On Some Versions of Conjectures of Bondy and Jung

Zhora G. Nikoghosyan *

Institute for Informatics and Automation Problems of NAS RA e-mail: zhora@ipia.sci.am

Abstract

Most known fundamental theorems in hamiltonian graph theory (due to Dirac, Ore, Nash-Williams, Bondy, Jung and so on) are related to the length of a longest cycle C in a graph G in terms of connectivity κ and the length \overline{p} of a longest path in G-C, for the special cases when $\kappa \leq 3$ and $\overline{p} \leq 1$ (if $\overline{p}=-1$ then $V(G-C)=\emptyset$ and C is called hamiltonian; and if $\overline{p}=0$ then V(G-C) is an independent set of vertices and C is called dominating). Bondy (1980) and Jung (2001) conjectured a common generalization of these results in terms of degree sums including \overline{p} and κ as parameters. These conjectures still are open in the original form. In 2009, the minimum degree \overline{c} —versions (\overline{c} - the length of a longest cycle in V(G-C)) of Conjectures of Bondy and Jung are shown to be true by the author (Discrete Math, v.309, 2009, 1925-1930). In this paper, using another result of the author (Graphs and Combinatorics, v.29, 2013, 1531-1541), a number of analogous sharp results are presented including both \overline{p} and \overline{c} —minimum degree versions of Conjectures of Bondy and Jung without connectivity conditions, inspiring a number of new strengthened and extended versions of conjectures of Bondy and Jung.

Keywords: Hamilton cycle, Dominating cycle, Long cycles, Bondy's conjecture, Jung's Conjecture.

1. Introduction

The generalized conjectures of Bondy [1] (1980) and Jung [2] (2001) include a number of most known fundamental results (the minimum degree and the degree sum versions) in hamiltonian graph theory concerning Hamilton and dominating cycles as special cases due to Dirac [3], Ore [4], Nash-Williams [5], Bondy [6],[1] Jung [7],[8],[9] and so on. These conjectures still are open in the original form. Using some earlier results of the author [10], [11] (2009, 2013), in this paper some versions of conjectures of Bondy and Jung are shown to be true, inspiring a number of new strengthened and extended versions of these conjectures. All results are sharp.

Throughout this article we consider only finite undirected graphs without loops or multiple edges. A good reference for any undefined terms is [12].

The set of edges of a graph G is denoted by E(G). If Q is a path or a cycle, then the length of Q, denoted by |Q|, is |E(Q)|. Each vertex and edge in G can be interpreted as simple cycles of lengths 1 and 2, respectively. For a longest cycle C in G, let \overline{p} and \overline{c} denote the lengths of a longest path and a longest cycle in $G \setminus C$, respectively. Put $\overline{p} = -1$ when

 $V(G \setminus C) = \emptyset$. If either $\overline{p} = -1$ or $\overline{c} = 0$, then C is called a Hamilton cycle. Next, if either $\overline{p} = 0$ or $\overline{c} = 1$, then C is called a dominating cycle. Further, if $\overline{c} \le \lambda - 1$ for an integer λ , then C is called a CD_{λ} (cycle dominating)-cycle. In particular, CD_1 -cycles are Hamilton cycles and CD_2 -cycles are dominating cycles.

Let G be a graph of order n and minimum degree δ . The degree sum of s smallest degrees among s pairwise nonadjacent vertices will be denoted by σ_s .

In 1980, Bondy [1] conjectured a common generalization of well-known theorems of Ore [4] (1960, $\lambda = 1$) and Bondy [1] (1980, $\lambda = 2$) in terms of \overline{p} .

Conjecture A: [1]. Let G be a λ -connected ($\lambda \geq 1$) graph and C a longest cycle in G. If

$$\frac{1}{\lambda+1}\sigma_{\lambda+1} \ge \frac{n+2}{\lambda+1} + \lambda - 2,$$

then $\overline{p} \leq \lambda - 2$.

