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Abstract 
 

Real world complex networks possess hidden information called communities or 
clusters, which are composed of nodes that are tightly connected within communities 
and weakly connected between communities. Investigation of communities proved to 
have countless applications in different sciences such as computer science and machine 
learning, biology, economics, and social networks. Parallel to the development of 
various detection algorithms, probabilistic network models also gained more attention, 
particularly stochastic block model which is a generative model for random graphs 
generating networks with community structure. This paper explores the state of the art 
on the connections of stochastic block model with information theory. 

Keywords:  Community detection, Stochastic block model, Network 
theory, Clustering, Information theory. 
 

 
 

 
1. Introduction  

 
In recent times, the computer revolution has provided specialists with massive data and sufficient 
computational resources to process and analyze these data. The size of real networks has also 
grown considerably, reaching millions or even billions of vertices and edges. The need to deal with 
such a large number of units has produced a deep change in the way graphs are approached. In a 
random graph, the distribution of edges among the vertices is highly homogeneous. Real networks 
are not random graphs, the distribution of edges is not only globally, but also locally 
inhomogeneous, with high concentrations of edges within special groups of vertices, and low 
concentrations between these groups. This feature of real networks is called a community structure 
[1, 2]. The aim of community detection in graphs is to identify the modules and, possibly, their 
hierarchical organization, by only using the information encoded in the graph topology. 

Network is a collection of entities called nodes or vertices which are connected through edges 
or links. Complex network is a group of interacting entities with some nontrivial dynamical 
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behavior. There are many types of complex networks such as social networks, technological 
networks, informational networks, and biological networks. The study of complex networks is a 
young area of scientific research stimulated largely by the study of real-world networks like 
computer networks and social networks.  

Identifying graph communities is a popular topic in computer science. In parallel computing, 
for instance, it is critical to know what the best way is to allocate tasks to processors so as to 
minimize the communications between them and enable a fast performance of the calculation. This 
can be accomplished by splitting the computer cluster into groups with roughly the same number 
of processors, so that the number of physical connections between processors of different groups 
is minimal. The mathematical formalization of this problem is called graph partitioning. The basic 
goal of community detection is similar to that of a graph partition: we want to separate the network 
into groups of vertices that have few connections between them. The main difference is that the 
size of the groups is not fixed.  

One of the most important features representing real networks is the community structure,   
i.e. distribution of vertices in communities with higher internal connectivity (nodes joined by edges 
inside the community) than external connectivity (nodes joined by edges between communities). 
Detecting communities in networks proved to have many applications in various fields of science 
such as in protein-to-protein interactions from biology, recommendation systems from online 
product purchasing, social network analysis from network science, problems related to big data, 
etc. Although it was introduced long ago and developed for decades it is hard to evaluate detection 
algorithms as network types may vary. This is the reason that this field still has many open 
problems.  

Community detection is one of the central problems in network and data sciences. Recent 
research has focused on developing community detection methods using various approaches. A 
recent review of existing approaches can be found in [3]. 
 Evaluating the performance of algorithms on models is non-trivial. In some cases, most 
algorithms may succeed, while in others, algorithms may fail due to computational barriers. Thus, 
an important question is to characterize the situations where the clustering tasks can be solved 
efficiently or information-theoretically. In particular, models may benefit from asymptotic phase 
transition phenomena, which, in addition to being mathematically interesting, allow the location 
of hard cases to benchmark algorithms. 
  Probabilistic network models can be used to model real networks, to study the average-case 
complexity of NP-hard problems on graphs, or to set benchmarks for clustering algorithms with 
well-defined ground truth. The latter is needed to show how the model fits the data sets, and is 
very important in community detection as a vast majority of algorithms are based on heuristics 
and no ground truth is available in applications. This is, in particular, a well-known challenge for 
Big Data problems where one cannot manually determine the quality of the clusters. 

Parallel to community detection, probabilistic network models were also theoretically 
developed. The stochastic block model is one of the most popular network models exhibiting 
community structures. The model was first proposed in the 80s [4] and received significant 
attention in the mathematics and computer science literature, as well as in the statistics and 
machine learning literature [5 -9]. 

Theoretical investigation brought new insights about connections of stochastic block model 
with information theory where decoding an information sent through channel is considered 
somewhat similar to community detection [5, 10, 11]. 

