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Abstract

Let D be a strongly connected balanced bipartite directed graph of order 2a > 10.
Let z,y be distinct vertices in D. {z,y} dominates a vertex z if x — z and y — z; in
this case, we call the pair {z,y} dominating. In this paper we prove:

If max{d(z),d(y)} > 2a—2 for every dominating pair of vertices {z, y}, then either
the underlying graph of D is 2-connected or D contains a cycle of length 2a — 2 or D
is isomorphic to one digraph of order ten.
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1. Introduction

We consider directed graphs (digraphs) in the sense of [1]. A cycle of a digraph D is called
Hamiltonian if it contains all the vertices of D. For convenience of the reader terminology
and notations will be given in details in section 2. A digraph D of order n is Hamiltonian if it
contains a Hamiltonian cycle and pancyclic if it contains cycles of every length k, 3 < k < n.
For general digraphs there are several sufficient conditions for existence of Hamiltonian cycles
in digraphs. In this paper, we will be concerned with the degree conditions.

The well-known and classical are Ghouila-Houri’s, Nash-Williams’, Woodall’s, Meyniel’s
and Thomas
sen’s theorems (see, e.g., [2]- [6]). There are analogous results of the above-mentioned
theorems for the pancyclicity of digraphs (see, e.g., [7-12]). Each of theorems ([2]-[6]) imposes
a degree condition on all pairs of nonadjacent vertices (or on all vertices).

In [13] and [14], some sufficient conditions were described for a digraph to be Hamiltonian,
in which a degree condition is required only for some pairs of nonadjacent vertices. Let us
recall only the following theorem of them.

Theorem 1.1: (Bang-Jensen, Gutin, H.Li [13]). Let D be a strongly connected digraph of
order n > 2. Suppose that min{d(x),d(y)} > n —1 and d(x) 4+ d(y) > 2n — 1 for any pair
of nonadjacent vertices x,y with a common in-neighbor. Then D is Hamiltonian.

A cycle of a non-bipartite digraph D is called pre-Hamiltonian if it contains all the
vertices of D except one. The concept of pre-Hamiltonian cycle for the balanced bipartite
digraphs is the following:
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A cycle of a balanced bipartite digraph D is called pre-Hamiltonian if it contains all the
vertices of D except two.

A digraph D is called bipartite if there exists a partition X, Y of its vertex set into two
partite sets such that every arc of D has its end-vertices in different partite sets. It is called
balanced if | X| = |Y.

There are results analogous to the theorems of Ghouila-Houri, Nash-Williams, Woodall,
Meyniel and Thomassen for balanced bipartite digraphs (see e.g., [15]) and the papers cited
there.

Let 2,y be a pair of distinct vertices in a digraph D. We call the pair {z,y} dominating,
if there is a vertex z in D such that + — z and y — z.

An analogue of Theorem 1.1 for bipartite digraphs was given by R. Wang [16] and recently
strengthened by the author[17].
Theorem 1.2: (R. Wang [16]). Let D be a strongly connected balanced bipartite digraph of
order 2a, where a > 1. Suppose that, for every dominating pair of vertices {x,y}, either
dlz) >2a—1and d(y) > a+1 ord(y) >2a—1 and d(xz) > a+ 1. Then D is Hamiltonian.

Let D be a balanced bipartite digraph of order 2a > 4. For integer k > 0, we say that
D satisfies condition By when max{d(x),d(y)} > 2a — 2 + k for every pair of dominating
vertices x and y.
Theorem 1.3: (Darbinyan [17]). Let D be a strongly connected balanced bipartite digraph
of order 2a, where a > 4. Suppose that D satisfies condition By, i.e., for every dominating
pair of vertices {z,y}, either d(x) > 2a—1 or d(y) > 2a— 1. Then either D is Hamiltonian
or isomorphic to the digraph D(8) (for the definition of D(8), see Example 1).

A balanced bipartite digraph of order 2m is even pancyclic if it contains a cycle of length
2k for any 2 < k < m.

