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Abstract

The paper is devoted to the design of optimal approaches of testing of multiple
simple hypotheses with samples of a fixed number of independent observations.
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1. Introduction

We address the classical detection problem. Let M > 2 simple hypotheses, which we note
Hy, ..., Hy, correspond to distributions G4y, ..., Gy, given on the finite space X. It is not
known which hypothesis is true. The observed sample is a vector x = (z1,2,,...,2x) in
N-dimentional space XV of N independent observations identically distributed according to
one of hypotheses. The statistician using the obtained sample must guess which hypothesis
is true. It is necessary to choose an optimal criterion for making such a decision. The
procedure of decision is called a test.

Defining a test can be formulated as partitioning of the space X into M disjoint sets
AN...., X2 on each of which one of the hypotheses Hj, ..., Hys will be, respectively, accepted.

The quality of a test ¢ may be characterized by the matrix of error probabilities

U = oy () = G (x € XMy, I,m=1,M, l#m,

U, = O () = G (x ¢ XNy, m=1,M,

where «y,,, is the probability to accept H;, when H,, is true, and cu,,(¢) is the probability
of rejection of hypothesis H,, when it is true. Evidently

Ay, = ZO‘llm’ m=1,M.
l#m

Rich literature is dedicated to the problem of hypothesis testing, we quote [1-3]. The case
of multiple hypotheses testing is considered in detail in [4] and [5].

To compare tests there exist different approaches. A Bayes approach is based on assump-
tion that the observations are governed by given probabilities called the a priori probabilities.
In this case the set of tests is ordered by the values of the average probabilities of errors of
tests [4].
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Neyman - Pearson approach [6] primarily was formulated for two hypotheses. In case
of M hypotheses the error probabilities are fixed for m = 1, M — 1. The test is found by
maximizing the probability 1 — a; of correct detection of the hypothesis Hj,.

Another direction of investigations of quality and optimality of tests is the asymptotic
approach when the length of sample is not limited and when the volume n of the samples
goes to the infinity, error probabilities ay,, decrease exponentially as 27"Fim and the inter-
dependence of these exponential coefficients Fj,,, called reliabilities, characterize the test.
This direction is founded by Hoeffding [7] and the corresponding sequence of tests is called
logarithmically asymptotically optimal (LAO), or exponentional rate optimal (ERO) [7.8].
The problems of LAO tests for multiple hypotheses for diverse models were studied in [9-14].

In the minimax approach the comparision of maximal values of error probabilities of a
test also allows to order the set of all tests.

The interchange of ideas and methods of Statistics and Information theory is presented
in [15,16].

Our purpose in this paper is comparing different tests and introducing an order on the
set of all tests for M > 2 hypotheses when both, list of hypothetical distributions and the
volume N of samples, are fixed. We proceed analogically as in [4], where the Bayesian tests
are studied.

2. Formulation of Results

We begin by consideing the case of M hypothetical distributions when a priori probabilities
are absent. It is clear that the test is better if its error probabilites are smaller.
Definition 1: An average error probability o) for test  is

1 1 M
afp) = mlzoéum = M;O&m.

Definition 2: The test ©° we call optimal if a(p°) = min a(p).

Now it is possible to arrange the set of tests ¢ according to the values of the avarage
error probabilities a(y). In the following theorem we state the construction of optimal test.
Let probability distributions G,,, m = 1, M, have densities f,,(z) with respect to some

N
measure (4, then the likelihood function is f,,(x) = II fn(z,), m=1,M.
1

Theorem 1:
1. The average probability of error a(p) of any test ¢ satisfies the inequality

a(e) = 1= 7 [ me £ (" (). 0

2. In order the test ©° be optimal it is necessary and sufficient that for almost all with

M
respect to measure G (G(x) = + > G,.(x)) values of x the test satisfies the relations
M
m=1

SOO(X) =Hn, if fu(x)= InlaXfl(X) (2)

For such ° relation (1) becomes an equality.
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It is necessary to note that when two or more values f,,(x) are maximal it does not
matter which of these hypotheses to choose and we can make a random decision, this will
not change the value of a(¢V).

It is not difficult to apply this criterion to two particular extremal cases. If all densities
are equal f1(x) = .... = fy;(x) it is not possible to construct a test with a(¢°) less than

M
M1 In the other case, when XV = J X} and G, (X)) =1, Go(X)) =0, m =1, M,
m=1

[ # m, the best test has a(°) = 0.
Proof: 1. By Definition 1 for each test ¢ for M hypotheses the avarage error probability of
the test ¢ is

alp) = % mZZI o
where
W = G(p(X) # M) = fm(x) 1" (dx)
xiip(X)Am
Then "
alg) =13 [ fulxu(ax) =
M=l (x)#m

9 Y AT E

> 1 - [ ma f (o ().

2. Optimal test ¢° defined in (2) reaches the lower bound in (1), that is condition (2) is

sufficient. To prove the necessity of (2) suppose that the optimal test ¢ is such that p(x) =

H,, with f,,(x) < max; fj(x) for x € A with a set A of positive probability G(.4) > 0. Such

test ¢ can be improved on A by giving for x € A, ©°(x) = H,,,, with f,,,(x) = max; fi(x).
Really a(¢°) < a(yp) because

() = (@) = 3+ [ () = Fn (" () > 0.
A

Now we shall consider the minimax approach. We will compare tests with maximal values
of error probabilities.
Definition 3: Denote mazimal error probability in the matriz for each test ¢ by

() = Max mjm ().

