Mathematical Problems of Computer Science 46, 59--65, 2016.

Performances of Methods for Solving a Linear System of
Equations in the Architecture of GPU Accelerator in Case
of Small Matrices

Hrachya V. Astsatryan and Edita E. Gichunts

Institute for Informatics and Automation Problems of NAS RA
e-mail: hrach@sci.am, editagich@ipia.sci.am

Abstract

The algebraic operations with a large number of small matrices are a very important
issue in science. The solutions for linear system of equations with LU factorization are
specific of the mentioned operations that have numerous applications of algebraic
operations with small matrices. In this work we consider the performances of methods for
solving linear system of equations with batched LU factorization for small complex
matrices on the graphic processor NVIDIA K40c.The versions with Partial Pivoting,
without Pivoting and Random Butterfly Transformations of batched LU factorization for
small matrices are presented and shown, which of these versions is the effective one, in
which case we achieve high performance.

Keywords: GPU accelerator, MAGMA , linear algebra operation, LU factorization,
small matrix, performance, batched computation, Random Butterfly Transformation.

1. Introduction

Numerous scientific computations require a number of small independent solutions to the
problems. Since each individual problem size can fail to ensure the necessary parallelization for
the given basic equipment, specifically in the case of accelerators, then these problems should be
solved simultaneously so that to charge the device with the needed amount of work; hence the
name of batched calculations came. The batched subprograms are designed to solve many
problems independent of each other in a parallelization manner. Such an approach is required in
a number of problems of various spheres, for example, in astrophysics [1], metabolic networks
[2], quantum chemistry [3], high-order FEM schemes for hydrodynamics [4], direct-iterative
preconditioned solvers [5], and some image [6] and signal processing [7].

As soon as a large number of heterogeneous systems with GPU accelerators appear, the
linear algebra software is fully performed in small matrix operations. Graphic processors (GPUS)

59

60 Performances of Methods for Solving a Linear System of Equations of GPU in Case of Small Matrices

are high-performance processors that are capable of making hundreds of floating point
operations in parallel. Their large register files and the scratchpad memory of high performance
are well suited for the model of streaming execution.

In this paper, via the versions of batched LU factorization, we focus on solving of linear
equation systems that are processed on the graphic processor. It should be noted that the
experiments were carried out for general complex matrices. New functions are considered in the
case of small matrices that are new in the MAGMA 1.6.1 package [8] and are named as batched.
In the previous article [9] the solving methods of linear equations via the versions of LU
factorization are presented for large matrices as well as it is shown that the higher performances
are achieved due to the solving method of Random Butterfly Transformation. In this paper we
will present the same problem for small matrices where the batched subprograms of the
MAGMA package are applied, and consider how high performance will be achieved for small
matrices.

2. Implementation of Batched Subprograms

In the Batched problem each matrix represents a separate problem
which is solved independently. The batched subprograms in MAGMA are called Lapack in
accordance with the subprograms of the library. MAGMA 1.6.1 package contains four standard
precision arithmetic of batched subprograms - single real, double real, single complex and
double complex. In this paper we present the implementation of batched solutions of the solving
methods of linear system of equations for small matrices for single complex and double complex
precision. As in the case of large matrices, in small matrices as well the batched solutions of
linear system of equations are implemented with Pivoting, without Pivoting and with Random
Butterfly Transformations.
The batched solution of linear system of equations, where the batched LU factorization is
performed with Partial Pivoting, is implemented through the MAGMA 1.6.1 library of the
xgesv_batched.cpp function.
The solution consists of the following steps:

= A and B matrices are transferred from the CPU to the global memory of GPU.

= Batched LU factorization of the matrix A is performed through xgetrf batched.cpp

function of MAGMA library using a Partial Pivoting with row interchanges.

= A * X =Bissolved through the function xgetrs_batched.cpp of MAGMA library.

