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Abstract

In this paper a class of systems of equations with partial (not everywhere defined)
Boolean functions is investigated. The asymptotic estimate of the number of solutions
of systems of equations is determined for the “typical” case.
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1. Introduction

Many problems of discrete mathematics, including problems which are traditionally con-
sidered to be complex, lead to the solutions of the systems of Boolean equations of the

form
(T, ) =1,
{ gy W

or to the reveal of those conditions, under which the system (1) has a solution. In general
problem of realizing whether the system (1) has a solution or not is NP-complete [1]. There-
fore, it is often necessary to consider special classes of the systems of equations, using their
specificity, or explore a number of solutions for the ”typical” case.

2.  Definitions and Result Formulation

Let {M(n)},~, be the collection of sets, such that |[M(n)| — co when n — oo, (|M] is the
power of the set M), and M#(n) is the subset of all the elements from M (n) , which have
the property S. We say, that almost all the elements of the set M (n) have the propertysS, if
|MS(n)| /|M(n)| — 1, when n — oo.

We denote by S,,; the set of all the systems of the form (1), where f; (21,...,2,),1 =
1,...,l— pairwise different Boolean functions of variables xi, z,, ..., z,. It is easy to see, that
S| = Clon.

Let {M(n)},~, be the collection of sets, such that |M (n)] — co when n — oo, (|M] is
the power of the setM), and M?®(n) is the subset of all the elements from M (n), which have
the property S. We say, that almost all the elements of the set M (n) have the property S,
if [MS(n)| /M (n)| — 1, when n — oco.
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We denote by S,,; the set of all the systems of the form (1), where f; (21,...,2,),1 =
1,...,l— pairwise different Boolean functions of variables xi, xs, ..., z,. It is easy to see, that

|S7’L,l| - Cégn
Let B = {0,1},B" = {a/a = (a1,®9,...,ay), 4 € B,1 <i<n}. The vector &; =
(v, gy ...y ) € B™ is called a solution of (1), if
filar, g, .yap) = 1,
i=1,..1

We denote by ¢(.S) the number of the solutions of the system S. In [2,3] the asymptotics
of the number of the solutions #(S) is shown for almost all the systems S of the set S, ; the
whole range of parameter [ changes, when n — oo.

In this work a class of systems of equations with partial (not everywhere defined) Boolean
functions is considered. The asymptotic behavior of the number of solutions of systems of
equations is found for a “typical” case.

Partial Boolean function f (x1,...,z,) on the vector & = (ay, as, .....,a;,) € B" or is not
defined, or is 0 or 1. Let Q(n) denote the set of all partial Boolean functions, depending on
variables x1, T, ..., 7,,. Obviously, |Q(n)| = 3%".

Let R(n,l) denote the set of all systems of [ equations of the form (1), where
fi(xy,...,z,),1 = 1,..,1 are pairwise differing partial Boolean functions of the variables
Ty, Ty Ty (f; # f; if @ # j condition persists). It is easy to see, that |R, | = Cl,..

For the numbers of the solutions ¢(.S) of almost all the systems S of the set R(n,[) the
following statement is true:

Theorem 1:

1. If n—{log3 — oo when n — oo, then for almost all the systems Sof the set R(n,l) occurs
t(S) ~2n37L.

2. If n — llog3 — —oo when n — o0, then almost all the systems Sof the set R(n,l) have
no solutions.

3. If n—{log 3is restricted when n — oo, then for almost all the systems of the set R(n,l, m)
the number of the solutions t(S)is restricted from above by an arbitrary function p(n) , sat-
isfying the condition ¢(n) — oo, when n — oo.

Here and further f(n) ~ g(n), if f(n)/g(n) — 1 when n — oo, f(n) = o(g(n)) if
f(n)/g(n) — 0 when n — oo. Everywhere the log is regarded as a logarithm to the base 2.

3. Proof of Theorem 1

The following known or easily checking inequalities hold:
1) The first Chebyshev inequality ([4]). Let the random variable £ take the non-negative
values and have mathematical expectation M¢. Then for any ¢ > 0 rightly

P =1) < M/t

2) The second Chebyshev inequality ( [4]). Let the above random variable £ have a dispersion
D¢. Then for any t > 0 rightly

P(jg — M¢| > t) < Dg/t*.
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3) For any x > 1

4) For any natural n and m? = o(n)

5) For any natural n and 1 <m <n
eny\m
oy < <—> .
m
6) Let b(k;n,p) = C* pFq"*, where 0 < p,q < 1,p+ q = 1. Then for r > np

n—r

Zb(r +Jin,p) <b(r;n,p)(r+1)q/(r+1—(n+1)p)

(the estimate of the “tail” of the binomial distribution ([4])).