It is clear that it is possible to put in order tests by values of @(¢). We name minimax
the test @ which has the minimal value of @(®)

a(p) = mina(p).

Theorem 2: The optimal test © such that

0 (P) = @(p) = ... = an(®) (3)



40 On Optimality of Tests of M-ary Hypotheses for Fixed Number of Independent Observations

will be a minimazx test.
Proof: For every test ¢ using (3) we have

7(0) 2 3 370u(6) 2 3 3700(7) = (7).

Now we take into consideration the notion of the most powerful test in a class of tests.
In order to compare tests it is possible to introduce the classes having given values of error
probabilities aq, ..., apr_q

Koq ----- ap-—1 {90 : Oém(go) =0, M= 17M - 1}

and then order tests by the values of ay,(¢), naturally the smaller «,,(¢) corresponds to the
better test.

Definition 4: A test ¢ € K,
any @ from the same class

an_y 1S the most powerful test in the class K, a,_, if for

-----

U (P) < am(p).

If M = 2 the optimal test ¢ is given by the Fundamental Lemma of Neyman-Pearson
2,3,6,16]. For more than two hypotheses M > 2 the solution can be found by generalization
of the Neyman-Pearson Lemma [17]. This important result deserves to be recured.

As it was noted in [15] the case N = 1 contains the general one and there is no need to
restrict attention to multiple independent drawings.
For given preassingned values 0 < ajj;, a5, ..., Q3 _p—1 < 1 we choose numbers

T\, T, ...,Thr—1 and sets A’ . m =1, M, such that

= {x . min (g:g; gj&) > Tl}, 1 — Gi(A]) = aj),,

A5 = AN {x © min (gig; gj&) > TQ} , 1= Ga(A) = ajp,

. GM_l(X)

= T{mﬂm....mA*M_Qm{x : ) > TM_l}, 1—=Gura (A1) = O 1ar1s
GM(X)

and

=AY —(AUA UL UA, ) =ANA2 N LN A N AL,

The corresponding error probabilities are denoted by
W (o), Lm =1, M.

Theorem 3: (Generalization of Neyman-Pearson Lemma)

The test determined by sets A3, A, ..., A}, is optimal in the sense that, for each other test
defined by the sets By, Ba, ..., By with the corresponding error probabilities Byy,,, [, m = 1, M,
if Bnjm < Xl for somem € [1, M —1], then there exists at least one index j, j € [m+1, M]
such that Bmjj > o, ;.
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Proof: Let ® 4. and ®z,, be the indicator functions of the decision regions A}, and B, m =
1, M. For all x = (21,7, ...,7x) € X, the following inequality is correct

(D45, (x) = @, (%)) (G (x) = max(TnGmi1(X), ..., TnGm(x))) = 0.
Multiplying and then summing over X we obtain

S @y, (X)Gin(x) = Dy, (%) max (TG 1 (), ooy Ton Gl (%)) —

—®g,, (x)G (%) + Dp,, (x) max(1,,Gri1(x), ..., T,,Gm(x)) > 0],
> [Gu(x) = Ty max(Gryi(x)), ..., Gu(x)] —

x:x€AM*
- ZB (Gon(X) = T max(Grp 1 (X)), oo, Gag (x)] > 0.

According to the definition of error probability we obtain the following inequality

*

L — g — T max(oz;zlmﬂ, ey oz;kmM) — (1 = Bojm) + T max(Bmjm+1s -y Brnyar) > 0,

_Bm|m + Oé;nlm < Tm [_ maX(Oé;dm—s—l’ ) Oé;ﬂM) + max(ﬁmhn—&—la ey Bm|M)} .

We see now that from (), < Wy 1t follows that

max(ﬁmhn-&—la ceey Bm|M) Z maX(Oé;dm—&—l? cey Oéin|M)

From this it follows that if the maximal is 3,,;, j € [m + 1, M], then §,,; > Wl

Disscussion: This paper deals with some central basic results of the Theory of testing
statistical hypotheses ought to be included in textbooks. Different approaches of construct-
ing optimal tests for finitely many simple hypotheses by application of samples of fixed length
are presented.
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dhpujwo pyny wlljwju nhnwpyndGbph v-wljwb
JuwpywoGtnh mtumbph owywmhdwinipjul dwuhb

G. {wpnipjniGyuG
Udthnthnid

Lnnuop GYhpdwo £ phpuwo pyny wlywfu nhnwpynudGtph GdnGeph hhdwG Ypu
pwqiwphy wung yupyuwoltnh mbtumwynpiwl owyywumhdw] dnntigniGbph Junnigdwin:



E. Haroutunian 43

OO0 OonTHUMAABHOCTH TECTOB M-apPHBIX T'MIIOTE3 IIPU
(PHUKCHPOBAHHOM UHCAE He3aBUCUMEIX HAOAIOAEHUN

E. ApyTionaHn

AnHoTanus

CraTtbsd IIOCBsAIIEeHa IIOCTPOEHUIO OIITUMAABHBIX IIOAXOAOB K TeCTUPOBAHHWUIO
MHOT'UX IIPOCTBIX T'HIIOTE3 IIPHU (bI/IKCI/IpOBaHHOM YHCAEe He3dBHUCHMBIX HaGAIOAeHHfI.