An even pancyclic version of Theorem 1.3 was proved in [18].
Theorem 1.4: (Darbinyan [18]). Let D be a strongly connected balanced bipartite digraph
of order 2a > 8 other than the directed cycle of length 2a. If D satisfies condition By, i.e.,
max{d(x),d(y)} > 2a—1 for every dominating pair of vertices {x,y}, then either D contains
cycles of all even lengths less than or equal to 2a or D is isomorphic to digraph D(8).
Theorem 1.5: (Darbinyan [18]). Let D be a strongly connected balanced bipartite digraph
of order 2a > 8, which contains a pre-Hmiltonian cycle (i.e., a cycle of length 2a — 2).
If D satisfies condition By, i.e., max{d(x),d(y)} > 2a — 2 for every dominating pair of
vertices {x,y}, then for any k, 1 <k <a—1, D contains a cycle of length 2k for every k,
1<k<a-1.

In view of Theorem 1.5 it seems quite natural to ask whether a balanced bipartite digraph
of order 2a in which maz{d(z),d(y)} > 2a — 2 for every dominating pair of vertices {z,y}
contains a pre-Hamiltonian cycle (i.e., a cycle of length 2a — 2).

The underlying graph of a digraph D is the unique graph such that it contains an edge
xy if £ — y or y — x (or both).

In this paper we prove the following theorem.
Theorem 1.6: Let D be a strongly connected balanced bipartite digraph of order 2a > 10
with partite sets X andY . Assume that D satisfies condition By. Then either the underlying
graph of D 1is 2-connected or D contains a cycle of length 2a — 2 unless D 1is isomorphic to
the digraph D(10) (for the definition of D(10), see Ezample 2).
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2. Terminology and Notations

Terminology and notations not described below follow [1].

In this paper we consider finite digraphs without loops and multiple arcs. For a digraph
D, we denote by V(D) the vertex set of D and by A(D) the set of arcs in D. The order
of D is the number of its vertices. The arc of a digraph D directed from z to y is denoted
by xy or x — y. The notation < y menas that © — y and y — = (z < y is called
2-cycle). We denote by a(x,y) the number of arcs with end-vertices x and y. For disjoint
subsets A and B of V(D) we define A(A — B) as the set {xy € A(D)/x € A,y € B}
and A(A,B) = A(A - B)UA(B — A). If z € V(D) and A = {2} we sometimes write
x instead of {z}. If A and B are two disjoint subsets of V(D) such that every vertex of A
dominates every vertex of B, then we say that A dominates B, denoted by A — B. The
notation A < B means that A — B and B — A. The out-neighbourhood of a vertex x
is the set N¥(z) = {y € V(D)/xy € A(D)} and N~ (z) = {y € V(D)/yz € A(D)} is the
in-neighbourhood of z. Similarly, if A C V(D), then N*(x,A) = {y € A/zy € A(D)}
and N~ (z,A) = {y € A/yx € A(D)}. The out-degree of z is d*(z) = |[N*(z)| and
d~(z) = |[N~(x)] is the in-degree of x. Similarly, d*(z,A) = |[NT(z, A)| and d~(z, A) =
|N~(z,A)|. The degree of the vertex x in D is defined as d(z) = d*(z) + d~(z) (similarly,
d(z,A) = d*(z,A) + d (z,A)). The subdigraph of D induced by a subset A of V(D) is
denoted by D(A) or (A) brevity. The path (respectively, the cycle) consisting of the distinct
vertices 1, Ta,..., Ty (m > 2) and the arcs x;x;1, @ € [1,m — 1] (respectively, x;z;1,
i € [1,m — 1], and z,,x1), is denoted by x5 -z, (respectively, xixs---x,,21). We say
that zy25 - - - x,, is a path from z; to x,, or is an (21, x,,)-path. A cycle that contains all the
vertices of D is a Hamiltonian cycle. A digraph D is strongly connected (or, just, strong) if
there exists a path from x to y and a path from y to x for every pair of distinct vertices z, y.

Two distinct vertices x and y are adjacent if xy € A(D) or yz € A(D) (or both). For
integers a and b, a < b, let [a,b] denote the set of all integers which are not less than a and
are not, greater than .

A digraph D is called a bipartite digraph if there exists a partition X, Y of V(D) into
two partite sets such that every arc of D has its end-vertices in different partite sets. It is
called balanced if | X| = |Y.

