

Conjecture A: [1]. Let G be a N\-connected (X > 1) graph and C' a longest cycle in G. If

1 >n+2
I Rl Wi

+ =2,
thenp < \ — 2.

For A = 3, Conjecture A has been verified in 1987 by Zou [13].
The minimum degree version of Conjecture A contains two fundamental theorems on this
subject due to Dirac [3] (1952, A = 1) and Nash-Williams [5] (1971, A = 2) as special cases.

Conjecture B: [1]. Let G be a A-connected (A > 1) graph and C' a longest cycle in G. If

n+2
A+1

5> +A-2,

thenp < \ — 2.

For A\ = 3, Conjecture B has been verified in 1981 by Jung [9].
In 2009, the author proved [10] that each longest cycle in G under the condition of Con-
jecture B, is a CDyyingas-r+13-cycle.

Theorem A: [10]. Let G be a A\-connected (A > 1) graph and C' a longest cycle in G. If

>n—|—2
T A+1

+ =2,
then C' is a CDpingx5—ar+13-CYycle.

Theorem A is shown in [10] to be best possible. Observing that being a C'Dy-cycle im-
plies € < A — 1 (by the definition), Theorem A implies the following result.

Corollary A: Let G be a A\-connected (A > 1) graph and C' a longest cycle in G. If

6>n—|—2

A—2
—)\+1+ ’

then ¢ < min{\ — 1,5 — A\}.

Thus, the minimum degree ¢-version of Bondy’s conjecture is true with some strength-
ening. The transition from minimum degree ¢-version of Bondy’s conjecture to degree sum
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p-version (that is the solution of Bondy’s conjecture) now can be considered as a technical
problem.

Since Theorem A and Corollary A are equivalent, we can state that Corollary A is sharp
as well.

In this paper we present two analogous sharp results without connectivity conditions
concerning both p and ¢-versions.

Theorem 1: Let G be a graph and C' a longest cycle in G. If

6>n—|—2

+A-2,
TA+1
for some positive integer A, then either p < min{\—2,6 — A —1} or p > max{\,0 — A+ 1}.

Theorem 2: Let G be a graph and C' a longest cycle in G. If

6>n—|—2
T A+1

+ A -2,
for some positive integer A, then either ¢ < min{\A — 1,6 — A} or¢ > max{A+1,0 — A+ 2}.

We shall show that Theorem 1 and Theorem 2 are sharp. Put G; = (A +2) K1+ Ky 41.
Since d =2\ —-1,p=A—-2=0—-—A—1landc=XA—1=0 — A\, the graph G; shows that
the bounds A — 2 and 6 — A\ — 1 in Theorem 1, and the bounds A — 1, 6 — A in Theorem
2, are sharp. Now put Gy = AK);; + K,_;. Since 6 =22 -1, p=A=0—- A+ 1 and
t=MAN+1=06— X+ 2, then the graph G5 shows that the bounds A and § — A + 1 in
Theorem 1, and the bounds A + 1, 6 — A + 2 in Theorem 2 are sharp as well. Finally, let
Gs = (00— A+2)Kx+ Ks-x41. Thend = (n+1)/(A+1)+ A -2, p=A—1and ¢ = A,
implying that the bound (n +2)/(A+ 1) + A — 2 in Theorems 1 and 2 cannot be relaxed.

In view of Corollary A and Theorems 1-2, Conjectures A and B can be considerably
strengthened. Moreover, they can be naturally extended on account of the ¢-version.

Conjecture 1: Let G be a A-connected (A > 1) graph and C' a longest cycle in G. If

1 n—+2
— > A—2
)\+1U>\+1_)\+1+ )
then . .
T)Smin{)\—Z,)\—Ha,\H—)\—l}, Egmin{)\—l,)\—HU)\+1—)\}.

Conjecture 2: Let G be a A-connected (A > 1) graph and C' a longest cycle in G. If

n+2

o>
“A+1

FA—2,
then p < min{\ — 2,6 — A — 1}.

Now we turn to the long cycle versions of Corollary A and Theorems 1-2.



22 On Some Versions of Conjectures of Bondy and Jung

In 2001, Jung [2] conjectured a common generalization of two fundamental theorems in
hamiltonian graph theory due to Dirac [3] (1952, A = 2) and Jung [8] (1978, A = 3).

