Mathematical Problems of Computer Science 46, 66-72, 2016.

Development and Implementation of Some Advanced
Web Server Protection Methods

Arthur S. Petrosyan and Gurgen S. Petrosyan

Institute for Informatics and Automation Problems of NAS RA
e-mail: arthur@sci.am, gurgen@sci.am

Abstract

Article describes the development work done in the Academic Scientific
Research Computer Network of Armenia (ASNET-AM) managed by the Institute for
Informatics and Automation Problems (IIAP) of the National Academy of Sciences
of the Republic of Armenia (NAS RA) regarding the implementation of web server
protection and hardening. Some advanced methods and solutions implemented
recently within ASNET-AM Web Hosting Services are being described. Based on the
experience of ASNET-AM Web Hosting Services the best practice recommendations
about secure web hosting environment implementation are given.

Keywords: WWW, Web Hosting Environment, Web Server, Apache, Fail2ban

1. Introduction

Increased capabilities in the age of modern-day information technology progress, makes the web
server protection more and more urgent. New types of exploits, bots and brute force tools are
being introduced. This article is a logical continuation of the previous research and deployment
of the improved methods for web server protection [1] done in Academic Scientific Research
Computer Network of Armenia (ASNET-AM) managed by the Institute for Informatics and
Automation Problems (I1AP) of the National Academy of Sciences of the Republic of Armenia
(NAS RA). Work described in [1] was mainly focused on the methods of shared web server
internal hardening and shared environment isolation. This paper is focused on several advanced
methods to protect web server from external attacks. In this paper Apache is considered as a web
server example, because of being the most used web server on the Internet [2].

66

A. Petrosyan and G. Petrosyan 67
2. Protection of Writable Directories

Web sites may require some files to be uploaded from web browsers. It means that a write
permission to the user running the web server should be provided to be able to put the uploaded
file into the destination directory. The common solution is to give all the users 777
(read/write/execute) access to the destination directory. Such common solution becomes an easy
way to upload a malicious program to the web server for later harmful execution.

In case of Apache 2 ITK MPM [3] package, which is used within ASNET-AM Web Hosting
Services to deploy the improved web server protection methods, such write permissions are
being limited only to a group level, without need of giving the 777 write access to all users.
Additionally it is recommended to put such writable directories out of virtual host area, i.e., on
the upper level, than web site’s document root. This way no direct URL-based access will be
possible. Example of such configuration follows:

Document root directory of ‘somesite.am’ website - /home/somesite.am/WWW
Writable directory for uploaded files - /nome/somesite.am/uploadfiles
(not /home/somesite.am/WWW/uploadfiles)

Although the above configuration additionally hardens the web site, it is sometimes difficult
to accomplish because of the specific web site structure.

Any writable directory should always be configured to prohibit execution of any scripts. The
best way to do that is making appropriate static <Directory> configuration for that web site in the
web server’s main configuration [4]. If not possible (web site owner may not be granted
permission to operate web server’s configuration) it should be done via the .htaccess file in that
directory [5]. Example of such configuration follows:

<IfModule mod_php4.c>
php_flag engine 0

</IfModule>

<IfModule mod_php5.c>
php_flag engine 0

</IfModule>

<IfModule mod_php7.c>
php_flag engine 0

</IfModule>

Next protection method to be implemented is the limitation of file types and max file size to
be allowed for uploading. This can be done by means of specific checks. Following is the code
example on PHP language to allow uploading only PDF files:

if ($_FILES[file][tmp_name] <>"" && $_FILES] file][tmp_name] <> "none" &&
$_FILES[file][size] <= $FILE_MAX_UPL_SIZE &&
is_uploaded_file($_FILES[file][tmp_name]) &&

$_FILES[file][type] == "application/pdf" ||

$_FILES[file][type] == "application/acrobat" ||

$_FILES[file][type] == "application/x-pdf" ||

$_FILES[file][type] == "applications/vnd.pdf" ||

$_FILES[file][type] == "text/pdf" ||

$_FILES[file][type] == "text/x-pdf") { }

68 Development and Implementation of Some Advanced Web Server Protection Methods

The above solutions are not complete panacea, because many web sites are based on the
opensource solutions (like Joomla, Wordpress, Drupal, etc.) and if not updated regularly, may
contain known vulnerability/exploit. Thus, an additional mechanism for writable directory
contents checking is recommended to be used. It could be implemented by means of a specific
shell script, regularly parsing writable directory contents in search of pre-defined prohibited file
types (such as .php files). In case such file found the script moves it to quarantine location for
further analysis and logs the incident.

If such writable directory is protected with .htaccess file (since it is always located in the
same directory) it could be replaced with some other one to allow the execution vulnerable
scripts. Thus, the script also checks for the presence of the .htaccess file, and if it does not find it,
it recovers it from the backup copy and logs the incident.

It also checks the contents of .htaccess file by comparing it with the backup version and if
there is a difference detected recovers it from the backup copy and logs the incident.