For $\lambda = 3$, Conjecture A has been verified in 1987 by Zou [13].

The minimum degree version of Conjecture A contains two fundamental theorems on this subject due to Dirac [3] (1952, $\lambda = 1$) and Nash-Williams [5] (1971, $\lambda = 2$) as special cases.

Conjecture B: [1]. Let G be a λ -connected ($\lambda \geq 1$) graph and C a longest cycle in G. If

$$\delta \ge \frac{n+2}{\lambda+1} + \lambda - 2,$$

then $\overline{p} \leq \lambda - 2$.

For $\lambda = 3$, Conjecture B has been verified in 1981 by Jung [9].

In 2009, the author proved [10] that each longest cycle in G under the condition of Conjecture B, is a $CD_{\min\{\lambda,\delta-\lambda+1\}}$ -cycle.

Theorem A: [10]. Let G be a λ -connected ($\lambda \geq 1$) graph and C a longest cycle in G. If

$$\delta \ge \frac{n+2}{\lambda+1} + \lambda - 2,$$

then C is a $CD_{\min\{\lambda,\delta-\lambda+1\}}$ -cycle.

Theorem A is shown in [10] to be best possible. Observing that being a CD_{λ} -cycle implies $\overline{c} \leq \lambda - 1$ (by the definition), Theorem A implies the following result.

Corollary A: Let G be a λ -connected ($\lambda \geq 1$) graph and C a longest cycle in G. If

$$\delta \ge \frac{n+2}{\lambda+1} + \lambda - 2,$$

then $\overline{c} \leq \min\{\lambda - 1, \delta - \lambda\}$.

Thus, the minimum degree \overline{c} -version of Bondy's conjecture is true with some strengthening. The transition from minimum degree \overline{c} -version of Bondy's conjecture to degree sum

 \overline{p} -version (that is the solution of Bondy's conjecture) now can be considered as a technical problem.

Since Theorem A and Corollary A are equivalent, we can state that Corollary A is sharp as well.

In this paper we present two analogous sharp results without connectivity conditions concerning both \overline{p} and \overline{c} -versions.

Theorem 1: Let G be a graph and C a longest cycle in G. If

$$\delta \ge \frac{n+2}{\lambda+1} + \lambda - 2,$$

for some positive integer λ , then either $\overline{p} \leq \min\{\lambda - 2, \delta - \lambda - 1\}$ or $\overline{p} \geq \max\{\lambda, \delta - \lambda + 1\}$.

Theorem 2: Let G be a graph and C a longest cycle in G. If

$$\delta \ge \frac{n+2}{\lambda+1} + \lambda - 2,$$

for some positive integer λ , then either $\overline{c} \leq \min\{\lambda - 1, \delta - \lambda\}$ or $\overline{c} \geq \max\{\lambda + 1, \delta - \lambda + 2\}$.

We shall show that Theorem 1 and Theorem 2 are sharp. Put $G_1 = (\lambda + 2)K_{\lambda-1} + K_{\lambda+1}$. Since $\delta = 2\lambda - 1$, $\overline{p} = \lambda - 2 = \delta - \lambda - 1$ and $\overline{c} = \lambda - 1 = \delta - \lambda$, the graph G_1 shows that the bounds $\lambda - 2$ and $\delta - \lambda - 1$ in Theorem 1, and the bounds $\lambda - 1$, $\delta - \lambda$ in Theorem 2, are sharp. Now put $G_2 = \lambda K_{\lambda+1} + K_{\lambda-1}$. Since $\delta = 2\lambda - 1$, $\overline{p} = \lambda = \delta - \lambda + 1$ and $\overline{c} = \lambda + 1 = \delta - \lambda + 2$, then the graph G_2 shows that the bounds λ and $\delta - \lambda + 1$ in Theorem 1, and the bounds $\lambda + 1$, $\delta - \lambda + 2$ in Theorem 2 are sharp as well. Finally, let $G_3 = (\delta - \lambda + 2)K_{\lambda} + K_{\delta-\lambda+1}$. Then $\delta = (n+1)/(\lambda+1) + \lambda - 2$, $\overline{p} = \lambda - 1$ and $\overline{c} = \lambda$, implying that the bound $(n+2)/(\lambda+1) + \lambda - 2$ in Theorems 1 and 2 cannot be relaxed.

