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Abstract

For a graph G, let oo be the minimum degree sum of two nonadjacent vertices in G.
A vertex of degree one in a tree is called an end vertex and a vertex of degree at least
three is called a branch vertex. We consider: () connected graphs on n vertices such
that o9 > n —k + 1 for some positive integer k. In 1976, it was proved (by the author)
that every graph satisfying (*), has a spanning tree with at most k end vertices. In
this paper we first show that every graph satisfying (x), has a spanning tree with at
most k+ 1 branch and end vertices altogether. The next result states that every graph
satisfying (*), has a spanning tree with at most %(k‘ — 1) branch vertices. The third
result states that every graph satisfying (x), has a spanning tree with at most 2(k —1)
degree sum of branch vertices. All results are sharp.

Keywords: Spanning tree, End vertex, k-ended tree, Branch vertex, Degree sum
of the branch vertices, Ore-type condition.

1. Introduction

Throughout this article we consider only finite undirected graphs without loops or multiple
edges. The set of vertices of a graph G is denoted by V(G) and the set of edges by - E(G).
A good reference for any undefined terms is [1].

For a graph G, we use n and « to denote the order (the number of vertices) and the
independence number of G, respectively. If o > k for some integer k, let o be the minimum
degree sum of an independent set of k vertices; otherwise we let o, = +00. For a subset
S C V(G), we denote by G[S] the subgraph of G induced by S. We use dg(v) to denote the
number of neighbors of a vertex v in G, called the degree of v in G. The minimum degree
in GG is denoted by 9.

If @ is a path or a cycle in a graph G, then the order of @, denoted by |Q], is |V (Q)].
The graph G is hamiltonian if G contains a Hamilton cycle, i.e., a cycle containing every
vertex of G. R R

We write a path @) with a given orientation by @ . For x,y € V(Q), we denote by z Qy
the subpath of @ in the chosen direction from x to . We use 2™ to denote the successor, and
x~ the predecessor, of a vertex x € V(Q). For X C V(Q), we define Xt = {z" : z € X}
and X~ ={z” 1z € X}.

*G.G. Nicoghossian (up to 1997)
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A vertex of degree one is called an end-vertex, and an end-vertex of a tree is usually
called a leaf. The set of end-vertices of G is denoted by End(G). A branch vertex of a tree
is a vertex of degree at least three. The set of branch vertices of a tree T will be denoted
by B(T). For a positive integer k, a tree T' is said to be a k-ended tree if |End(T)| < k.
A Hamilton path is a spanning 2-ended tree. A Hamilton cycle can be interpreted as a
spanning l-ended tree.

In 1952, Dirac [2] proved that every graph with 6 > n/2 has a Hamilton cycle. The
degree sum version of this result was proved in 1960 due to Ore [3]: every graph with oy > n
has a Hamilton cycle.

The analogs of these two classical results for Hamilton paths follow easily.

Theorem A: [2|. Every graph with 6 > (n—1)/2 has a Hamilton path.
Theorem B: [3]. Every graph with oo > n — 1 has a Hamilton path.

The next result took a different approach due to Chvatal and Erdds [4] based on con-
nectivity and independence number: every k-connected (k > 1) graph with @ < k has a
Hamilton cycle. The Hamilton path version of this result can be formulated as follows.
Theorem C: [4]. Every k-connected (k > 1) graph with o < k + 1 has a Hamilton path.

A Hamilton path can be regarded as a spanning tree with exactly two leaves, a spanning
tree with no branch vertex, or a spanning tree with maximum degree two. Therefore, as
one of generalized problems of a Hamilton path problem, it is natural to look for conditions
which ensure the existence of a spanning tree with few leaves, few branch vertices or bounded
maximum degree motivated from optimization aspects with various applications.

In this paper we consider tree problems arising in the context of optical and centralized
terminal networks: (i) finding a spanning tree of G with the minimum number of end vertices,
(ii) finding a spanning tree with the minimum number of branch vertices and (iii) finding a
spanning tree of G such that the degree sum of the branch vertices is minimized, motivated
by network design problems where junctions are significantly more expensive than simple
end- or through-nodes, and are, thus, to be avoided.

All these problems are NP-hard because they contain the Hamilton path problem as a
particular case.

The constraint on the number of end vertices arises because the software and hardware
associated to each terminal differs accordingly with its position in the tree. Usually, the
software and hardware associated to a “degree-1” terminal is cheaper than the software and
hardware used in the remaining terminals because for any intermediate terminal j one needs
to check if the arrival message is destined to that node or to any other node located after
node j. As a consequence, that particular terminal needs software and hardware for message
routing. On the other hand, such equipment is not needed in ”degree-1" terminals. Assuming
that the hardware and software for message routing in the nodes is already available, the
above discussion motivates a constraint stating that a tree solution has to contain exactly a
certain number of “degree-1” terminals.