Following is the shell script code example:

function moveandlog {
mv $1 $PGS_WRONG_FILES FOLDER_PATH
echo "$(date) PHPMOVE::: $1" >> $PGS_LOG_FILE_PATH

}

export -f moveandlog
Ivar/WrongFiles

find $i -iregex ".*\(php\)' -exec bash -¢ 'moveandlog "{}"" \;
find $i -iregex ".*\(php3\)' -exec bash -c¢ 'moveandlog "{}" \;
find $i -iregex ".*\(phtml\)' -exec bash -¢ 'moveandlog "{}"" \;
find $i -iregex ".*\(phps\)' -exec bash -c 'moveandlog "{}"" \;

find $i -name ".htaccess" | while read fname; do

if I cmp -s $PGS_HTACCESS_PATH $fname
then
cp $PGS_HTACCESS_PATH $fname
chown $PGS_CHOWN_USER:$PGS_CHOWN_GROUP $fname
echo "$(date) OVERWRHT:: $fname" >> $PGS_LOG_FILE_PATH
fi
done

The script permanently runs as a daemon and makes checks every 3 seconds (time can be
changed).

Thus, even if some web site vulnerability would enable an attacker to upload some malicious
file to the writable directory, it will be detected and immediately moved out, and the incident will
be logged.

A. Petrosyan and G. Petrosyan 69
3. Proper Fail2ban Configuration

Fail2ban [6] utility is available in most Linux-based web server solutions. It can be used to detect
and block certain IP addresses from which the attempts of unauthorized access to the server is
done. These IP addresses are determined by the results of the monitoring of log files - log-files
(for example, /var/log/auth.log, /var/log/apache/error.log etc.). If any IP address in a certain
period of time, makes too many unsuccessful log in attempts or any other suspicious activity, the
host with the IP address is blocked (by adding iptables firewall rules) for a certain time interval
specified by fail2ban configuration.

The above-described default functionality of fail2ban allows to protect website not only from the
so-called "brute force" attacks, but also from automatic scanning of web site by means of some
bot scripts.

Below are given some best practice recommendations to protect web site using fail2ban, in order
to increase the security of the web server.

By scanning means of apache-auth filter unsuccessful attempts to gain access to the Web
server directories, that are protected by username and password (.htaccess / .htpasswd) can be
identified. Using apache-nohome filter attempts to scan the list of site scripting files can be
detected.

Additional strict filter that scans and detects all types of files and folders was written by
ASNET-AM team:

failregex = "%(_apache_error_client)s File does not exist

While it adds web site protection, it should be used very carefully, because the web site
developers or content editors may include broken links to different files, pictures, etc. And there
is a chance to block normal users who just browse the site and occasionally click on the broken
link, thus unintentionally giving the impression of improper access. It is probably better not to
use this fail2ban filter for a web site that is not completely ready and tested.

Using apache-badbots filter enables to identify and prevent different bots crawl our web
site to find email addresses to spam databases.

Several other filters (apache-botsearch, apache-fakegooglebot, apache-overflows) help to
identify fake googlebot-s, long suspicious requests, etc.

php-url-fopen filter can detect attempts to run php injection.
apache-shellshock filter can detect attempts to exploit shellshock vulnerability.

In spite of the above there are more intelligent bots that can identify the period of their
blocking and produce scan or brute force in such a way, so as not to be blocked (slow brute
force). To prevent such attacks a specific fajl2ban setting of different block time use can be
configured. This is done by having a random time to be added for each blocking incident to some
predetermined period of time. Example of such settings follows:

bantime = 86400
bantime.increment = true
bantime.rndtime = 79m
bantime.factor = 1

70 Development and Implementation of Some Advanced Web Server Protection Methods

Fail2ban also has useful filter recidive that allows to scan own fail2ban’s log to identify the
frequency of a particular IP address blocking (recidive), so as to re-block it for a longer period of
time.

It is advisable to set up fail2ban to all the services that will be active on the web server, such
as ssh (after changing to a non-standard port), mail server, etc.

4. Some Additional Techniques to Increase Web Server Security

Following additional methods of protecting web servers and web sites are also recommended for
implementation as much as possible.

Many complex database-driven web sites have separate frontend (the site itself) and backend
(content management system (CMS)). In that case best practice would be to use different
database users for frontend and backend. The frontend database user should have minimum
rights (the best possible option is only to give read rights), while backend database user should
have full rights to modify the database on which the web site is based.

Following are examples of MySQL permissions for frontend and backend database users

Frontend user rights:
GRANT SELECT ON somesitedb.* TO somesitedbfrontenduser@localhost IDENTIFIED BY
‘'somefrontendpassword’;

Backend user rights:
GRANT ALL PRIVILEGES ON somesitedb.* TO somesitedbbackenduser@localhost
IDENTIFIED BY 'somebackendpassword' WITH GRANT OPTION,;

Additionally it is best to separate the backend interface, by configuring it as a separate
virtualhost and even putting it on a non-standard application port (different from 80). This will
add a security layers to the backend.

For some web sites based on the ready opensource solutions (like Joomla, Wordpress,
Drupal, etc.) it requires some tricks to separate backend and frontend parts. When the code is
written the way that ties backend and frontend parts together, it could be easier, just to create two
similar copies of website, but use different database users as shown above, so as to eliminate
possibility of SQL-injections or other database-related exploits to be run via public frontend.
This is especially important for the ready opensource solutions, where some vulnerability may be
found and not fixed yet, because of not being updated regularly. Although present such
vulnerability will have no effect, because database user for frontend doesn’t have enough
privileges to modify the database.