= X derived solutions are transferred from the GPU to CPU.
xgetrf_batched.cpp consists of xgetf2_batched, xlaswp_rowparallel_batched,
xtrsm_outofplace_batchedandxgemm subprograms.
a) xgetf2: DGETF2 computes an LU factorization of a general m-by-n matrix A using Partial
Pivoting with row interchanges. The factorization has the form A =P * L * U, where P is a
permutation matrix, L is a lower triangular with unit diagonal elements (lower trapezoidal if m >
n), and U is an upper triangular (upper trapezoidal if m <n).
In each step of LU factorization, dgetf2 subprogram is used while factorizing the m x nb panel. It
consists of three subprograms idamax, dswap and dscal of Level 1 BLAS library and dger
subprogram of Level 2. The only approach to the implementation of dgetf2 subprogram lies in
the fact that all the panels are loaded in the common memory of GPU and then perform all
calculations before the results are sent to the main memory.
b) xlaswp: DLASWP performs a series of row interchanges on a general rectangular matrix.
DLASWP performs a series of row interchanges on the matrix A. One row interchange is

H.Astsatryan and E.Gichunts 61

initiated for each of rows K1 through K2 of A. To increase the digital stability, the
transformation with Pivoting is required. dlaswp subprogram is used in case of the
transformation with Pivoting, despite the fact that we get low performance. In any case,
experiments show that the transformation with Pivoting is quite expensive for the batched
problem.
c)xtrsm: DTRSM solves one of the matrix equations op(A)*X = alpha*B, or X*op(A) =
alpha*B, where alpha is a scalar, X and B are m by n matrices, A is a unit, or a non-unit, an
upper or lower triangular matrix and op(A) isone of op(A)=A or op(A)=A**T.
The matrix X is overwritten on B.
d) xgemm: DGEMM performs one of the matrix-matrix operations C := alpha*op(A)*op(B)
+ beta*C, where op(X)isone of op(X) =X or op(X)=X**T, alpha and beta are scalars,
and A, B and C are matrices, with op(A) an m by k matrix, op(B) a k by n matrix and C an
m by n matrix. The aim of the batched LU factorization is to achieve batched dgemm high
performance. A lot of effort has been concentrated for the optimization of dgemm subprogram.
In particular, for our case, dgemm is not only used in the trailing matrix updates but also in the
implementation of the triangular matrix solvers (xtrsm).
The batched solution of linear system of equations where the batched LU factorization is
performed without Pivoting, is implemented through the MAGMA 1.6.1 library of
xgesv_nopiv_batched.cpp and xgerbt-_batched.cpp functions.
In case of xgesv_nopiv_batched.cpp function the solution sequence is as follows:
= A and B matrices are transferred from the CPU to the global memory of GPU.
= Batched LU factorization of the matrix A is performed through xgetrf_nopiv_batched.cpp
function of MAGMA library without any Pivoting.
= A * X =Bissolved through the function xgetrs_nopiv_batched.cpp of MAGMA library.
= X derived solutions are transferred from the GPU to CPU.
To implement xgetrf_nopiv_batched.cpp function, the xgetrf_ panel_nopiv_batched subprogram
of MAGMA library, as well as xtrsm_ work_batched and xgemm_batched subprograms of Blas
library are called.
To implement xgetrs_nopiv_batched.cpp function, only the xtrsm_outofplace batched
subprogram of Blas library is called.
The solution of linear system of equations, where the Random Butterfly Transformation is
applied on A and B matrices, and the batched LU factorization is performed without Pivoting, is
implemented via xgerbt_batched.cpp function of MAGMA 1.6.1 library.
This type of solution implementation is realized in the following sequence:
e We generate the random matrices U and V in packed storage on the CPU.
e The matrix A and the packed representation of U and V are sent from the host memory to
the device memory.
e Randomization is performed on the GPU, updating A in the device memory.
e Perform Partial Random Butterfly Transformation on the GPU with
magmablas_cprbt_batched () function.
e We compute UThon the GPU, Ary= UTbis solved on the GPU, followed by the solution x
= Vy with magmablas_cprbt_mtv_batched () function.
e The solution is sent to the host memory.

62 Performances of Methods for Solving a Linear System of Equations of GPU in Case of Small Matrices
3. Performance Results

The experiments were conducted on NVIDIA K40c GPU. The architecture of NVIDIA K40c
consists of 2880 CUDA processor cores. It is endowed with much higher bandwidth 288 GB/s of
message transfer between CPU and GPU, having 12 GB of global memory, GDDR5 memory
interface, and CUDA C programming environment. The operation system of K40c is Ubuntu
14.04.2 LTS. MAGMA 1.6.1 package is installed. The code is compiled using the GNU gcc
version 4.8, gfortran-4.8, g ++ - 4.8 and the nvcc version 7.0 with the optimization flag -O3 and
linked with the Atlas Library.