3. Examples

Example 1. Let D(10) be a bipartite digraph with partite sets X = {xq,x1, T2, 23,24}
and Y = {vo,y1,Y2,y3,vys} satisfying the following conditions: the induced subdigraph
({x1, 22,3, Y0, 1 }) is a complete bipartite digraph with partite sets {x1, z2, z3} and {yo, 1 };
{1, 29,23} — {Y2,Y3,Ys}; T4 < y1; To < yo and x; < y;41 for all ¢ € [1,3]. D(10) contains
no other arcs.

It is not difficult to check that the digraph D(10) is strongly connected and satisfies
condition By, but the underlying graph of D(10) is not 2-connected and D(10) has no cycle
of length 8. (It follows from the facts that d(z¢) = d(z4) = 2 and z( (z4) is on 2-cycle).
Example 2. Let D(8) be a bipartite digraph with partite sets X = {x¢, 21, 29,23} and Y =
{Y0, Y1, Yo, y3} satisfying the following conditions: the induced subdigraph ({1, 2, yo, y1, y3})
is a complete bipartite digraph with partite sets {x1, 22} and {yo,v1,ys}; {x1, 22,23} —
{Y2, Y3, Ys }; T3 < ys; g <> Yo and zg <> y; and D(8) contains no other arcs.

It is not difficult to check that the digraph D(8) is strongly connected and satisfies



10 On pre-Hamiltonian Cycles in Balanced Bipartite Digraphs

condition By, but the underlying graph of D(8) is not 2-connected and D(8) has no cycle of
length 6.

4. Proof of the Main Result

Proof of Theorem 1.6: Suppose, on the contrary, that the underlying graph of D is not
2-connected and D contains no cycle of length 2a — 2. Then V(D) = AU B U {u}, where
A and B are nonempty disjoint subsets of vertices of D, the vertex u is not in AU B and
there are no arcs between A and B. Since D is strong, there are vertices x € A and z¢o € B
such that {z,z0} — wu, i.e., {z,20} is a dominating pair. Note that = and z, belong to the
same partite set, say X. Then v € Y. By condition By we have maz{d(z), d(zo)} > 2a — 2.
Without loss of generality, we assume that d(x) > 2a — 2. From this and the fact that there
are no arcs between A and B it follows that a —2 < |[Y N A| <a — 1.

Put Y7 :=Y N A. We will consider the cases |Y1| = a — 2 and |Y;| = a — 1 separately.
Case 1: |Yi| =a—2.

Then Y NB| = 1. Let Y1 := {y1,92,..-,¥a2} and Y N B := {yo}. It is not difficult
to check that the vertex x and every vertex of Y; U {u} form a 2-cycle, i.e., z < Y; U {u}.
Therefore, every pair of distinct vertices of Y; U {u} is a dominating pair. This means that
Y1 U {u} has at least a — 2 vertices of degree at least 2a — 2 (maybe except, say y,_», or u).
Then d(y;) > 2a—2, since a > 5. From this it follows that | XNA| =a—1and XNB = {x}
since there are no arcs between y; and B.

Put X := {x1,29,...,24-1}, where 1 = x. Therefore, B = {x¢,y0}. Since D is strong
and since yq is not adjacent to any vertex of X7, it follows that yg <> g, u — xg, d(zg) = 4
and d(yp) = 2. By condition By, we have d(u) > 2a — 2 since {u, 3o} — 0.

Assume first that d(y;) > 2a — 2 for all i € [1,a — 2]. Then Y; < X, since there are no
arcs between Y7 and {z¢}, i.e., the induced subdigraph D(Y; N X;) is a complete bipartite
digraph with partite sets X; and Y;. Since d(u) > 2a — 2, it follows that the vertex u and
at least a — 2 vertices of X; form a 2 cycle. Now we can choose a vertex of X; other than
X, say Xo, such that u < x5. Therefore, x1uxsysxs ... Tq_2Ys_2Tqe_1y121 is a cycle of length
2a — 2, which contradicts the supposition that D contains no cycle of length 2a — 2.

Assume second that Y; has a vertex, say y,_ o, of degree at most 2a — 3. Then from
condition By it follows that d(y;) > 2a — 2 for all i € [1,a — 3] since < Y; U {u}. This
implies that the subdigraph D(X; U {y1,¥2,...,%.-3}) is a complete bipartite digraph with
partite sets Xy and {y1,%s,...,Ya_3}. In particular, y; <> X;. Then every pair of distinct
vertices of X; is a dominating pair. Condition By implies that X; has at least a — 2 vertices,
say Ti,xa,...,Tq o , of degree at least 2a — 2. Then

{21,290, ..., 242} < Y1 U{u},

in particular y, o < {z1,29,...,2, 0} and u <« {xy,29,...,2,2}.  Therefore,
Y1Ta_1Y2T2Y3T3 - - - Ya—2 Ta_oux1yy is a cycle of length 2a — 2, which is a contradiction.
Case 2: |Yi| =a— 1.