In view of Corollary A and Theorems 1-2, Conjectures A and B can be considerably strengthened. Moreover, they can be naturally extended on account of the \bar{c} -version.

Conjecture 1: Let G be a λ -connected ($\lambda \geq 1$) graph and C a longest cycle in G. If

$$\frac{1}{\lambda+1}\sigma_{\lambda+1} \ge \frac{n+2}{\lambda+1} + \lambda - 2,$$

then

$$\overline{p} \leq \min \Big\{ \lambda - 2, \frac{1}{\lambda + 1} \sigma_{\lambda + 1} - \lambda - 1 \Big\}, \quad \overline{c} \leq \min \Big\{ \lambda - 1, \frac{1}{\lambda + 1} \sigma_{\lambda + 1} - \lambda \Big\}.$$

Conjecture 2: Let G be a λ -connected ($\lambda \geq 1$) graph and C a longest cycle in G. If

$$\delta \ge \frac{n+2}{\lambda+1} + \lambda - 2,$$

then $\overline{p} \leq \min\{\lambda - 2, \delta - \lambda - 1\}$.

Now we turn to the long cycle versions of Corollary A and Theorems 1-2.

In 2001, Jung [2] conjectured a common generalization of two fundamental theorems in hamiltonian graph theory due to Dirac [3] (1952, $\lambda = 2$) and Jung [8] (1978, $\lambda = 3$).

Conjecture C: [2] Let G be a λ -connected ($\lambda \geq 1$) graph and C a longest cycle in G. If $\overline{p} \geq \lambda - 2$, then $|C| \geq \lambda(\delta - \lambda + 2)$.

The degree sum version of Conjecture C containing the theorems of Bondy [6] (1971, $\lambda = 2$), Bermond [14] (1976, $\lambda = 2$), Linial [15] (1976, $\lambda = 2$), Fraisse and Jung [7] (1989, $\lambda = 3$) as special cases can be formulated as follows.

Conjecture 3: Let G be a λ -connected ($\lambda \geq 1$) graph and C a longest cycle in G. If $\overline{p} \geq \lambda - 2$, then

$$|C| \ge \lambda \left(\frac{1}{\lambda}\sigma_{\lambda} - \lambda + 2\right).$$

In 2009, the author proved [10] the following.

Theorem B: [10]. Let G be a $(\lambda + 1)$ -connected $(\lambda \ge 0)$ graph and C a longest cycle in G. Then either $|C| \ge (\lambda + 1)(\delta - \lambda + 1)$ or C is a $CD_{\min\{\lambda, \delta - \lambda\}}$ -cycle.

Theorem B is shown in [10] to be best possible and clearly is equivalent to the following.

Theorem C: [10]. Let G be a λ -connected ($\lambda \geq 1$) graph and C a longest cycle in G. Then either $|C| \geq \lambda(\delta - \lambda + 2)$ or C is a $CD_{\min\{\lambda - 1, \delta - \lambda + 1\}}$ -cycle.

Using the definition of CD_{λ} -cycles, we get the following result.

Corollary B: Let G be a λ -connected ($\lambda \geq 1$) graph and C a longest cycle in G. If $\overline{c} \geq \min\{\lambda - 1, \delta - \lambda + 1\}$ then $|C| \geq \lambda(\delta - \lambda + 2)$.

Thus, \overline{c} -version of Jung's conjecture is true with some strengthening. The transition from minimum degree \overline{c} -version of Jung's conjecture to degree sum \overline{p} -version (that is the solution of Jung's conjecture) is a technical problem.

