Mathematical Problems of Computer Science 47, 68--75, 2017.

Performances of Factorizations of Complex Hermitian
Matrices in the Architecture of GPU Accelerator

Hrachya V. Astsatryan and Edita E. Gichunts

Institute for Informatics and Automation Problems of NASRA
e-mail: hrach@sci.am, editagich@ipia.sci.am

Abstract

Linear algebra LDLT factorizations are very important and widely used in scientific
and engineering calculations. The factorizations with Bunch-Kaufmann and Aasen’s

algorithms, as well as the LDLT factorization without pivoting also belong to this class of
factorizations.The implementation of the mentioned three factorizations in hybrid
architecture are presented in this work, and also performances are given on the NVIDIA
Tesla K40c graphic processor using the MAGMA library for complex Hermitian
matrices.

Keywords: MAGMA library, LDLT" factorization, Aasen's algorithm, Bunch-
Kaufman algorithm, Hermitian matrix, Triangular matrix.

1. Introduction

Solutions of linear system of equations of Hermitian matrices have repeatedly been used in
physics. To calculate the solutions of linear system of equations of Az = b form, the classical
method turns A matrix into the following LDLT analysis form: PAPT = LDLT ,where L is the
unit lower triangular, D is the block diagonal with either 1-by-1 or 2-by-2 diagonal blocks, and
P is a permutation matrix to ensure the numerical stability of the factorization.

The factorizations with Bunch-Kaufmann and Aasen’s algorithms, as well as the LDLT
factorization without pivoting are very popular.

In this paper we present the mentioned factorizations for complex Hermitian matrices.
Novelty of this work is the realization of LDLT factorization by the Aasen’s algorithm on GPU
with the application of MAGMA library, as it has just been integrated into the MAGMA 2.0.1
package. The realizations of LDLT factorizations without pivoting and with Bunch-Kaufmann
algorithm are also presented in this work, in order to have a complete understanding of
performances of LDLT factorizations of complex Hermitian matrices. Note also that this problem
is presented in cases of complex single and complex double precisions.

The work contains the following sections: the first sectionis introduction, the second one
describes the steps of the above mentioned algorithms in CPU / GPU hybrid architecture. The

68

H.Astsatryan and E. Gichunts 69

third section contains the experiment results, where the graphs of performance and time of those
algorithms are shown, as well as the analysis of comparisons of factorizations are given. The
fourth section is the conclusion based on the experiment results.

2. LDLT Factorizationin CPU/GPU Hybrid Architecture

Solutions of linear system of equations of the form A x Z = B are being used in science on
repeated occasions, where A is a complex Hermitian matrix, and LDLT matrix factorization is
used. Describe three cases of these factorizations in hybrid architecture that are resolved with
Bunch-Kaufmann and Aasen’s algorithms, as well as the case without pivoting. LAPACK library
is used in the systems with shared memory, where as in hybrid systems its parallelized MAGMA
library is used.

2.1Aasen’s Algorithm

Aasen’s algorithm [1] factorizes A into an LDLT decomposition of the form PAPT = LDLT
,where P is a permutation matrix, L is a unit lower triangular matrix, and D is a Hermitian
matrix. To exploit the memory hierarchy on a modern computer,a partitioned-version of Aasen’s
algorithm was recently proposed [2]. This algorithm first factorizes a panel in a left-looking
fashion, and then uses BLAS-3 operations toupdate the trailing submatrix in a right-looking way.
The blocked-version of Aasen’s algorithm computes an LDLT factorization of A, where D is a
banded matrix of theband width equal to the block size.
Aasen’s algorithm is a chetrf_aasen subprogram of MAGMA library for complex Hermitian
matrices.

CHETRF_AASEN computes the factorization of a complex Hermitian matrix A based on a
communication-avoiding variant of the Aasen's algorithm. The form of the factorization is as
follows:

A=U=xD U x*xH ifuplo=MagmaUpper, or A =L = D = L *x H if uplo = MagmaLower,

where U (or L) is a product of permutation and unit upper (lower) triangular matrices, and D is
Hermitian and banded matrix of theband width equal to the block size.

There are three cases of LDLT factorization computing by the Aasen’s algorithm which
areright-and left-looking algorithms and a blocked left-looking version of the algorithm.
Factorization by the Aasen’s algorithmis implemented with the left-looking algorithm in CPU /
GPU hybrid architecture.

The intermediate Heisenberg matrix H is used to calculate the LDLT factorization that is
defined by H = TLT . In the initial step the matrix A is completely transferred from the CPU to
the GPU memory through magma_csetmatrix_async () function.

