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Abstract

The minimal linear arrangement problem (MinLA) is defined as follows: given a
graph G, find a linear ordering (layout) ¢ for the vertices of G on a line such that the sum
of the edge lengths is minimized over all orderings. Edge length for an edge (X, y) is
defined as | ¢ (x) — @ (y)|. In this paper we describe the class of minimal orderings of the
special case of tridimensional grids — Cartesian product of three simple paths, when one
of them consists of two vertices.

Keywords: Linear ordering, Minimal Linear Arrangement Problem, Grids,
Wirelength.

1. Introduction

Given a graph G=(X,U), a layout ¢ is a one-to-one mapping ¢ : X —{1,...,|X|}. For a given
graph G=( X,U) and a layout ¢, we define

Ep(@) = ) 1ot -9l
(x.y)eU

as a wirelength of ¢. We define also wirelength of G as E(G) = min E,(G), where ¢ ranges
¢

over all layouts of G, and a layout ¢, is called minimal if £, (G)= E(G). Let’s denote by ¢¢ the
class of minimal layouts of G.
Let X', X" c X be nonempty disjoint sets, k € 1, N and ¢ be some layout of G. Let’s
denote:
X5 ={o7' (D), 07(2), ...~ (k),}
wX' , X")=l{(x,y) eU/xeX;ye X"}
1
8,(X") = m(l{(x,y) EU/xeX5y&X50(x) <o)}
—Hy)eU/xeXy e X0(x)> o) 3D

87



88 Linear Orderings of Tridimensional Grids

Definition: We say that a set X' (X' c X) is compact with respect to layout ¢, if

max ¢ (x) — min ¢ (x) = [X"| - 1.
Definition: We say that a set X’ (X' c X) directly goes behind the set X"’ (X" < X) (this is
denoted by X’ ba X"),if X', X" are compact and max px) = Trel)l(T,l, p(x)+ 1.

X X

Definition: We say that the sets X', X" are independent of one another, if w(X’,X') = 0.
In the present paper the following lemma from [1] will play an essential role.

Lemma: If o(X',X") =0,X’ Z x" and @ is a minimal layout, then
.Sq,(X’) < Sq,(X”)

Let ¢ be some layout of G=(X,U) and G’ be an induced subgraph with vertex set X’ c X. Let the
vertices of X' have the following numbers at the layout ¢:

a, < a; < e < a|XI|.
Consider the following layout ¢':
o' (p7a)) =i (i=1x"]).

Definition: We say that a subgraph G’ is ordered minimally at ¢, if ¢’ is a minimal layout for
G'.
Consider the graph P>™" with the vertex set 1>™" = {x; ; /i = 1,2;j = L, m;k = 1,n}
and the edge set U, where (x; j x, x;7 j1,v) € U ifand only if [i — i'| + |j — j'| + |k — k'] = 1.
Let’s denote
M7=y, o0 ) iy S P < ips i S < Jos ki Sk <),

i1,J1.K1

Q= {x1,1,1’ X1,m,1 *¥1,1, X1,mn> X2,1,10 X2,m, 1, X2,1,n0 xZ,m,n}

where1<i; <i, <2;1<j;<j,<m 1<k <k, <n.
Definition: We say that the set X’ c IT>™" is concise with respect to x; q ,, if for every x; ; , €
X" we have Hi’l'i cX'.
Definition: We say that a layout ¢ is concise with respect to xy 1 1, if for every k € 1,2mn the set
X is concise with respect to x; 4 ;.
Similarly one can define conciseness of sets and layouts with respect to other vertices
from Q.
The following statements are valid.
1. If @ € ¢ppamn. then for every k € 1,2mn the set X§ is concise with respect to at least
one vertex from Q,.
2. For each vertex from €, there is a minimal, concise with respect to its layout.