In this paper we present two analogous sharp results without connectivity conditions.

Theorem 3: Let G be a graph and C a longest cycle in G. If

$$\min\{\lambda - 2, \delta - \lambda\} \le \overline{p} \le \max\{\lambda - 2, \delta - \lambda\},\$$

for some positive integer λ , then $|C| \geq \lambda(\delta - \lambda + 2)$.

Theorem 4: Let G be a graph and C a longest cycle in G. If

$$\min\{\lambda - 1, \delta - \lambda + 1\} < \overline{c} < \max\{\lambda - 1, \delta - \lambda + 1\},$$

for some positive integer λ , then $|C| \geq \lambda(\delta - \lambda + 2)$.

To show that the conditions in Theorems 3 and 4 cannot be relaxed, assume first that $\min\{\lambda-2,\delta-\lambda\}=\lambda-2$, that is $\lambda-2\leq\delta-\lambda$. Put $H_1=(\delta-\lambda+4)K_{\lambda-2}+K_{\delta-\lambda+3}$. Clearly $\overline{p}=\lambda-3$, $\overline{c}=\lambda-2$ and $|C|=(\lambda-1)(\delta-\lambda+3)$. Recalling that $\lambda-2\leq\delta-\lambda$, we get

$$(\lambda - 1)(\delta - \lambda + 3) = \lambda(\delta - \lambda + 2) + (2\lambda - \delta - 2) - 1 < \lambda(\delta - \lambda + 2),$$

implying that the bounds $\lambda-2$ and $\lambda-1$ in Theorems 3 and 4 cannot be relaxed. Now assume that $\min\{\lambda-2,\delta-\lambda\}=\delta-\lambda$, that is $\lambda-2\geq\delta-\lambda$. Put $H_2=(\lambda+2)K_{\delta-\lambda}+K_{\lambda+1}$. Clearly $\overline{p}=\delta-\lambda-1$, $\overline{c}=\delta-\lambda$ and $|C|=(\lambda+1)(\delta-\lambda+1)$. Since $\lambda-2\geq\delta-\lambda$, we have $(\lambda+1)(\delta-\lambda+1)<\lambda(\delta-\lambda+2)$, implying that the bounds $\delta-\lambda$ and $\delta-\lambda+1$ in Theorems 3 and 4 cannot be relaxed as well.

In view of Corollary B and Theorems 3-4, Conjecture C and Conjecture 3 can be considerably strengthened. Moreover, they can be naturally extended on account of the \bar{c} -version.

Conjecture 4: Let G be a λ -connected ($\lambda \geq 1$) graph and C a longest cycle in G. If either

$$\overline{p} \geq \min \left\{ \lambda - 2, \frac{1}{\lambda} \sigma_{\lambda} - \lambda \right\} \ or \ \ \overline{c} \geq \min \left\{ \lambda - 1, \frac{1}{\lambda} \sigma_{\lambda} - \lambda + 1 \right\},$$

then

$$|C| \ge \lambda \left(\frac{1}{\lambda}\sigma_{\lambda} - \lambda + 2\right).$$

Conjecture 5: Let G be a λ -connected ($\lambda \geq 1$) graph and C a longest cycle in G. If $\overline{p} \geq \min\{\lambda - 2, \delta - \lambda\}$, then $|C| \geq \lambda(\delta - \lambda + 2)$.

To prove Theorems 1-4, we need the following two theorems [11] by the author.

Theorem D: [11] (2013). Let G be a graph and C a longest cycle in G. Then $|C| \ge (\overline{p}+2)(\delta-\overline{p})$.

Theorem E: [11] (2013). Let G be a graph and C a longest cycle in G. Then $|C| \ge (\overline{c}+1)(\delta-\overline{c}+1)$.