The algorithm consists of the following sequence: H(1:j — 1,j) is calculated and T(j,j) is
updated:
Initially the Aasen’s algorithm calculates the j~¢* column of H, that is:

HG) =T@Gi-1D*L(,i—1) +T@G D) *LG,) +T@GQi+1)«L{,i+ 1),

70 Performanses of Fuctorizations of Complex Hermitian Matrices in the Architecture of GPU Accelerator

wherei is modified from 1 to j — 1 . Using magma_cgemm () function for matrix multiplication
the (j;j)t" element of H will be the (j;j) element of the equation A =LH
In the next step T(j, /) will be the (j; /)" element of the equation H = TL”, namely

T(]']) = A(]']) - L(]' 1]) * H(l],j)

is calculated using magma_cher2k () function, which performs the Hermitian rank-2k update,
and magmablas_csymmetrize () function, which copies the lower triangle to upper triangle, or
vice-versa, to make dA a general representation of a symmetric matrix.
If j >1,then

T(j,j) = T(i)j) - L(i)j) * T(ij - 1) * L(j,j - 1)’

is calculated.

2.2Bunch-Kaufman Algorithm

Bunch-Kaufmann algorithmhas a very wide application in the solution of linear system of
equations of Hermitian matrices through LDLT factorization. The Bunch-Kaufman method
performs the following decomposition: PAPT = LDLT ,where L is an n-by-n lower triangular
matrix with a unit diagonal, and D is a block diagonal matrix with either 1-by-1 or 2-by-2
diagonal blocks [3]. The pivoting strategies to compute the permutation matrix P for the LDLT
factorization include complete pivoting (Bunch-Parlett algorithm) [4], partial pivoting (Bunch-
Kaufman algorithm) [5], rook pivoting (bounded Bunch-Kaufman) [6, p. 523]. In particular, the
Bunch-Kaufman and rook pivoting are implemented in LAPACK [7]. A diagonal pivoting
algorithm, the subprogram of which has the name_hetrf() in LAPACK library, is generally
available by NetLib [8]. A concise matrix-notation description of this algorithm can be found in
[9].

Bunch-Kaufman algorithm is chetrf subprogram of MAGMA library for complex Hermitian
matrices.

CHETRF computes the factorization of a complex Hermitian matrix Ausing the Bunch-
Kaufman diagonal pivoting method. The form of the factorization is

A =U =D * U™ if uplo = MagmaUpper, or A = L = D * L¥ if uplo = MagmaLower,

where U (or L) is a product of permutation and unit upper (lower) triangular matrices, and D is
Hermitian and block diagonal withl-by-1 and 2-by-2 diagonal blocks. This is the blocked
version of the algorithm, calling Level 3 BLAS.

In the first step of hybrid CPU / GPU programming the triangular matrix moves from CPU to
GPU through magma_csetmatrix_async () function. If uplo = MagmaUpper, then the upper
triangular matrix A moves to GPU, and if uplo = MagmaLower, then the lower triangular matrix
A moves to GPU. Afterwards U =D = U' or L = D = L' factorization of triangular matrix A is
carried out in the following way. In case ofthe upper triangular matrix each k — kb +1:k
column of the matrix is factorized, as well as uses a blocked code to update the columns 1 : k —
kb through the following magma_clahef gpu() function. Magma_clahef gpu() computes a
partial factorization of a complex Hermitian matrix A using the Bunch-Kaufman diagonal
pivoting method. K is the main loop index, decreasing from N to 1 in steps of KB, where KB is
the number of columns factorized by magma_clahef_gpu(). In case of the lower triangular matrix
each k — kb + 1: k column of the matrix is factorized, as well as a blocked code to update the

H.Astsatryan and E. Gichunts 71

columns k + kb : n . K is the main loop index, increasing from 1 to N in steps of KB, where KB
is the number of columns factorized by magma_clahef_gpu().

2.3 LDLT Factorizations with no Pivoting

This method of factorization for complex Hermitian matrices is performed by chetrf_nopiv()
function of MAGMA library.

CHETRF _nopiv computes the LDLT factorization of a complex Hermitian matrix A. The
factorization has the form

A = U" « D x U if uplo = MagmaUpper, or A = L = D * L¥ if uplo = MagmaLower,

where U is an upper triangular matrix, L is a lower triangular, and D is a diagonal matrix. This
is the block version of the algorithm, calling Level 3 BLAS.