We will leave out the proofs of the above statements as they are very similar to analogous
statements from [1]



D. Muradian 89

The following theorem is a main result of this paper.
Theorem: Let ¢ be concise with respect to x; ; ;. Then ¢ is minimal if and only if for each i,

R JR— P .
(el mjelm) xy;; « x,;,; and the subgraphs induced by the sets I7;7%", I, 745" are

ordered minimally at ¢.
Proof: Only taking into consideration conciseness of ¢ with respect to x ; ;, the set 1*>™" is
divided into subsets I1; (regarding &, (x)):

Iy = {x1,1,1}

i = My o i

II, = H},’le_l'n_l U {xl,m,lrxl,l,n'xz,l,l};

H3 — Hll’,mm’,gl—l U Hll’,Zln—l,n U HZZ‘,le—l,l U H2,1,n—1;

21,2
1, = 1722,'5”,2_1'"_1 U {x1,m,n'x2,m,1;x2,1,n};
s = Mymy Iyt
IIg = {xz,m,n}-

and 6,(x) =3 —i at x € II,.
: : ® :
At first we will prove that x; ;1 < X511, 1.6., (x2,11)=2.
¢ 9
Let’s assume the reverse: x; 11 < S« x,74,and S # @.

Consider a case x; ,,, & S. We have §,,(S) < 8,(x211) = 1 by the Lemma. It is easy to see
that for every set X':

1
80 (X') = o > 8,

xex’
As ¢ is concise with respect to x,, 4, then from x,,,,; €S follows x,,; €S, where i €

2,n—1 (and from x, ; , € S follows x, ;; € S, where j € 2, m — 1). Therefore, §,(S) =1 and
8,(8) =1 ifandonly if

_ Hlmn
S = M7 ™ %1, 10, X1 mn)-

¢ @ :
Let S & R« xyn (Obviously x,;, € R). Easy to see that w(R,xymn) =0, 8,(X1mn) =
—1, and from the conciseness of ¢ we have §,(R) > —1, which contradicts the Lemma.
Let’s now consider the case xy,,, € S. Then ;74" b 74" and the subgraphs G, G,

induced with them are ordered minimally at ¢. Really, it is easy to see that for every ordering v,

. Y .
for which 7Y < 774", we will have E,(II*™") = m?n? + Ey, (G,) + Ey, (G,), where
P1(x) = P(x) when x € ;74" and ,(x) = P(x) —mn when x € II;74". Therefore, ¢ €
Ppamn ifandonly if Y, € ¢¢. , 1, € PE, . S0 G4, G, at ¢ are ordered minimally. Then from
[1] we will have the following. If m < n, then

aatm>4: 179" & MM & 1375™, where 2 < g < 2m;

1,11 2,11
.oqgim1 @ gimny s1m1 @ g2m1.
byatm<d4: [I;77 « Oy 1\l < 51

c) at m = 4: the case a) or b) is happened.

It is not difficult to compute:

2
1,m,n 1,/10,10 _ mn — A’O - 2/10 _ . 2/10 .
840 (H1,1,1 \H1,1,1 ) - mn — /1% =1 mn — /1% >0;
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20, — %3 2

) = % =——-1<0;

A5 Ao

1m, 1mi _m(n—l)—m_n—Z

6(P (nl,f,lln\nl,f,ll - m(n _ 1) - n—1
8, (M3 = o.

. . . @
The last relations obviously contradict the Lemma. Therefore, x; 11 < x511.

2,40,A0
Sy (17 2,11

> 0;

Now let’s show, that x ; ; ba x,;; for each i,j (i € 1,n;j € 1,m). We will say that the
vertices x, ; j, x5 ; ; are neighbors.

Let’s assume the reverse. Let z be a vertex with the smallest number, which does not directly
goes behind its neighbor (denote the latter by y).

Sowehavey & S & 7z S#8;8,(y) = 8,(z) + 2.

By the definition of z every vertex from 1722,'{71'”05 directly goes behind its neighbor. Let
|77 NS | =k and y Em & nE & &N & M, L 2 where N, — one pair of
neighbors, and M; < I1;'7%". Then as ¢ is concise, we have

G)(S,Z) =0; a)(y,Nl) =0; OJ(ML',NL') =0, (1)

at 1<i<j<k.
Notice, that y and S cannot be independent of one another. Otherwise, by the Lemma we
would have 6, (y) < 6,(S) < 8,(z) which would contradict the relation §,(y) = 8,(z) + 2.