A different situation, resulting from a new technology allowing a switch to replicate the
signal by splitting light. A light-tree connects one node to a set of other nodes in the network
- allowing multicast communication from the source to a set of destinations (including the
possibility of the set of destinations consisting of all other nodes). The switches which
correspond to the nodes of degree greater than two have to be able to split light (except
for the source of the multicast, which can transmit to any number of neighbors). Typical
optical networks will have a limited number of these more sophisticated switches, and one
has to position them in such a way that all possible multicasts can be performed. Thus, we
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are lead to the problem of finding spanning trees with as few branch vertices as possible.
In 1971, Las Vergnas [5] gave a degree condition that guarantees that any forest in G of
limited size and with a limited number of leaves can be extended to a spanning tree of G
with a limited number of leaves in an appropriate sense. This result implies as a corollary a
degree sum condition for the existence of a tree with at most k leaves including Theorem B
as a special case for k = 1.
Theorem D: [6], [5], [7]. Let G be a connected graph with o5 > n— k+ 1 for some positive
integer k. Then G has a spanning k-ended tree.

However, Theorem D was first openly formulated and proved in 1976 by the author [6].
Later, it was reproved in 1998 by Broersma and Tuinstra [7].

The next generalization contains Theorem C as a special case (k = 1) due to Win [8].
Theorem E: [8]. Let G be an s-connected graph with o < s+ k — 1 for some integer k > 1.
Then G has a spanning k-ended tree.

One of the interest in the existence of spanning trees with bounded number of branch
vertices arises in the realm of multicasting in optical networks.

Gargano, Hammar, Hell, Stacho and Vaccaro [9] proved the following,.

Theorem F: [9]. Every connected graph with o3 > n — 1 has a spanning tree with at most
one branch vertex.

Flandrin et al. [10] posed the following conjecture.

Conjecture A: [10]. If G is a connected graph with o3 > n — k for some positive integer
k, then G has a spanning tree with at most k branch vertices.

Recently, Matsuda, Ozeki and Yamashita [11] established an upper bound for the inde-
pendence number o which implies the existence of a spanning tree with bounded number of
branch vertices in connected claw-free graphs.

Theorem G: [11]. Let k be a non-negative integer. A connected claw-free graph G has a
spanning tree with at most k branch vertices if a < 2k + 2.

In this paper we present a sharp Ore-type condition for the existence of spanning trees in
connected graphs with bounded total number of branch and end vertices improving Theorem
D by incorporating the number of branch vertices as a parameter.

Theorem 1:. Let G be a connected graph of order n. If oo > n—k + 1 for some positive
integer k, then G has a spanning tree T with at most k — |B(T)| + 1 end vertices.

Let G be the complete bipartite graph Kjs1,—1 of order n = 20 + k£ — 1 and minimum
degree ¢, where k > 3. Clearly, 05(G) = 20 = n—k+1. By Theorem 1, G has a spanning tree
T with |End(T)| < k — b+ 1. Observing that T is not (k — 1)-ended, that is |End(T)| > k,
we have b < 1. On the other hand, we have b > 1, since |End(T)| > k > 3, which implies
b = 1. This means that 7" is not (k — b)-ended and consequently, Theorem 1 is sharp for
each k > 3.

The next result follows from Theorem 1 providing a sharp Ore-type condition for the
existence of spanning trees in connected graphs with few branch vertices.

Theorem 2: Let G be a connected graph of order n. If oo > n — k + 1 for some positive
integer k, then G has a spanning tree with at most (k —1)/2 branch vertices.

The third result provides an Ore-type condition for the existence of spanning trees in
connected graphs with bounded degree sum of the branch vertices.

Theorem 3: Let G be a connected graph of order n. If oo > n — k + 1 for some positive
integer k, then G has a spanning tree with at most %(k— 1) degree sum of the branch vertices.

Let G be a graph (tree) obtained from the path wvov...vpvp11 by adding new vertices
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Uy, ..., up and the edges u;v; (i = 1,...,b). Clearly, n =2b+2and 0o =2=n— (2b+ 1) + 1.
Since |B(G)| = b, the bound (k — 1)/2 in Theorem 2 is sharp. Further, since 30, d(v;) =
3(k — 1), the bound 2(k — 1) in Theorem 3 is sharp as well.

Theorems 1,2,3 were announced in 2015 [12] and Theorem 1 was proved independently
by Saito and Sano [13].

2. Proof of Theorem 1

Proof of Theorem 1: Let G be a connected graph with 0o > n —k + 1 and let T be a
spanning tree in G. Assume that

(al) T is chosen so that |End(T')| is as small as possible.