In hybrid CPU/GPU programming A = U’ * D = U factorization without pivoting will be
performed in the following sequence. The matrix completely moves to GPU memory. After
wards, all the A(j, j) diagonal elements in the main cycle move to CPU memory. CPU is used to
calculate the LDLT factorization of the diagonal block. This diagonal block on CPU is factorized
through magma_chetrf_nopiv_cpu () function. Once the resulting LDLT factors of the diagonal
block are copied back to the GPU, the corresponding off-diagonal blocks of the L -factor are
computed by the triangular solve on the GPU. Then the copy ofj column of U is sent to CPU.
Compute the off-diagonal blocks of current block column by magma_ctrsm() function. After
wards update the trailing submatrix with D by magmablas_clascl_diag() function. Finally,
update each block column of the trailing submatrix, calling a matrix-matrix multiply on the
GPU. A =L =D = L' factorization in similar sequence will be performed for the lower triangular
matrix.

3. Experimental Results

The experiments were conducted on NVIDIA K40c GPU. The architecture of Tesla K40c
consists of 2880 CUDA processor cores. It is endowed with much higher bandwidth 288 GB/s of
message transfer between CPU and GPU, having 12 GB of global memory, GDDR5 memory
interface, and CUDA C programming environment.

The operation system of Tesla K40 is Ubuntu 14.04.2 LTS.cuda7 programming environment
was used for the realization of programs. MAGMA 2.0.1 package was installed in accordance
with cuda?7 environment. For the compilation of MAGMA library the lapack-3.4.2, clapack-3.2.1
and atlas-3.10.0 packages were installed. gcc-4.8, gfortran-4.8, g ++ - 4.8 and nvcc compilers
were used. Such references were made in make.inc file on libf77blas.a, libcblas.a, libf2c.a,
libcublas.so, libcudart.so, libm.a, libstdc ++.s0, libpthread.so, libdl.so, libcusparse.so static and
dynamic libraries. MAGMA 2.0.1 package contains libmagma.a and libmagma_sparse.a
libraries.

Figures 1 and 2 show the time and performance graphs of factorizations with the Aasen’s
algorithm, Bunch-Kaufmann algorithm and LDLT factorization without pivoting for complex
single precision.

72 Performanses of Fuctorizations of Complex Hermitian Matrices in the Architecture of GPU Accelerator

140
120 , == Aasen

100 / Bunch-Kauf
/ =de=1trf_nopiv
80

60

40

Time (seconds)

20

0

0 10000 20000 30000 40000
N

Fig. 1. Complex Single Precision

1800
1600 ¥— Aasen

1400 Bunch-Kauf
1200

1000 -
800

600 -
400 P

o

0 10000 20000 30000 40000
N

=he=trf_nopiv

Gflop/s

Fig. 2. Complex Single Precision

In case of complex single precisionat most N = 35840 -dimensional matrix can be sent to
Tesla K40c graphical processor. The experiment results show that in case of up to N = 16384
dimensional incoming matrix the LDLT factorization without pivoting, both in terms of time and
performance, exceeds the Aasen’s factorization algorithm for 5 times and the Bunch-Kaufmann
factorization algorithm — for 3 times. Where as the Bunch-Kaufmann algorithm exceeds the
Aasen’s algorithm for 3 times. Increasing the incoming matrix up to N = 35840 dimension the
Bunch-Kaufmann algorithm is approaching the factorization without pivoting, and it turns out
that they exceed the Aasen’s factorization algorithm for 3 times both in terms of time and
performance.

Figures 3 and 4 show the time and performance graphs of the mentioned three factorizations
for complex double-precision.

H.Astsatryan and E. Gichunts 73

90
80 ¥— Aasen
70 Bunch-Kauf
g 60 =fe=trf_nopiv
c 50
S /
b 40 /
L
g 30
= 20
10 -
0 = . .
0 10000 20000 30000
N
Fig. 3. Complex Double Precision
1200
== Aasen
1000 SV AN
// Bunch-Kauf
800 ==fhe=trf_nopiv
"
= 600
o
[
O 400
200 M‘;w—
0 "/" T T 1
0 10000 20000 N 30000

Fig. 4. Complex Double Precision

And in the case of complex double precision at most N = 23552 -dimensional matrix can
be sent to Tesla K40c graphical processor. The experiment results show that in this casethe LDLT
factorization without pivoting in terms of time and performance exceeds the Aasen’s
factorization algorithm for 5 times and the Bunch-Kaufmann factorization algorithm — for 2
times, whereas the Bunch-Kaufmann algorithm, in terms of both time and performance, exceeds
the Aasen’s algorithm for 2.5 times.

4. Conclusion

We presented the performances of complex Hermitian matrix LDLT factorizations in CPU/GPU
hybrid architecture. We also presented the performance results of factorizations with Aasen’s
algorithm, Bunch-Kaufmann algorithm and LDLT factorization without pivoting using MAGMA
library. Based on the obtained results we came to the conclusion that the LDLT factorization
without pivotingis in a leading position by its high performance. In case of complex single

74 Performanses of Fuctorizations of Complex Hermitian Matrices in the Architecture of GPU Accelerator

precision it equalsthe Bunch-Kaufmann algorithm along with the increase of the incoming
matrix, and in the case of complex double precision it exceeds for 2 times. It exceeds the Aasen’s
factorization algorithm for 5 times in complex single and double precisions cases. The latter
concedes the Bunch-Kaufmann algorithm in both cases for 2.5-3 times.