Figures 1 and 2 show the performance results of batched functions of linear solution
equations for small matrices for complex single precision and complex double precision,
respectively.

800
700 f == Cgesv
600
/ cgesv_nopiv
% 500
..—? 400 == cgerbt
© 300 /
200
5 A—*Af‘—J//
0 T 1N B T T T 1
Vo> D 0 (D A
B QP 9% Y AP QY N
Fig. 1. Complex Single Precision.
700
600 —zgesv
500 .
zgesv_nopiv
)
S 400
K<) =de=2zgerbt
B 300

200

100

Fig. 2. Complex Double Precision.

In case of single precision the obtained results show that the performance of solutions
determined by the LU factorization without Pivoting is several times higher than the solutions
with Pivoting. Thus, for example, the performance of cgesv_nopiv_batched function without

H.Astsatryan and E.Gichunts 63

Pivoting is twice higher than the performance of cgesv_batched function with Pivoting, and the
performance of cgerbt batched function with Random Butterfly Transformation without
Pivoting is 4.5 times higher than the performance of cgesv_batched function and 2 times higher
than the performance of cgesv_nopiv_batched function.

In case of double precision the obtained results show that the performance of
zgesv_nopiv_batched function without Pivoting is twice higher than the performance of
zgesv_batched function with Pivoting, and the performance of zgerbt batched function with
Random Butterfly Transformation without Pivoting is 6.5 times higher than the performance of
zgesv_batched function and 3 times higher than the performance of zgesv_nopiv_batched
function.

Also note that in case of single precision the performance is relatively higher than in the
case of double precision for the corresponding functions with and without Pivoting.

4. Conclusion

We presented the methods for solving of linear system of equations on GPU accelerator for small
matrices with and without Pivoting. For small matrices the batched functions of MAGMA 1.6.1.
package have been applied which are new and the batched function with Random Butterfly
Transformation was not applied in the tests. It is concluded from the experiment results that for
small matrices a high performance in solutions of linear system of equations is achieved
applying the method of Random Butterfly Transformation.

References

[1] O.E.B. Messer, J. A. Harris, S. Parete-Koon and M. A. Chertkow, “Multicore and
accelerator development for a leadership-class stellar astrophysics code”, In
Proceedings of "PARA2012: State-of-the-Art in Scientific and Parallel Computing",
2012.

[2] J. C. Liao Khodayari, A. R. Zomorrodi and C. D. Maranas, “A kinetic model of
Escherichia coli core metabolism satisfying multiple sets of mutant flux data”,
Metabolic engineering, vol. 25, pp. 50-62, 2014.

[3] A. A. Auer, G. Baumgartner, D. E. Bernholdt, A. Bibireata,V. Choppella, D. Cociorva,
X. Gao, R. Harrison, S. Krishnamoorthy, S. Krishnan, C.-C. Lam, Q. Luc, M.
Nooijene,R. itzerf, J. Ramanujamg, P. Sadayappan and A. Sibiryakovc, “Automatic
code generation for many-body electronic structure methods: the tensor contraction
engine’, Molecular Physics, vol. 104, no. 2, pp. 211-228, 2006.

[4] T.Dong, V. Dobrev, T. Kolev, R.Rieben, S.Tomov and J. Dongarra, “A step towards
energy efficient computing: Redesigning a hydrodynamicapplication on CPU-GPU”,

In IEEE 28th International Parallel Distributed ProcessingSymposium (IPDPS), 2014.

[5] Eun-Jin Im, K. Yelick and R. Vuduc, “Sparsity: Optimization frameworkfor sparse
matrix kernels”, Int. J. High Perform. Comput. Appl., vol. 18, no. 1, pp. 135-158,
2004.

64 Performances of Methods for Solving a Linear System of Equations of GPU in Case of Small Matrices

[6] J. M. Molero, E. M. Garzon, I. Garcia, E. S. Quintana-Orti, and A. Plaza, “Poster: A
batched Cholesky solver for local RX anomaly detection on GPUs”, PUMPS, 2013.

[7] M. J. Anderson, D. Sheffield and K. Keutzer, “A predictive model for solving
smalllinear algebra problems in gpu registers’, In IEEE 26th International Parallel
DistributedProcessing Symposium (IPDPS), 2012.