2. Proofs

Proof of Theorem 1. By the hypothesis, $n \leq (\lambda + 1)(\delta - \lambda + 2) - 2$. On the other hand, we have $n \geq |C| + \overline{p} + 1$. Since $|C| \geq (\overline{p} + 2)(\delta - \overline{p})$ (by Theorem D), we have

$$n \ge (\overline{p}+2)(\delta-\overline{p}) + \overline{p} + 1 = (\overline{p}+2)(\delta-\overline{p}+1) - 1.$$

Thus

$$(\lambda+1)(\delta-\lambda+2) \ge (\overline{p}+2)(\delta-\overline{p}+1)+1,$$

which is equivalent to

$$(\lambda - \overline{p} - 1)(\delta - \lambda - \overline{p}) > 1.$$

Then we have either

$$\lambda - \overline{p} - 1 \ge 1$$
 and $\delta - \lambda - \overline{p} \ge 1$,

which is equivalent to $\overline{p} \leq \min\{\lambda - 2, \delta - \lambda - 1\}$, or

$$\lambda - \overline{p} - 1 \le -1$$
 and $\delta - \lambda - \overline{p} \le -1$,

which is equivalent to $\overline{p} \ge \max\{\lambda, \delta - \lambda + 1\}$.

Proof of Theorem 2. By the hypothesis, $n \le (\lambda + 1)(\delta - \lambda + 2) - 2$. On the other hand, we have $n \ge |C| + \overline{c}$. Since $|C| \ge (\overline{c} + 1)(\delta - \overline{c} + 1)$ (by Theorem E), we have

$$n > (\overline{c} + 1)(\delta - \overline{c} + 1) + \overline{c} = (\overline{c} + 1)(\delta - \overline{c} + 2) - 1,$$

implying that

$$(\lambda+1)(\delta-\lambda+2) \ge (\overline{c}+1)(\delta-\overline{c}+2)+1,$$

This is equivalent to

$$(\lambda - \overline{c})(\delta - \lambda - \overline{c} + 1) \ge 1.$$

Then we have either

$$\lambda - \overline{c} > 1$$
 and $\delta - \lambda - \overline{c} + 1 > 1$,

which is equivalent to $\overline{c} \leq \min\{\lambda - 1, \delta - \lambda\}$, or

$$\lambda - \overline{c} \le -1$$
 and $\delta - \lambda - \overline{c} + 1 \le -1$,

which is equivalent to $\overline{c} \ge \max\{\lambda + 1, \delta - \lambda + 2\}.$

Proof of Theorem 3. We distinguish two cases.

Case 1. $\min\{\lambda - 2, \delta - \lambda\} = \lambda - 2$.

By the hypothesis, $\lambda - 2 \leq \overline{p} \leq \delta - \lambda$. Then

$$(\overline{p} - \lambda + 2)(\delta - \overline{p} - \lambda) \ge 0,$$

which is equivalent to

$$(\overline{p}+2)(\delta-\overline{p}) > \lambda(\delta-\lambda+2).$$

Since $|C| \geq (\overline{p} + 2)(\delta - \overline{p})$ (by Theorem D), we have $|C| \geq \lambda(\delta - \lambda + 2)$.

Case 2. $\min\{\lambda - 2, \delta - \lambda\} = \delta - \lambda$.

By the hypothesis, $\delta - \lambda \leq \overline{p} \leq \lambda - 2$, implying that

$$(\overline{p} - \lambda + 2)(\delta - \overline{p} - \lambda) > 0$$

and we can argue as in Case 1.

Proof of Theorem 4. We distinguish two cases.

Case 1. $\min\{\lambda - 1, \delta - \lambda + 1\} = \lambda - 1$.