Conjecture C: 2] Let G be a A-connected (A > 1) graph and C a longest cycle in G. If
D> A—2, then |C| > A6 — A+ 2).

The degree sum version of Conjecture C containing the theorems of Bondy [6] (1971,

A = 2), Bermond [14] (1976, A = 2), Linial [15] (1976, A = 2), Fraisse and Jung [7] (1989,
A = 3) as special cases can be formulated as follows.

Conjecture 3: Let G be a A-connected (A > 1) graph and C a longest cycle in G. If
P> A—2, then

C| > A(%m —A+2).

In 2009, the author proved [10] the following.

Theorem B: [10]. Let G be a (A + 1)-connected (A > 0) graph and C' a longest cycle in G.
Then either |C| > (A4 1)(0 = A+ 1) or C is a CDpyingrs-1y-cycle.

Theorem B is shown in [10] to be best possible and clearly is equivalent to the following.

Theorem C: [10]. Let G be a A-connected (A > 1) graph and C' a longest cycle in G. Then
either |C| > M6 — A +2) or C is a CDyinpr—1,5-x4+13-cycle.

Using the definition of C'Djy-cycles, we get the following result.

Corollary B: Let G be a A-connected (A > 1) graph and C a longest cycle in G. If
c>min{\ — 1,0 — A+ 1} then |C| > A\(d — A +2).

Thus, ¢-version of Jung’s conjecture is true with some strengthening. The transition from
minimum degree ¢-version of Jung’s conjecture to degree sum p-version (that is the solution

of Jung’s conjecture) is a technical problem.
In this paper we present two analogous sharp results without connectivity conditions.

Theorem 3: Let G be a graph and C' a longest cycle in G. If
min{A — 2,d — A\} <P <max{\ —2,5 — \},
for some positive integer A, then |C| > A0 — X + 2).
Theorem 4: Let G be a graph and C' a longest cycle in G. If
min{\A — 1, — A+ 1} < <max{\—1,§ — A+ 1},

for some positive integer A, then |C| > X0 — X + 2).
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To show that the conditions in Theorems 3 and 4 cannot be relaxed, assume first that
min{\ —2,d — A} = A -2, thatis A\ =2 <0 — A\ Put H1 = (06 — A+ 4)K)_2 + Ks_xys.
Clearly p=A—3,¢=A—2and |C] = (A—1)(0 — A+ 3). Recalling that A —2 < 6 — A, we
get

A=1D0 = A+3)=A0-A+2)+2A—0—-2) -1 < A0 —A+2),
implying that the bounds A — 2 and A — 1 in Theorems 3 and 4 cannot be relaxed. Now
assume that min{A—2,§ —A\} =0 — A\, thatis A\—=2 > d — A. Put Hy = (A +2)K;5_» + Ky, 1.
Clearly p=6—-A—-1,¢=6—Xand |C|=(A+1)(6 —A+1). Since A —2 > § — A, we have
(A+1)(0—=A+1) < A(d — A+ 2), implying that the bounds § — A and 6 — A+ 1 in Theorems
3 and 4 cannot be relaxed as well.

In view of Corollary B and Theorems 3-4, Conjecture C and Conjecture 3 can be consid-
erably strengthened. Moreover, they can be naturally extended on account of the ¢-version.

Conjecture 4: Let G be a A\-connected (A > 1) graph and C a longest cycle in G. If either

ﬁzmin{)\—Z,%J,\—)\} or Ezmin{)\—l,ia,\—)\—i-l},

then .
C| > )\(Xa,\ —A+2).

Conjecture 5: Let G be a A-connected (A > 1) graph and C a longest cycle in G. If
p>min{\ — 2,6 — A}, then |C| > A6 — X + 2).

To prove Theorems 1-4, we need the following two theorems [11] by the author.

Theorem D: [11] (2013). Let G be a graph and C a longest cycle in G. Then |C| >
(P +2)(0 =p).

Theorem E: [11] (2013). Let G be a graph and C a longest cycle in G. Then |C| >
e+ 1)(0—c+1).