Let now Y7 := {y1,%2,---,%a—1}. Then Y N B = (), i.e., B C X. Since D is strong,
from condition By it follows that B = {x0}, u < x¢ and | X N A| = a — 1. Let now
Xy =XNA={x,29,...,2, 1}, where x; = = (recall that z; — u).

If d(y;) > 2a — 2 for all i € [1,a — 1] then the subdigraph D(X; U Y]) is a complete
bipartite digraph with partite sets X; and Y;. Therefore, D contains a cycle of length
2a — 2, a contradiction.
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Assume therefore that Y] has a vertex of degree at most 2a — 3. Observe that Y; may
has at most three vertices of degree less than 2a — 2 since d(z1) > 2a — 2 (for otherwise Y}
contains two vertices, say v and z, such that {v, 2z} — 21 and max{d(v),d(z)} < 2a — 3,
which contradicts condition By). We will consider the following four subcases depending on
the number of vertices of Y7, which have degree at most 2a — 3.

Subcase 2.1: Y] has exactly one vertex of degree less than 2a — 2.

Assume, without loss of generality, that d(y,—1) < 2a — 3 and d(y;) > 2a — 2 for all
i € [1,a —2]. Then it is easy to see that the subdigraph D(X; UY] \ {ya—1}) is a complete
bipartite digraph with partite sets X; and Y7 \ {y,_1} since d(z,Y;) = 0. From strong
connectedness of D it follows that d*(u, X;) > 1. If u — x; for some i € [2,a — 1], then by
symmetry between the vertices xy, s, ..., 2,1, We can assume that u — x5. Then it is easy
to see that uwsyoxs ... Ys_2T._1y171u is a cycle of length 2a — 2, which is a contradiction.
Assume therefore that

d*(u,{wa, z3,...04_1}) = 0. (1)
Then u — x1, d¥(ys—1) > 1 and d™(y,—1) > 1, since D is strong. If there exist two
distinct vertices of Xi, say x; and x5, such that z; — y,-; and y,—1 — 2, then the
cycle T1Y, 122Y2T3 . . . Ta_2Ya_2Xq_1y171 1S a cycle of length 2a — 2, a contradiction. Assume
therefore that there are no two distinct vertices z; and x; of X; such that z; — y,—; and
Yo—1 — ;. Then d*(y,—1) = d” (Ya—1) = 1 and y,_1 < ; for some i € [1,a —1]. If i =1,
i.e., 1 <> Yo—1. Then d(y,—1) = 2. Now using (1) and the fact that d(u, {x¢,z1}) = 4, we
obtain

d(u) = d(u, {zo, 21}) + d~ (u, {2, 23, ... 201 }) < a+2 < 2a — 3,

which contradicts condition By since {u,y, 1} — x; and a > 5. Therefore, i € [2,a — 1].
Assume, without loss of generality, that y,—1 < x,—1. Then a(z;,y,-1) = 0 for all
i € [1,a — 2|, in particular, a(xs2,y,—1) = a(zs3,y.—1) = 0. This together with (1) implies
that max{d(z2),d(z3)} < 2a — 3, which contradicts condition By since {xs, 3} — y;. The
discussion of Subcase 2.1 is completed.
Subcase 2.2: Y] has exactly two vertices of degree less than 2a — 2.
Assume, without loss of generality, that d(y,—2) < 2a — 3, d(Ya—1) < 2a — 3 and d(y;) >

2a—2for all i € [1,a—3]. Then it is easy to see that the subdigraph D(X1UY1\{¥a—2, Ya—1})
is a complete bipartite digraph with partite sets X; and Y1 \ {ya—2, Ya—1} since d(zo, Y1) = 0.