By the hypothesis, $\lambda - 1 \le \overline{c} \le \delta - \lambda + 1$. Then

$$(\overline{c} - \lambda + 1)(\delta - \overline{c} - \lambda + 1) > 0$$
,

which is equivalent to

$$(\overline{c}+1)(\delta-\overline{c}+1) > \lambda(\delta-\lambda+2).$$

Since $|C| \geq (\overline{c}+1)(\delta-\overline{c}+1)$ (by Theorem E), we have $|C| \geq \lambda(\delta-\lambda+2)$.

Case 2. $\min\{\lambda - 1, \delta - \lambda + 1\} = \delta - \lambda + 1$.

By the hypothesis, $\delta - \lambda + 1 \le \overline{c} \le \lambda - 1$, implying that

$$(\overline{c} - \lambda + 1)(\delta - \overline{c} - \lambda + 1) > 0$$

and we can argue as in Case 1.

References

- [1] J. A. Bondy, "Longest paths and cycles in graphs of high degree", Research Report CORR 80-16. University of Waterloo, Waterloo, Ontario, 1980.
- [2] H. A. Jung, "Degree bounds for long paths and cycles in k-connected graphs", in Computational Discrete Mathematics, Lecture Notes in Computer Science, Springer, Berlin, vol. 2122, pp. 56-60, 2001.
- [3] G. A. Dirac, "Some theorems on abstract graphs", Proceedings of the London Mathematical Society, vol. 2, pp. 69-81, 1952.
- [4] O. Ore, "A note on hamiltonian circuits", American Mathematical Monthly, vol. 67, p. 55, 1960.
- [5] C. St. J. A. Nash-Williams, "Edge-disjoint hamiltonian cycles in graphs with vertices of large valency", in: L. Mirsky, ed., "Studies in Pure Mathematics", Academic Press, San Diego/London, pp. 157-183, 1971.
- [6] J. A. Bondy, "Large cycles in graphs", *Discrete Mathematics*, vol. 1, no. 2, pp. 121-131, 1971.
- [7] P. Fraisse and H. A. Jung, "Longest cycles and independent sets in k-connected graphs", in V.R. Kulli. ed., Recent Studies in Graph Theory, (Vischwa International Publishing Gulbarga, India, pp. 114-139, 1989.
- [8] H. A. Jung, "On maximal circuits in finite graphs", Annals of Discrete Mathematics, vol. 3, pp. 129-144, 1978.
- [9] H. A. Jung, "Longest circuits in 3-connected graphs", Colloquium Mathematical Society Janos Bolyai 37, Finite and Infinite sets, Eger, pp. 403-438, 1981.
- [10] Zh. G. Nikoghosyan, "Dirac-type generalizations concerning large cycles in graphs", Discrete Mathematics, vol. 309, no. 8, pp. 1925-1930, 2009.
- [11] Zh. G. Nikoghosyan, "Advanced Lower Bounds for the Circumference", *Graphs and Combinatorics*, vol. 29, no. 5, pp. 1531-1541, 2013.
- [12] J. A. Bondy and U.S.R. Murty, *Graph Theory with Applications*, Macmillan, London and Elsevier, New York, 1976.
- [13] Y. Zou, "A generalization of a theorem of Jung", J. Nanjing Normal University Natural Science Edition, vol. 2, pp. 8-11, 1987.
- [14] J. C. Bermond, "On hamiltonian walks", Congressus Numerantium, vol. 15, pp. 41-51, 1976.
- [15] N. Linial, "A lower bound on the circumference of a graph", *Discrete Mathematics*, vol. 15, no. 3, pp. 297-300, 1976.