2. Proofs

Proof of Theorem 1. By the hypothesis, n < (A+1)(0 — A + 2) — 2. On the other hand,
we have n > |C| +p+ 1. Since |C] > (p+ 2)(6 —P) (by Theorem D), we have
n>@+2)0-p)+p+1=F+2)0-p+1) —L
Thus
A+D(E=A+2)>@P+2)0—-p+1)+1,

which is equivalent to
A=p—-1)(06—-X—Dp) > 1.

Then we have either
A—=p—1>1and 6—A—Dp>1,
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which is equivalent to p < min{\ —2,0 — A — 1}, or
A—=p—1< -1 and 6 —A\—p<—1,
which is equivalent to p > max{\,d — A + 1}. [

Proof of Theorem 2. By the hypothesis, n < (A+1)(0 — A + 2) — 2. On the other hand,
we have n > |C| +¢. Since |C| > (¢+1)(d —¢+ 1) (by Theorem E), we have
n>@C+1)(d—c+1)+c=(C+1)(d —c+2)—1,
implying that
A+ —=A+2)>(C+1)(6 —¢c+2)+1,
This is equivalent to
A=2)(6—A—Cc+1)>1.
Then we have either
A—¢>1 and 0—A—¢+1>1,

which is equivalent to ¢ < min{A —1,§ — A}, or
A—¢<—-1and 60— XA—c+1< -1,
which is equivalent to ¢ > max{\+ 1,0 — A + 2}. [

Proof of Theorem 3. We distinguish two cases.
Case 1. min{\ —2,0 — A} =\ —2.
By the hypothesis, A —2 <p < — A. Then
P—A+2)(6-p—-A) =0,
which is equivalent to
P+2)(6—D) > A6 —A+2).
Since |C] > (p+ 2)(d —P) (by Theorem D), we have [C| > A(0 — A + 2).
Case 2. min{\—2 6 — A} =6 — A
By the hypothesis, § — A <p < X\ — 2, implying that
P—=A+2)0—D—X) >0

and we can argue as in Case 1. [

Proof of Theorem 4. We distinguish two cases.
Case 1. min{fA\ -1, — A+ 1} = — 1.
By the hypothesis, A\ =1 << 4§ — A+ 1. Then
E—A+1)(6—c—A+1) >0,
which is equivalent to
C+1)0—c+1)>Ad—A+2).
Since |C| > (¢+1)(6 —¢+ 1) (by Theorem E), we have |C] > A(d — A + 2).
Case 2. min{fA\ -1, —A+1} =6 - A+ 1.
By the hypothesis, d — A+ 1 <¢ < X\ — 1, implying that
E—A+1)(6—c=A+1)>0

and we can argue as in Case 1. [
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Bnlnhh L 3niGgh Juplywoltph npn) nmwpptpuwyGbph dwuhG
d". Lhynnnuywa
Udthnthnid
“thgmp C-G G qpudh wibGwbpyup ghyll b, £-0° Juywygquonipjul plnpuagnhsp,