Put End(T) = {&,....&r}. Let 13; = 5113552 be the unique path in 7" with end vertices
& and &. Further, assume that

(a2) T is chosen so that P, is as long as possible, subject to (al).

Put |B(T)| =0b. If f =2 then P, is a 2-ended spanning tree (Hamilton path) in G with
|B(P;)| =b=0, implying that f =2<k+1=Fk—b+ 1.

Now let f > 3, that is b > 1.
Claim 1: If P is a Hamilton path in G|V (P»)] with end vertices x,y, then N(x) U N(y) C

Proof: Assume the contrary and assume w.lo.g. that N(z) € V(P). Put 77 =
T — E(P,) + E(P). Clearly, 7" is an f-ended spanning tree in G and zv € E(G) for
some v € V(G — P). Let C be the unique cycle in 7" + zv and let vv' be the unique edge
on C with " # . Then T"+zv—vv' is an f-ended spanning tree in G, contradicting (a2). A

By Claim 1, N(&) U N (&) C V(P). If N(&) NNt (&) # 0 then clearly, G[V(P2)] has
a Hamilton cycle. Since b > 1, G[V ()] has a Hamilton path with end vertex x such that
N(z) € V(PB,), contradicting Claim 1. Hence, N(&) N Nt (&) = (0. Observing also that
& & N(§) UNT(&) and N¥(&) € V(P), we get

|[Po 2 IN(&)]+ INT(&)] + {6

=d(&)+d&)+1>0+ 1 (1)

For each i € {3, ..., f}, let F; = fiﬁzi be the unique path in T" between &; and the nearest
vertex z; of Py. Clearly, z; € B(T') (1 =3, ..., f).

Case 1: |P|=2 (i=3,..., f).
It follows that B(T) C V(P,). If b =1, then by (1), || > 02 + b and therefore,

f=H& - &H+2=n—|R|+2

—
Let b > 2 and let 21, ...,z be the elements of B(T), occurring on P in a consecutive
order. Assume w.l.o.g. that x1 = z3. Further, assume that
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(a3) T is chosen so that dr(z1) is as small as possible, subject to (al) and (a2).

If &ue € E(G) for some v € V(:ch;gQ), then T + &v, — &y is an f-ended tree,
—
contradicting (a3). Hence, we can assume that N (&) C V(& Pyay), that is
(N(&) —23) N B(T) = 0. (2)
Next, if N7(&1) N (N (&3) — 23) has an element vy, then
— =
Vg Pa§1vy Pa&o

is a Hamilton path in G[V (F,)] with end vertex vy such that N(vy) € V(P%), contradicting
Claim 1. Hence,

N™(&) N (N(&s) — 23) = 0. (3)
Finally, if N~ (&) N B(T) # 0, that is & 27 € E(G) for some i € {3, ..., f}, then

— + 5
ziP2€1zz‘ P2€2

is a Hamilton path in G[V(P,)] with end vertex z; such that N(z;) € V(P,), again contra-
dicting Claim 1. Hence,
N (&) N B(T) = 0. (4)

Using (2), (3), (4) and observing that & & N~ (&) U (N (&) — z3) U B(T), we get
V(P)] = [N (&) + [N (&) — 2] + [B(T)] + {2}

> d(&) +d(&3) +b > 02 + D,
implying that
f=NR&: & +2=n—|V(P)| +2

Case 2: |P;| > 3 for some i € {3, ..., f}, say ¢ = 3.
Case 2.1: N~ (&) NN (&) # 0.
It follows that {w™, &uw™ € E(G) for some w € N7 (&) N N1 (&), If 23 = w then

«— i
ngflw ngg

is a Hamilton path in G[V(P,)] with end vertex w such that N(w) € V(F,), contradicting
—
Claim 1. Hence z3 # w. Assume w.l.o.g. that z3 € V({ P,w™). Put

T =T+ &uw +&u™ — 2325 —ww™.
Clearly, T" is a spanning f-ended tree in G and
=5 5 .5 4.
§ P33 Pow S Pow™ § Py

is a path in 7" longer than P, contradicting (a2).
Case 2.2: N~ (§) NN (&) = 0.
Put
By = V(P,) N B(T), By = B(T) — By.
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Using Claim 1, it is easy to see that

N=(&) N By = N*(&)N B, = 0.
Observing also that N7 (&) U NT(&) C V(P,), we get

|Po| 2 INT(&)] + INT(&)] + B

=d(&) +d(&) + |Bi| > 09+ |Bi| > n—k+ 1+ |By.