Submitted 12.10.2015, accepted 20.01.2016

Բոնդիի և Յունգի վարկածների որոշ տարբերակների մասին Ժ. Նիկողոսյան

Ամփոփում

Դիցուք C-ն G գրաֆի ամենաերկար ցիկլն է, κ -ն` կապակցվածության բնութագրիչը, իսկ \overline{p} -ն` G-C-ի ամենաերկար շղթայի երկարությունը։ Համիլտոնյան գրաֆների տեսության առավել հայտնի հիմնարար արդյունքները` ստացված Դիրակի, Օրեի,

Նեշ-Վիլյամսի, Բոնդիի, Յունգի և այլոց կողմից, իրենցից ներկայացնում են C ցիկլի երկարության գնահատականներ՝ արտահայտված գրաֆի գագաթների նվազագույն աստիճանով կամ աստիճանային գումարներով և κ , \overline{p} բնութագրիչների մասնավոր արժեքներով, երբ $\kappa \leq 3$ և $\overline{p} \leq 1$ ($\overline{p} = -1$ դեպքը համարժեք է $V(G-C) = \emptyset$ պայմանին, և C-ն կոչվում է համիլտոնյան զիկլ; իսկ $\overline{p}=0$ դեպքում V(G-C)-ն գագաթների անկախ բազմություն է, և C-ն կոչվում է դոմինանտ ցիկլ)։ Բոնդիի (1980) և Յունգի (2001) րնդհանրացված վարկածները հիմնվում են աստիճանային գումարների վրա, որտեղ \overline{p} -ն և κ -ն հանդես են գալիս որպես ընդհանրական պարամետրեր՝ ընդգրկելով վերոհիշյալ արդյունքները որպես մասնավոր դեպքեր։ Այս վարկածները ընդհանուր դեպքում մնում են չլուծված։ 2009-ին հեղինակի կողմից լուծվել են Բոնդիի և Յունգի վարկածների նվազագույն աստիճանային \overline{c} — տարբերակները, որտեղ \overline{c} - ն ներկայացնում է V(G-C)-ի ամենաերկար ցիկլի երկարությունը (Discrete Math, v.309, 2009, 1925-1930)։ Հիմնվելով հեղինակի մեկ այլ աշխատանքի վրա (Graphs and Combinatorics, v.29, 2013, 1531-1541), ներկա աշխատանքում ապագուցվում են մի քանի համանման արդյունքներ՝ ընդգրկելով Բոնդիի և Յունգի նվազագույն աստիճանային \overline{p} և \overline{c} տարբերակները առանց կապակցվածության պայմանի, որոնք իրենց հերթին ծնում են այս վարկածների մի քանի նոր ուժեղազված և ընդլայնված տարբերակներ։ Ստազված բոլոր արդյունքները լավացնելի չեն։

О некоторых версиях гипотез Бонди и Юнга

Ж. Никогосян

Аннотация

Наиболее известные фундаментальные теоремы в теории гамильтоновости графов (авторы: Дирак, Оре, Неш-Вильямс, Бонди, Юнг и т.д.) представляют различные оценки длины длиннейшего цикла C графа G в терминах минимальной степени вершин или сумм степеней, связности κ и длины \overline{p} длиннейшей цепи в G-C для частных случаев когда $\kappa \leq 3$ и $\overline{p} \leq 1$ (в случае $\overline{p}=-1$ имеет место V(G-C)= и C называется гамильтоновым циклом; если $\overline{p}=0$ то V(G-C) является независимым множеством вершин и C называется доминантным циклом). Обобщенные гипотезы Бонди (1980) и Юнга (2001) основаны на суммах степеней, где \overline{p} и κ являются параметрами, включающие вышеупамянутые результаты как частные случаи. Эти гипотезы остаются нерешенными. В 2009 г автор решил \overline{c} -версии гипотез Бонди и Юнга на основе минимальной степени, где \overline{c} обозначает длину длиннейшего цикла в V(G-C) (Discrete Math, v.309, 2009, 1925-1930). На основе другого результата автора (Graphs and Combinatorics, v.29, 2013, 1531-1541), в работе доказывается справедливость некеторых версий гипотез Бонди и Юнга, включающие \overline{p} и \overline{c} -версии без условия связности, которые в свою очередь порождают новые усиленные и расширенные версии этих гипотез. Все полученные результаты неулучшаемы.