References

[1] J. Aasen, “On the reduction of a symmetric matrix to tridiagonal form”, BIT 11, pp. 233-
242,1971.

[2] M. Rozlo™zn"1k, G. Shklarski and S. Toledo, “Partitioned triangular tridiagonalization”,
ACM Trans. Math. Softw.,vol. 37, no. 4, pp. 1-16, 2011.

[3] G. Golub and Ch. Van Loan, Matrix Computations, John Hopkins University Press,
Baltimore, second edition, 1989.

[4] J. R. Bunch and B. N. Parlett,“Direct methods for solving symmetric indefinite systems
of linear equations”, SIAM J. Numerical Analysis, vol. 8,pp. 639-655, 1971.

[5] J. R. Bunch and L. Kaufman,“Some stable methods for calculating inertia andsolving
symmetric linear systems”, Mathematics of Computation, vol. 31,pp. 163-179, 1977.

[6] C. Ashcraft, R. G. Grimes and J. G. Lewis,“Accurate symmetric indefinite linear
equation solvers”, SIAM J. Matrix Anal. and Appl., vol. 20, no. 2, pp. 513-561, 1998.

[7] E. Anderson, Z. Bai, J. J. Dongarra, A. Greenbaum, A. McKenney, J. DuCroz, S.
Hammarling, J. W. Demmel, C. Bischof and D. Sorensen, “LAPACK:a portable linear
algebra library for high-performance computers”, Proceedings of the1990 ACM/IEEE
conference on Supercomputing.

[8] C. Anderson et al.,LAPACK User's Guide, SIAM Press, Philadelphia,1992.

[9] P. E. Strazdins. A dense complex symmetric indefinite solver for theFujitsu AP3000,
Technical Report TR-CS-99-01, Computer ScienceDept, Australian National University,
May 1999.

Submitted 03.10.2016, accepted 27.01.2017.

Unduyipu ZEkpdhunjui dwnphgubph wljuninphqughwtph
wpununpnyulijuunmpniutbpp GPU wpuqugnpdsh
Swpunwpuybnn pjniunid

Z. Uugunpjut b E. Ghsniug
Udthnthnid
Qéuyhtt hwtpwhwoyh LDLT $wljnnphqughwubpp owwn Juplnp kb b Uk fhpwunnipinit niukh

ghnnwutt b hudbubpuwluwt hwoduplubpnud: Ujp dwljunphqughwtph nuuhtt Eu
yuunjuind Fubs-Yumbdwh b Uwukuh wignphpdubpny dwljuuinphqughwtpp, husybu

H.Astsatryan and E. Gichunts 75

twl wnwig yunywnh LDLT $uljuinhqughwit: Uju wpjumwnwipnid tbpjujugdus tu tpdus
Eptp dwlunnphqughwitph hpwlwbtwgnidubpp hhpphnuyhtt fwpunwpuwbnnippniund, b
npjws k. wpununpniuljuinipniiittp NVIDIA Tesla K40c qpuhluljut wypnghunph Jpw
MAGMA qpuupwh Jhpupdwdp Yndutpu ZEpdhunjut dwnphgubph hwdwp:

IIpousBoauTebHOCTH (PAKTOPU3ANMH KOMILIEKCHBIX JPMHUTOBBIX
MaTpuIl B apxuTeKkType yckoputeas GPU

I'. Acuarpss u 3. 'muyHn
AHHOTAIUSA

LDL" ¢akropusanuu mnuHeHHONH anre6phl OYeHb BaKHbI U IIUPOKO HCHOJL3YIOTCS B
HAYYHBIX M MH)KEHEPHBIX pacuerax. K aTomy kiiaccy oTHOCATCS (hakTOpU3alUK C aJrOpuTMaMu
Banua-Kaydmana n Aacena, a taike ¢akropmamus LDL'T Ges mosopora. B »roii pabote
MPEJICTABICHBl pealu3alii YIOMSHYTBIX TpexX (hakTopus3aluii B TMOpUAHON apXHUTEKType, a
TaKOKe MPECTaBICHBI TPOM3BOAUTENILHOCTH Ha rpaduueckom mpoueccope NVIDIA Tesla K40c
¢ ucrnosib3oBanueM 6uomorekn MAGMA 1151 KOMIUIEKCHBIX DPMHUTOBBIX MaTpPHII.