Then
n > |Ps| + |Bo| + [{&, - &1}

>n—k+1+|Bi|+[Bo|+f—-2=n—k+b+f—1,
implying that f <k —0b+ 1. [ |

Proof of Theorem 2: By Theorem 1, G has a spanning tree T with |End(T)| < k—b+1,
where b = |B(T)|. On the other hand, it is not hard to see that |End(T")| > b+ 2, implying
that b < (k —1)/2. |

Proof of Theorem 3: By Theorem 1 and Theorem 2, G has a spanning tree T with
f=1End(T) <k—b+1and b < (k—1)/2, where b = |B(T)|. Let dy,ds, ...,d, be the
degrees of branch vertices of 7'. Observing that

we get

b
3
Zdi§k+b—1§§(l€—1). |
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UdwlupwjhG ownbp phy §niqujht L jujujwo ququpbbpny
d. Lhynnnujwa

Udthnthnid

G qqudh hwdiwp oe-ny Gpulwlyynmd £t G-h ny hwplwl ququplbph wumh@wGGhph
(Juquqgni)G gmiwpp: Sweh 4t wunhdwl nGhgnn ququpn Yngynd £ jupujuo ququp,
huy wnGjwuql tpip wunmhdwl nmhgnn ququpp GmnujhlG ququp: Wuwmwlpnud
nhunwnpyymd GG dhwjl (%) n ququpwlh Juwwlygyud gpudlbp, npnlp pwuwpupnid
Ll oo > n —k+ 1 wuypdwGhG pGy-np dh & pGwlw6 pyh hwdwnp: 1976-ph6 wuyugnmgyby
L (htinhGwyh Ynnihg), np (%)-hG pwjwpwpnn judwjuuwl qpudp niGh wdkGuw)wwnn
E qujwo ququp niGtignn YuwfupwjhG own: ULhpjw wpuwwmwlpnd Gwju gmjg L
wnpymd, np (%)-hG pudwpuwpny juidwjwyuwl gpud niGh YowjupwyhG dwn, nph juuguwd L
Gyninujhl ququpltph pGnhwlnip pwGwyn sh gbpuqubGgmd (k+1)-p: Gpypnpn wpnyniGpp
wlnmd t, np (%)-hG pwjwpwpnn judwywyuwl gpud niGh Ydwhupwihl dwn wikGuw)wwnn
1(k—1) 6wyl ququplbpny: Cuwn bpponpyg wpnynlph, (+)-hG pudwpupnn Juidw julw
grhwd niGh YdwpupwjhG own, nph Gyqujhl ququpltph wuwmhdw(iGtph gnmiwpp sh
qupuquignd 2 (k — 1)-p: Anpnp bpbp gGwhwnwlwGGhpp hwuwbh GG

KapKacm C MEHBIIINM YHUCAOM BUCAYUX U Br-BePIINH
XK. Hukorocsx

AnHoTanuys

Anst tpadpa (G yepe3d o, 0OO3HAUAeTCsl MMHHUMaAbHasg CyMMa CTelleHed ABYX
HeCMe’)KHBIX BepIIuH. BeplliHa B AepeBe Ha3bIBaeTCs BUCSUEN, €CAU UMeeT CTelleHb
1; u Ha3bIBaeTcs1 Br-BepIIUHOM, €CAM UMeeT CTelleHb 110 MeHblleh Mepe 3. B paboTte
pPaccMaTpUBAIOTCS TOABKO (%) m-BepIIMHHBIE CBS3HBIE T'pPadbl, YAOBAETBOPSIOIINE
YCAOBHUIO 0y > n — k + 1 AAd HEKOTOPOro HATypaAbHOTO uucaa k. B 1976 ropy
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OBIAQ AOKAa3aHa (aBTOPOM), YTO IIPOM3BOABHBIN I'Pad YAOBAETBOPSIOUIUN YCAOBUIO
(%), UMeeT KapKac ¢ He OOAee ueM k BUCSIYMMM BepIIMHaMU. B HacTosIei pabdore
AOKAa3bIBAETCsI, YTO BCSKHUHU rpad YAOBAETBOPSIOIININ YCAOBHIO (%), MMeeT KapkKac,
rae oOlllee YHMCAO BUCAYUX U Br-BeplIVH He IPeBOCXOAUT k + 1. BTopou pesyabTaT
YTBEPIKAQET, YTO BCSKUH Tpad, YAOBAETBOPSIOIINM YCAOBUIO (), MMEeT KapKac, TAe
YUCAO Br-BeplIVH He IPEBOCXOAUT %(k — 1). TpeTuil pe3yAbTaT YTBEP>KAQET, UTO
BCSIKUM Tpad, YAOBAETBOPSIIOUIUM YCAOBUIO (%), UMeeT KapKac, rAe CyMMa CTelleHeln
Br-BeplInH He IPEBOCXOAUT %(k — 1). Bce Tpu OIleHKH AOCTHUTAEMHI.



	02.pdf (p.1-7)
	Zhora_Nikoghosyan_1.pdf (p.8)