For the discussion of Subcase 2.2 it is convient first to prove the following Claims 1 and
2 below.
Claim 1: If x; — y,_» for some j € [2,a — 1], then d* (y,—2, {z1, 22, ..., 2a-1} \ {z;}) = 0.
Proof of Claim 1: Assume, without loss of generality, that x,_1 — y,—2, i.e., j = a — 1.
Suppose that the claim is not true, i.e., y, o — x; for some i € [1,a — 2]. We will consider
the cases i = 1 and i € [2,a — 2] separately.

Case. 1 =1, i.e., Yg_o — X1.

First we show that

d*(u, {9, w3,...,041}) = 0. (2)

Proof of (2): Suppose that (2) is not true, i.e., there is a k € [2,a—1] such that u — zy.
If k£ € [2,a — 2], we may assume, without loss of generality, that u — x5. Then the cycle
Ta-1Ya—2T1UT2Y1T3Y2 - .. Ta_2Ya—3Tq—1 is a cycle of length 2a — 2, contradiction. Assume
therefore that k = a — 1. Then

u— 2,1 and df(u,{z9,3,...,74 2}) = 0. (3)
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If Yoo — a, for some [ € [2,a — 2] (say Ya—2 — x2), then the cycle

Ta—1Ya—2T2Y1X3Y2 - - - La—2Ya—3L1
ur,_1 is a cycle of length 2a — 2, a contradiction. Assume therefore that

d* (Y2, {T2, 73, ..., Taa}) = 0. (4)

If 2, — wu for some | € [2,a — 2] (say 2z — w), then the cycle
Ta-1Ya—2T1Y2X3Y3 - - - Ya—_3Ta_2Y1T2UTq_1 1S & cycle of length 2a — 2, a contradiction. Assume
therefore that

d”(u,{za,23,...,24-2}) = 0.

Combining this together with (3) and (4), we obtain

d(u, {m2, 23, ..., Ta2}) = d (Yoo, {T2,73,...,74_2}) = 0.

Therefore, since a > 5, we have d(x2) and d(x3) < 2a — 3, which contradicts condition By
since {z3,x3} — y1. This contradiction proves (2).

Since D is strong, from (2) it follows that u — x;. Therefore, {u,y, 2} — z1, ie,
{u,y,_2} is a dominating pair. This together with condition By implies that d(u) > 2a — 2
since d(y,—2) < 2a — 3 (by our assumption). Now using (2), we obtain

2a —2 <d(u) =d(u,{zg,21}) + d” (u, {z, 23, ..., 2,1}) <4d+a—-2=a+2.

Hence, a < 4, which contradicts that a > 5. The discussion of the case ¢ = 1 is completed.

Case. 1 € [2,a — 2], i.e., Yoo — x; and y,_ox1 & A(D).
Assume, without loss of generality, that y, o — xo, i.e., 2 = 2. Now we prove that

d(u,{ms, 24, ..., 2a_1}) = 0. (5)

Proof of (5): Suppose that (5) is not true, i.e., there is an [ € [3,a — 1] such that u — z;.
Ifl=a-1,ie,u— x, 1, then the cycle x,_1Ys_2T2yox3 ... Yq_3Tq_2y1T1UT4_1 i a cycle
of length 2a — 2. Assume therefore that [ € [3,a — 2]. Without loss of generality, we may
assume that v — x3. Then the cycle T1uT3ysxy ... Yo—aTa—2Ya—3 Ta—1Ya—2T2y121 is a cycle
of length 2a — 2. In both cases we have a cycle of length 2a — 2, which is a contradiction.
Therefore, (5) is true.

From (5) and strongly connectedness of D it follows that u — x; or u — .
Assume first that v — z;. It is not difficult to show that

d”(u,{za,23,...,242}) = 0. (6)

Indeed, if x5 — u, then the cycle y,_oToux1y1T3Y2Ty - . . Ta—2Ya—3Ta—1Ya—2 has length 2a — 2;
if z; — wand j € [3,a — 2], then (we may assume that j = 3, i.e., z3 — u) the cycle
To-1Ya—2ToY1 TIUT1Y2L s - - - Yq—aTa_2Ya—_3Tq_1 has length 2a — 2. In both cases we have a con-
tradiction. Therefore, the equality (6) is true.