In case the web site backend is being used only from specific workstations, additional
protection could be made by not registering the separate name of that backend virtual host in
DNS, but only statically adding that name in the *hosts’ file of such workstations. Alternatively
such backend protection could also be implemented through the special reverse proxy
configuration.

Finally backend is good to have .htaccess / .htpasswd user/password protection in addition to
any other protection methods. And of course backend connection should be made through the
HTTPS protocol only.

A. Petrosyan and G. Petrosyan 71
5. Conclusion

The use of the described methods to protect writable directories can prevent running the
malicious scripts to harm the web site and the web server as a whole, as well as will help in
timely detection and fixing of any vulnerabilities in the web site code, that could allow an
attacker to upload undesirable files to the web server. Using fal2ban utility can greatly increase
the security of the web server and web sites, as it can identify and block attacks on services and
sites such as brute force, vulnerability scans, etc. If also some additional non-standard protection
methods described above are used, maximum protection could be achieved or at least we would
make it more difficult to attack our web server.

References

[1] A. Petrosyan and G. Petrosyan, “Research and deployment of improved web server
protection methods”, Transactions of IIAP of NAS RA Mathematical Problems of
Computer Science, vol. 42, pp. 81-84, 2014.

[2] Wikipedia, the free encyclopedia, Web server, Market share, [Online]. Available:
https://en.wikipedia.org/wiki/Web_server#Market_share

[3] Apache 2 ITK MPM, [Online]. Available: http://mpm-itk.sesse.net/

[4] Apache HTTP Server Version 2.4, Apache Core Features, <Directory> Directive,
[Online]. Available: http://httpd.apache.org/docs/current/mod/core.html#directory

[5] Apache HTTP Server Version 2.4, Apache HTTP Server Tutorial: .htaccess files,
[Online]. Available: http://httpd.apache.org/docs/current/howto/htaccess.html

[6] Fail2ban. [Online]. Available: http://www.fail2ban.org/

Submitted 19.07.2016, accepted 03.11.2016.

dEp ubpybEpubph wwonywinipjut npny wpwewntd
Ubkpnnutph dowyniudp b jhpunnidp
Q. Mhwnpnuywi b U. Mhwnpnujui

Udthnthnid

znpjusp tqupwugpnud E o oJbp-ubpdbpubph quonwywinipjut pupdpugduit
ninJus hbnwgnuujut wohiwwnwp, npp Juunwpyl) L 2Zujuunuith wjupbdhwuljut
ghinwhbunnwugnuuljut §ndyninbkpughtt gwugnid (ASNET-AM), npp nEjudupnid k
Zujyuunnuth Zubpuybnnipjut ghunipniutbph wqquyhtt wjugbkdhuwgh (22 @UU)
budnpdunhljuyh b wjundwnwugdut wpopjbdubph ptunhunninp (PUND):

72 Development and Implementation of Some Advanced Web Server Protection Methods

Ljwpwgpusé Et npny wnwownbd dbkpnnubp b jnisnidubp, npnup dowljdbk; b
hpwywbwgdlk; Gu Jbpohtt dwdwbwlubpmd ASNET-AM gwugh {bkp-hnuphtgh
dSwnwjnipjutt hwdwp: FPhpJuws Gu twlh ASNET-AM guugh {btp-hnuphtgh
Swnwjnipjutt thnpdh hhdwt Jpw widunuwbg dhowduyph uvnbnddwt gnpsuwlju
wnwewnpynipniuukp:

Pa3zpaborka u peajiu3anusi HEKOTOPbIX MePeA0BbIX METOA0B
3alUTHI BeO-cepBepoB

I'. Ilerpocsn u A. Ilerpocsin

AHHOTAIUSA

CraThs ONMCHIBAET MCCIIEAOBATEILCKYI0 PAa0OTy MO YCHJIEHHIO 3allluThl BeO-CEpBEPOB,
IIPOBEJICHHYIO B aKaJIEMUUYECKON Hay4YHOW MCCIEA0BATENbCKOM KOMIIBIOTEPHON CETH ApPMEHHU
(ASNET-AM), neiictByromieid moa ympasieHueM HMHctutyta mpobieM HHOOPMATHKH U
aBromarusanuu (UIIMA) HammonanpHol akamemuu Hayk PecnyOnmku Apmenus (HAH PA).
Onucanbl HEKOTOpBIE MEpPEIOBbIE METOAbl M pEHIeHMs], pa3paOOTaHHBIE U peau30BaHHBIE B
nocneaHee BpeMs Uit coy:kObl BeO-xoctuHra cetu ASNET-AM. Takxke mnpuBeneHBI
MPAKTUYECKHE PEKOMEHJAIMU O peaiu3alnuu Oe30macHOW Cpelpl, Ha OCHOBE OIbITa PabOTHI
ciyx0b1 BeO-xoctunra cetdt ASNET-AM.