Let S be a system in R(n,l). Arranging (transpositions by all the variations) the equa-
tions in S, we obtain ! new systems, differing from each other by transposition of the equa-
tions. Thus, from the set R(n,l) we obtain a new set R'(n,[) of ordered and nonrepetitive
(not containing the equivalent equations) systems. It’s evident that

|R'(n,1)] = |R(n, )|l (2)

Let almost all the systems of the set R'(n,[) have the property E, which is invariant for
any transposition of the equations of the system. It’s easy to see, that almost all the systems
of the set R(n,{)will also have the property E. Thus, for the proof of the Theorem it will be
enough to consider the set R'(n,() instead of R(n,l).

Next, we denote by R”(n,1) expansion of the set R'(n,l) - in the systems from R'(n, )
allowed a same equations. It is easy to see, that

R (n, 1)] = 3" (3)
From (2), (3) and 4) we obtain, that

el
[R(n, )| _ 1Con
|R” (n’ l)| 32 ’

when 12 = 0 (3%") (n — o00). Thus, if I* = 0 (3?"), any assertion for almost all systems of
the set R"(n,l) is true for almost all the systems of the set R'(n,).

We consider R"(n,l) as a space of events, where every event S € R’(n,l) takes place
with the probability 1/|R"(n,1)| = 372",

Consider the random value £4(&), which is connected with S € R'(n,l) as follows:
Eq(@) =1, if & is the solution of the system S, and £4(&) = 0 in another case.

From the definition it follows, that the number of the system S € R'(n, (), for which & is
a solution, equal to 3'?"~Y. From this and (3) it follows, that P(¢4(a) = 1) = 37,
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Consider another random value v = ) &¢(&). Random value v has a binomial distri-
aeBn
bution, because ’
p(v=1) = C43(1 =37,

Hence, Mv = 2"37! and Dv = 237! (1 — 3_1), where Mv and Dv are the mathematical
expectation and dispersion of the random value v, accordingly.

Let n — flog3 — oo when n — oo. It means, that Mv = 2737 = 2n-llosd _, o
whenn — oo. Using the Chebishev’s inequation 2) when ¢t = Mv//n — [log3, we obtain,
P (v — Mv| > Mv/+/n —1log3) < (n—1log3)(1—37")/2n"e3 — ( when n — oco. Hence
and from the definition of random value v it follows, that almost all the systems of the set
R"(n,1) have the number of solutions, which asymptotically equals Muv.

Since under n — flog3 — oo is performed 2 = o (32n), almost all the systems of the
set R(n,l) have also number of solutions, asymptotically equal to Mv = 2"37!. The first
statement of the Theorem is proved.

Let n — (log3 — —oo when n — oco. Then Mv = 2737 = 277183 — () (n — o0).
Using Chebishev’s first inequation when t=Il, we obtain P (v > 1) — 0 when n — oo and
therefore , P (v =0) — 1 when n — oo. Hence it follows, that almost all the systems S
of the set R”(n,l) have no solution. Therefore, when {* = o (3?") the second statement
of the Theorem is proved. It is easy to see, that for the greater values of the parameter [
the statement of the Theorem also holds (the number of solutions of the system does not
increase with the number of equations).

Now let n — £log 3 be restricted, when n — oo. Then Mv = 27371 = 2n~1o83 jg 3]50
restricted when n — oo. Using the inequations 6), 5) and 3), we obtain

2N —r
P (U > 7,) _ Z C«g:—zg—l(r—&-z)(l . 3—1)2”—r—i < C«;’ng—lr(l o 3—1)2”—7’X
=0

<) (1-3/ (4 1= @4 )37 < @3y < () o

when r — oo , because Mwv is restricted . Therefore, for almost all the systems of the
set R"(n,l) the third statement of the Theorem holds. Since n — £log3 is restricted, then
I = o0 (3%") is performed, and, therefore, for almost all the systems of the set R(n,[) the
third statement of the Theorem holds. Theorem is completely proved.
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UwulGwyh pnyjwl $niGyghwbtinny hwjwuwnpnidGbph
hwiwwpqbtiph (nuomibGbph pwGwih wuhdiwywmnumhply
qGwhwunwljubatn

E. Gnhwqupyul
Udthnthnid

Spynid GG JwuGwyh (ny wdibpniptp npnpywo) pniygwl $nGyghwltphg Juquiguo
hwjwuwpmuGph hwiwlwpgbph monudGtph pwlwyh wuhdwywmnwnhl gGwhwwmwyuwGitn

«mhwhy» ntiyph hwdwp:

AcuMOTOTHYECKHE OLI€HKM UNCAA PElIeHUM CHUCTEM ypPaBHEHUM
C YaCTUYHBIMU OyA€BEIMU QYHKIIUSIMU

3. Ermazapsn

AnHoTanuys

OnpepeastoTca aCUMIITOTUYECKHE OLeHKM YMCAQ PElIeHUM CUCTeM YpPaBHEHUU C
YACTUYHBIMU (HE BCIOAY ONIPEAEAEHHBIMU) OYAeBBIMU (DYHKIUAMU AASD 'TUIUYHOTO"
CAyYad.