If u — z9, then from y,—o — x2, d(ys—2) < 2a — 3 and condition By it follows that
d(u) > 2a — 2. On the other hand, using (5) and (6) we obtain

20 — 2 < d(u) = d(u, {xo, x1}) + dt(u, {xe,23,.. ., 201}) +d (u, {29, 23,...,704_1}) <6.
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Therefore, a < 4, which contradicts that a > 5. Assume therefore that uxs ¢ A(D). Then
by (5) and (6) we have

d(u,{ma, w3, ..., Tq_1}) =d (u,{w2,73,...,04_2}) = 0.

In particular, a(z;,u) = 0 for all j € [2,a —2]. Since a > 5 and since {x2,z3} — v, it
follows that d(z2) = 2a—2 or d(x3) = 2a—2. If d(x9) = 2a — 2, then {y,—2,ys—1} — 2, and
if d(z3) = 2a — 2, then {y,_2,Y.—1} — 3. In each case we have a contradiction to condition
By,

Assume second that uzy; ¢ A(D) and u — z5. Then by condition By we have d(u) > 2a—2
since {u,y,_o} — x5 and d(y,_2) < 2a — 3. Now using (5), we obtain

20 —2 < d(u) = d(u, {xo, z1}) + d" (u, {9, 23, ..., 20 1}) +d (u, {72, 23, ..., Ta_1}) < a+2,

which is a contradiction, because of a > 5. Claim 1 is proved. o

Claim 2: If z; — y,_» for some j € [2,a — 1], then d™ (y,—2, {%2, 23, ..., 2a—1} \ {z;}) = 0.
Proof of Claim 2: Assume, without loss of generality, that z,_ 1 — y,_2, i.e., J = a — 1.
Suppose that the claim is not true, i.e., x; — y,—_o for some [ € [2,a — 2]. From Claim 1 and
strongly connectedness of D it follows that y, o — x,_1. This together with condition B
and maz{d(y,—2),d(ys—1)} < 2a — 3 implies that y, 12,1 ¢ A(D).

Assume, without loss of generality, that o — y,_2, i.e., | = 2. If u — x5, then the
cycle Yg—oTq 1Y2x3Y3 . . . Ta—3Ya—3Ta—2Y1T1UT2Yq—2 has length 2a —2, which is a contradiction.
Let u — xp, where k € [3,a — 2|. We may assume that k = 3, i.e., u — x3. Then
Ya—2Ta_1Y1TIUTIY2T4Y3 - - - Tq_2Ya_3 T2Yq_o is a cycle of length 2a—2, which is a contradiction.
Therefore, we may assume that

d*(u,{z9,w3,..., 04 2}) = 0. (7)

From (7) and strongly connectedness of D it follows that ©w — x1 or u — z,_;.

Assume first that u — x;. It is not difficult to see that if for some j € [3,a — 2|, say
J =3, x; — u, then the cycle y,_o%q 191 T3UT1Y3%4 . . . Yg—3Tq—2Y2T2Yq—2 has length 2a,, and
if ,_1 — wu, then the cycle y, 2%, 1UT1Y123Y3 . . . Ta—3Ya—3Ta—2YoT2Yq—2 has length 2a — 2,
which is a contradiction. Assume therefore that

d”(u,{z3,24,...,241}) = 0. (8)
Now using (7) and (8), we obtain a(u,x;) = 0 for all j € [3,a — 2] and
d(u) = d(u, {zg, z1}) + d" (u, {xe, 03, ... ,0a_1}) +d (u,{wa, T3,.. ., Tq_1}) <6< 2a— 3.

From (7), (8) and Claim 1 it follows that d(x;) < 2a—3 for all j € [3,a—2]. Hence, a—2 = 3,
i.e.,, a=>5and d(x3) < 2a—3, and d(z2),d(z4) > 2a — 2 since {2, 23,...,Za-1} — y1. From
Ya1Ta—1 ¢ A(D) and z,qu ¢ A(D) (a — 1 = 4) it follows that v — z,_, which is a
contradiction since {u,y, 2} — x,_1 and maz{d(u),d(y,_o} < 2a — 3.