[8] Matrix algebra on GPU and multicore architectures (MAGMA), MAGMA Release
1.6.1, 2015. Online. [Available]: http://icl.cs.utk.edu/magma/

[9] H. V. Astsatryan and E. E. Gichunts, “Performances of methods for solving a linear
system of equations in the architecture of GPU accelerator”, Transactions of I1I1AP NAS
RA, Mathematical Problems of Computer Science, vol. 45, pp. 44—52, 2016.

Submitted 02.08.2016, accepted 25.10.2016.

®npp dwwnphgutph phwypmid gdwghtt hwjwuwpmdubtph hwdwlwupgh
nsdwt Ubpnyubph wpnnwunpnyujuiunipnibutpp GPU wpuqugnpsdsh
Swpunupuybnnipjniunid

<. Uugwunpjwl L k. Qhgnilg
Udthnthnid

Ghunipjutt Uk owwn Juplnp pinhp £ hwinhuwinid puquupwtwly thnpp
dwwnphgubiph hbkn juuws hwipwhwodulwt gqopénnnipjniuubpp: Uiy
gnpénnnipniiiiphg wpwbdbtwhwwnnly o LU JEpnudnipjudp qdwght
huwjwuwpnudubph hwdwlwpgh mdnudubpp, npnup thnpp dwwnphgubph hbtwn
hwiupwhwoyuljut gnpénnmipnitutpnid puquuphy Jhpwenipjniuubp niukt :Uju
wolnwnwpnid ghunwplynid o Yndyipu thnpp dwwnphgubph hwdwp batched LU
JEpnudnipjudp qduwyhtt hwjwuwpnudubph hwdwluwpgh jnisdwt dbpnnubph
wpununpnnulubnipnitubipp NVIDIA K40c qpudhluljut wpngbunph Jpu: @npp
dwwnphgubph hwdwp tkpjuyugynid Gu batched LU Ykpjnidnipjut yyinnijinny, wnwg
wuiniyynh b phptinthlh yunwhwlwt dbwhnpunipjudp nwuppbpuljubpp b gnyg b
npynud, ph wyn mwppkpuyubphg npt £ wpynibwdtnp, nph gphypnid hwubtnd Gup
pwpdnp wpununpnnuljubnipiui:

http://mpcs.sci.am/filesimages/volumes/volume_45/06.pdf
http://mpcs.sci.am/filesimages/volumes/volume_45/06.pdf

H.Astsatryan and E.Gichunts 65

IIpou3BoaAMTEJIHHOCTH METOI0B PelICHUS CHCTEeM JIMHEeHbIX YPABHECHU B
apxurexkrype GPU yckopuresi B ciiyuyae He0O0NbIINX MATPHULL

I'. Acuatpsin u 3. ['muyHII

AHHOTaNUA

Anrebpamyeckye omepanuy C OOJBIIMM YHUCJIOM MATIBIX MATpPUI, SBJIAIOTCA OYEHb
BOXHBIMU BOIIPOCAMU B HayKe. V3 yIOMAHYTBIX omlepaunuil crenupuiecKUMU SABJIAIOTCA
peuleHUs g JUHeHHOM cucrems! ypaBHeHuit ¢ LU daxrtopusanueii, KoTopsle HMeIOT
MHOTOYHC/IeHHbIe IIPUMEeHEeHUs aareOpandecKux olepaiuii ¢ HeGOJbIIMMHU MaTpuiaMu. B
3TOil paboTe MBI PACCMOTPHUM IIPOHU3BOJUTEIBHOCTH METOJOB [JIS pelleHUsT CUCTEMBI
nuHelWHBIX ypaBHeHUil ¢ batched LU daxTopusamueii a1 Maasix KOMIUIEKCHBIX MaTpPHUI] Ha
rpadpuyeckom mporeccope NVIDIA K40c. [lns HeGombIINX MAaTpPHUL, IPeCTaBIe€Hbl BEPCUU
batched LU ¢axTopusamuyu ¢ moBoporoM, 6e3 IOBOPOTa U CO CIyYalHBIM IIpeoOpa3oBaHUEM
6ab0yYKH, a TaKXKe ITOKA3aHO, KAaKOH M3 3THX BapUAHTOB ABIAETCA d(P(PEKTUBHBIM, U B KAKOM
CJTy4ae MbI JOCTUTaeM BBICOKOM IIPOM3BOSUTENIFHOCTH.