huy p-G° G-C-h wikGwbpywup npwjh  Gpupnipmnilp: <wdhjunnGuG  qpudltph
wmbtunipjul wnwyt] hwjnlGh hpdGwpup wpynilGpltpp”  vnwgquwo “hpwyh, Onth,
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‘Utip-Jdhywdup, PnGnhh, 3nilgh L wyng Ynnidhg, hptiGghg Ghpyuywuglnd GG C' ghyih
tpqupnipjwl qGwhwnmwuGibp” wpunwhwynmywde qpubh ququplbph GJuquqgniG
wunh@wlng Ywd wunmhdwlwjhlG gmiwplbpny L s, p pGmpwqgphsGnh dwulwynp
wpdtipGpny, tpp £ < 3 L p < 1 (P = —1 nhwypp hwdwpdtp £ V(G — C) = 0
wuwydwGhE, L C-G Yngynud E hwdhjpnnbywG ghyp; huy p = 0 niypnid V(G —C)-G ququplGhph
wijwu pwqunipjmG k£, L C-G Yngynd £ ngnihGubum ghyp): PnGnhh (1980) L BniGgh (2001)
ninhwlpuwgyuwo Jupywoltpp hhilGymd GG wunhdwlwjhl gnmiwplbph ypw, npunbn p -G
L k-G hwGnbtu GG quihu npubtu pphwipuwlwl yupuwdtnptp® plnggpybny Ytapnhhp jug
wnynilpGtpp npwtiu JwulGwynp nhwypbp: Uyu qupyuwoltpp pnhwlnip nhypmd dGmd
L0 yymoywo: 2009-hG htnhGwyh Ynnihg moyby GG PnGphh L 3mlgh Juwpywoltnh
Gyuquqgnt)G wumh§wlwjhG ¢— wmwppbpuwyGbpp, npuntn ¢ G Geipuyugmd £ V(G —C)-h
wibkGubtpyunp ghyth tpyupnipynilp (Discrete Math, v.309, 2009, 1925-1930): <puGytiny
htinphGwyh Jdty wj wuwwnmwiph Yypw (Graphs and Combinatorics, v.29, 2013, 1531-
1541), Gopyw wfuwnmwlipmd wwwgnigynd GG th pwlh hwiwGiwl wpyynilplbp
nngnytiny Bnlnhh L 3mlgh (Juquqgn)i wunmhwlwjhlG p L ¢ mwppbpuyitpp wnwig
Juwwlygwonipjul wwjydwbh, npnlGp hptlGg htpphlG o0Gmd GG wju Jupywoltph vh
pw(h OGnp mdtnugyuo L plguwyiyuwd mwpptpuwlyltn: Unmwgywd pninp wpryniGpGtpp
(wywgGith stG:

O HekoTOPHIX Bepcusax runore3 boupu u IOHra
K. Hukorocau

AnHoTanuys

Haunbonaee u3BecTHBIEe (PyHAA@MEHTAAbHbIE TEOPEMBl B TEOPUU TaMUABTOHOBOCTH
rpadoB (aBTopnl: Aumpak, Ope, Hem-Buavamc, Boupu, IOHT U T.A.) OpPEACTaBASIOT
pa3AuuHbIe OIIEHKU AAMHBI AAWHHeMIIero I1ukaa C rtpacha (G B TepMHUHAX
MUHMMAABHOM CTeNeHU BEepIIMH HWAM CYMM CTelleHeHl, CBSI3HOCTU Kk U AAMHBI D
AumHHeMed 1menu B G — C' AAS YaCTHBIX CAydYaeB KorAa k < 3 u p < 1 (B cAyuae
P = —1 nmeer mMecto V(G — C) = n C Ha3bIBaeTCS TaMUABTOHOBBIM ITUKAOM; €CAU
P =010 V(G — C) siBAsIeTCSI He3aBUCHMBIM MHOKECTBOM BepIlvH U C' Ha3bIBAeTCS
AOMUHAHTHBIM ITUKAOM). O06o0mieHHble rumnorte3bl bouam (1980) u FOura (2001)
OCHOBaHBI Ha CyMMaX CTeIleHel, TAe P U Kk SIBASIOTCS MlapaMeTpaMy, BKAIOUYAIOIIne
BBIIIIEyIIaMSIHYTBIE PEe3yAbTaThl KaK YacTHBIE CAy4Yau. OTU TUIOTE3bl OCTAIOTCS
HepemeHHbBIMU. B 2009 r aBTOp pemma ¢-Bepcuu runore3 bouau u FOHra Ha ocHOBe
MUHHMAABHOU CTEIeHH, TAe ¢ 0003HaYaeT AMUHY AAUHHeHIero 1ukaa B V (G —C) (Dis-
crete Math, v.309, 2009, 1925-1930). Ha ocuoBe ppyroro pe3yabraTa aBTopa (Graphs
and Combinatorics, v.29, 2013, 1531-1541), B paboTe AOKa3bLIBAeTCs CIIPABEAAUBOCTD
HEKeTOpHIX Bepcui runote3 bouau u FOHra, BKAIOUarolye p 1 ¢-Bepcuu 6e3 YyCAOBUS
CBSI3HOCTHU, KOTOPbIE B CBOIO OUEPEADL TOPOKAQIOT HOBbIE YCUAEHHBIE U PACIIUPEHHbIE
BEpCUU 3TUX TUIOTe3. Bce MoAyueHHBIE Pe3yAbTaThl HEYAYUIIIaeMBbl.