Assume second that v — x,1 and uzy ¢ A(D). Since {u,y,—2} — x,—1 and since
d(Ya—2) < 2a—3 it follows that d(u) > 2a—2. On the other hand, using (7) and uz; ¢ A(D),
we obtain

20 —2 < d(u) = d(u, {xo, z1}) + d" (u, {9, 23, ..., 20 1}) +d (u, {72, 23, ..., Ta_1}) < a+2,
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which contradicts that a > 5. Claim 2 is proved. o

Now we are ready to complete the discussion of Subcase 2.2.
Assume that d™ (y;, {z2,23,...,24-1}) #0for j =a—2o0r a—1 (say j = a—2). Assume,
without loss of generality, that z, 1 — y,_2. From Claims 1 and 2 it follows that

d+(ya—27 {xla T, T3, - - 71.(1—2}) =d- (ya—27 {'1.27 Z3,. .. 71.(1—2}) =0. (9)

Therefore, d(x;) < 2a—2 for all i € [2,a— 2] since a(x;, ya—2) = 0. From strongly connected-
ness of D and (9) it follows that y,_o2 — x,_1. This together with maz{d(y,—2), d(ya—1)} <
2a — 3 and condition By implies that y, 1z, 1 ¢ A(D). Therefore,

d+(ya_1, {.1'1, T2,T3, ... ,.I'a_g}) 7é 0

since D is strong. Now we apply Claim 1 to y,—1 we conclude that x,-1y,—1 ¢ A(D). Then
a(a-1,Ya—1) = 0 and d(z,—1) < 2a — 2. Since {x9,23,...,2,-1} — y1, from condition By
it follows that {xq,xs,...,2,-1} has at least a — 3 vertices of degree at least 2a — 2. In
particular, d(x2) > 2a — 2 or d(z3) > 2a — 2. Without loss of generality, we assume that
d(x9) > 2a — 2. Then x5y — {u,y,_1} since a(zs,y,—2) = 0. Now using (9) with respect to
Ya—1, We obtain

d+(ya—17 {xla T3, Ty, - - 71.(1—1}) =d- (ya—h {1.37 HOPI 71.(1—1}) = 0. (10)

In particular, from (9) and (10) we have d~ (21, {ya—2, Ya—1}) = 0. Therefore, ; — y,_o and
u — x1 since d(x1) > 2a — 2. Hence, the cycle oux1y, 2Ta 10103Y2T4 - - - Yo a4Ta—2Ya_3T2 1S
a cycle of length 2a — 2, which is a contradiction.

Assume now that

A({l.Qa T3y .. 71.(1—1} - {ya—27 ya—l}) = 0.

Then, since D is strong, it follows that 21 — {y,_2,vys_1}. From the last equality we have
d(z;) <2a—2for all j € [2,a— 1]. This together with {xs, z3,..., 2,1} — y1 implies that
{xa,x3,..., 2.1} has at least a — 3 vertices of degree equal to 2a — 2. Assume, without loss
of generality, that d(z2) = 2a — 2. Then {y,—2,%,-1} — 2, which is a contradiction since
d(Ya—2) < 2a — 3 and d(y,—1 < 2a — 3. In each case we obtain a contradiction, and hence,
the discussion of Subcase 2.2 is completed.

Subcase 2.3: Y] has exactly three vertices of degree less than 2a — 2.

Assume, without loss of generality, that d(y;) < 2a — 3 for all j € [a — 3,a — 1] and
d(y;) > 2a — 2 for all i € [1,a — 4]. Then it is easy to see that the subdigraph D{{X; U
{Y1,Y2,...,Ya—a}) is a complete bipartite digraph and d~(z;, {¥a—3, Ya—2,Ya-1}) < 1 for all
i € [1,a — 1]. This together with condition By implies that {x,23,...,2, 1} has at least
a — 3 vertices of | say x9,T3,...,T. 9, of degree equal to 2a — 2. Then z; < u, x; —
{Ya—3,Ya—2,Ya1} if i € [1,a — 2], and x; < w if j € [2,a — 2]. Now it is not difficult to see
that for every i € [1,a — 2| there is a j € [a — 3,a — 1] such that x; < y;. Because of the
symmetry between the vertices x1,xs,...,Tq,_2, We can assume, i <> Y,_3.

Assume first that

A({ya—27 ya—l} - {.T4, Ty, ... 71.(1—1}) 7£ 0.
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Let y4,—2 — x4-1. Then the cycle roursy,—3 T1Ya—2Ta—1Y124Y2 - .. Ta—2Ya—aT2 has length
2a — 2, if a > 6, and the cycle zouxsysr1y3ray122, if @ = 5 has length 2a — 2, which is a
contradiction.