Therefore: U M;# 9.
Let’s show, that §,(S) > —1. Let’s assume the reverse: §,(S) < —1 . Then, as §,(N;) =

—1 forevery i € 1,k, then U M; consists of a unique vertex X1mn. Since w(y,S) # 0, then
by (1) we will have y € II;. Therefore, §,(z) = —2. But from the conciseness of ¢ we can

conclude, that x; ,, , by , Which contradicts the Lemma. From §,,(S) > —1 we have §,(z) =
0 (8,(y) = 2). Notice, that 5,(N;) takes values from {-1;0;1}. Let’s assume, that 5,(N;) = 0
for each i € 1,k. Then it is easy to see, that 8,(S) > 0, which is not possible by the Lemma.
Therefore, there would be N;, for which §,(N;) = —1.

Let N, be a pair with the smallest index from {N;};_1% , for which &,(N;) = —1. We have

p > 1. We will prove by induction that M; = @ forall i € 2,p.
Really, M, =@ by the Lemma and (1). Let the sets M;,,, M;,,,...,M,, be empty. We

have
(0]
M; < U?=i+1 Nj; 8,(M;)=0; 6<P(U5?=i+1 N;) <0,
and by the Lemma we will have M; =@ . Then y Z M, guﬁ-’:ll\/j. But 8,(yUM;) >0,

6¢(U§.’=1Nj) < 0, which contradicts the Lemma. Thus, we obtained that x; ; ; b x,,;; for each
ij (i€1,n;j€1,m), ie., vertices of G; got odd numbers, while the vertices of G, — even
numbers.

Let’s define layouts ¢, and ¢, for the graphs G, G,:

‘P1((P_1(2k - 1)) =k; (Pz((P_l(Zk)) =k;
For each € 1,mn . Then it is easy to see, that
E,(P*™™) = mn + ZE%(_Gl) + 2E,,(G,). (2)

Therefore, ¢ is minimal if and only if ¢ € ¢gi (i €1,2).
This proves the theorem. Substituting the formula of E(G;) from [1] into (2), at m < n we will
have:
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E (Pz'm'”)=mn+4[—3/13+2m12—(m2+m—z>l +n(m?>+m—1)—-m
% 3 0 0 3 0 )

2 2
where lm— m——ﬂ+llgzoglm+%_ m__ﬂ+ll_

2 2 4 2 2 4
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QSuyhtt hwdwpwluwnidutp tpwswh gmugkph hwdwp
. Unipunjub
Udthnthnid

Qpudh dhuhdw] hwdwpwluwnid gunubnt punhpp vwhdwtynd E hbnbjug
Ytpy: Mwhwueynid L qunubl] upduws gpudbh ququpubph wyjuyhuh nbknupwopuntd
pYwyhtt wnwugph Ypw, np kotiph Epupmipinitttph gnidwpp huh tjwuqugnyl,
npunkn boh bplupnipniip bpwt Jhg ququptubph hwdwpubtph wwppbpnipjut
pugupduwll wpdipt k' Uju  woowwnwbpnid tjuwpugpynid £ dhthdug
hwdwpwlunudibph quup bpwswth guiigkph Uh dwubwdnp ghwph’ bpkp wupg
onpwubkph nhljupunyut wpnwnpuh hwdwp, npnughg Ukl niuh Gplynt ququpe:

JIuHeiiHbIe HyMepanyy TPeXMEPHBIX pelleTOK

. Mypanasu
AHHOTaANuA

B pabore omuchIBaeTCs KIacC MUHUMAIBHBIX II0 JJIMHE HyMepaliil YaCTHOTO CIIydast
TPEeXMEPHBIX PEeLIeTOK — JeKapTOro MPOU3BeeHUs TPeX IIPOCThIX Ielei, KOTAa OfUH M3 HUX
COCTOMT M3 JIByX BepmwH. MuHWManpHas AJWHA HyMepanuus rpada OIpenessieTcs
crenylomuM obpasoMm: 1ys gaHHoro rpada G Tpebyercs HAMTH TaKylo JIMHEHHYIO
HyMepaIyio ero BepIInH, YTOOBI CyMMa AIUH pebep (aGCOIIOTHOE YUCIO Pa3sHOCTH HOMEPOB
MHIIUJEHTHBIX el BepIIMH) OblIa MUHHUMaJbHa OTHOCUTEIBHO BCEBO3MOXKHBIX HyMeparui

rpaga.
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