Assume second that

A({ya—27 ya—l} - {1.471.57 s 71.(1—1}) = 0.

From z1 < ya—3, max{d(ya—3), d(Ya—2),d(Ya—1)} < 2a — 3 and condition By it follows that

d™ (21, {Ya-2,Ya3}) =0 and  min{d" (Yo-2, {22, 23}),d" (ya-1, {w2, 23}}) > 1. (11)

Without loss of generality, we assume that y,_o — x5. If @ > 6, then the cycle
Ya—2T2Ya—3T1UT3Y1Ta—1 Y2TaY3 - - - Ta—3Ya—aTa—2Ya_o 1S a cycle of length 2a — 2, which is
a contradiction. Assume therefore that @ = 5. Now using (11), y3 — x2, y2 — 1
and condition By, we obtain y3 — 3 and dt(ys, {x2,23}) = 0. Thus, we have that
D{{z1,xs,23,u,y1}) is a complete bipartite digraph with partite sets {1, xo, 3} and {u, y1 },
{1, 29,23} — {Yo,y3, U1}, T4 < Y1, T; < Y1 for all i € [1,3] and zq <> u. It is easy to
check that the obtained digraph is strongly connected and isomorphic to D(10), which sat-
isfies condition By, but has no cycle of length 8. The theorem is proved. o

From Theorems 1.5 and 1.6 follows the following corollary follows.
Corollary: Let D be a strongly connected balanced bipartite digraph of order 2a > 10. As-
sume that d(x)+d(y) > 4a—3 for every dominaiting pair of vertices x and y. Then either the
underlying graph of D is 2-connected or D contains a cycle of length k for every k € [1,a—1]
unless D is isomorphic to the digraph D(10).
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Jwjuwuwpulpnguo tpjiwu YnnilGnpnyyuo qpupltiph
GuwjuwhwihymnGyub ghytiph dwuhG

U. QwpphGyuG
Udthnthnid

Jwjwuwpupnuo tpydwu YnnuiGnpnpqwo qpudbh YnnuiGnpnpgwod ghyip Ynsgynd k

(whiwhwihunnGyua, tpt wyl wwpniGwynd L wyn qpudh pnnp ququpltipp © pwgh
tinynwuhg:

‘Uhpjw wpfuwwmnwlpnmd gniyg £ mpynd himbgwy wGnnudp.
Etinptd: “bhgnip® D-G 2a¢ > 10 ququpwlh hwjwuwpwlnduo tpldwu YnniGnpn)Juod

qpud b: Gpt wyn qpudh ququpltiph gulhugws hwnpnn qnijgh wnlguql vkl ququph
nju wunmhdwGp thnpp sk 2a — 2 pyhg, wyw D-G yuwpniGuwymy E Gufuwhwihpunnbyul
ghyr ywd D-h synnuGnpn2gwo hhip qpudbp 2-juuuyguo k juwd D-G hgninpd £ uky 10

ququpwlh qpudha:
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O npeAraMUABTOHOBHEIX KOHTYPOB B COAAQHCUPOBAHHEIX
ABYAOABHEIX oprpadgax

C. AapbuusaH

AnHoTanus

OpueHTUPOBAHHBIN KOHTYP IIPOXOAAIINY yepe3 BCe BEPIUINHBI COAAQHCUPOBAHHOTO
ABYAOABHOTO oOprpada, KpoMe ABYX BepIIWH, HA3bIBA€TCS IIPEATaMUABTOHOBBIM
KOHTYpOM. B HacTrofIen crarbe AOKa3bIBAETCH:

Teopema: Ilyctb D - 2a-BepmMHHBINA (@ > 5) cOaAaHCUPOBAHHBIA ABYAOABHBIN
oprpad. Ecam arg ATOOBIX AOMUHUPYIOIIUX [Ap BEPIIMH IO KpanHeW Mepe OAHAa
BeplIVHA HMMeeT AOKAABHYIO CTelleHb He MeHbIle 4eM 2a — 2, TO [ COAEep>KUT
IIPEATaMUABTOHOBBIM KOHTYP HWAW HEOPHWEeHTHPOBAHHAsA OCHOBA rpadg oprpada
aBasgeTcsa D 2-cBa3HoU mau D m3oMopdeH opAHOMY oprpady C AeCATbIO BEPIINHAMUA.