In this paper we focus on the connections between information theory and community 
detection. In the next section we consider some community detection algorithms. We focus on the 
methods based on statistical inference, mainly on the stochastic block model in the section 3.We 
define the weak, partial and exact recovery requirements. The last section analyzes the role of 
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information theory in the investigation of open problems, such as fundamental limits, comparing 
partitions, etc. 
 
 

2. Community Detection 
 
Communities or clusters are groups of vertices that play an important role in the network. In real 
world, networks can be towns, friendship circles, virtual groups on the web, etc. Revealing 
communities and investigating how particular communities behave is an attractive problem 
resulting in countless practical applications. 

Solving community detection problems on modern real world network datasets can sometimes 
be very much complicated because of computational complexity as graphs may contain billions of 
nodes and edges and complexity of exact detection is NP-hard. Even nowadays distinguishing 
between algorithms and questioning the fact which algorithm works best for specific network is 
impossible. Moreover, there are several types of networks that make the process more challenging. 
These types of networks include directed and weighted networks, including those which may have 
overlapping communities. 

Detection of such community structures in complex networks is not an easy task. In recent 
years many community detection algorithms are developed. Although it's still tricky to distinguish 
between "good" and "bad" algorithms as one algorithm working well on one network can fail for 
another, there are traditional approaches used broadly. Algorithms are classified into different 
categories. Some of them try to maximize the given quality function such as modularity, some 
hierarchical clustering methods introduce a similarity measure such as cosine similarity and group 
similar nodes into communities, etc. In this section we give a short description of some of them. 
We are interested in the investigation of the stochastic block model, which is from the list of 
methods based on statistical inference. Some advanced methods include dynamic algorithms, 
methods to find overlapping communities, multi-resolution methods and cluster hierarchy. These 
topics are not included in this paper. 
 
Modularity Optimization 
 
Modularity is a community quality measure which measures the fraction of the edges in the 
network that connect vertices of the same type minus the expected value of the same quantity in a 
random network where community divisions are the same but connections between vertices are 
random. Particular algorithms that maximize the modularity for finding the community structure 
in networks include the Louvain and Infomap algorithms, as well as the fast greedy modularity 
optimization algorithm.  
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Fig. 1. In the left stochastic block model is given with 60 vertices, within communities and between 
communities edge probabilities 0.9 and 0.3, respectively. In the right Louvain algorithm is implemented 

partitioning the network into four communities with a modularity score of 0.23. 
 
Minimum-cut Method 
 
One of the commonly used algorithms is the minimum-cut method, which tries to find 
communities with a predefined size by separating groups of nodes that have minimum inter group 
connectivity. Some of the popular algorithms related to minimum cut method are the Kernighan-
Lin and Stoer-Wagner algorithms. 

Kernighan-Lin algorithm inputs the undirected graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) and partitions the vertex set 
𝑉𝑉 into two disjoint subsets 𝐴𝐴 and 𝐵𝐵 of equal size in a way that minimizes the number of edges 
crossing between 𝐴𝐴 and 𝐵𝐵. The algorithm works also for weighted graphs, and the task becomes 
to minimize the sum of edge weights. This algorithm is used in the layout of digital circuits where 
minimum connections are vital for increasing performance. 

For undirected graphs the Stoer-Wagner algorithm is used to calculate the minimum cut. The 
idea of the algorithm is to recursively merge the vertices which are tightly connected until the 
graph contains two vertex sets. After each step the weight of cut is listed and at the end the 
minimum cut will be the minimum of the graph.  
 
Hierarchical Clustering 
 
Hierarchical clustering displays different levels of grouping vertices. The algorithms of 
hierarchical clustering are renowned for their applications in real world networks such as social 
network analysis, biology, engineering, etc., as these networks probably have a hierarchical 
structure. Note that communities in graphs may not have a hierarchical structure at all but with its 
weaknesses it's still one of the popular methods for community detection. 

Hierarchical clustering starts with the definition of similarity measure of nodes. After 
calculating similarities between each pair of nodes in the graph one will end up with the similarity 
matrix and group nodes in communities. 

Hierarchical clustering algorithms are divided into agglomerative algorithms in which clusters 
are iteratively merged if their similarity is high, and divisive algorithms where clusters are 
iteratively split by removing edges connecting vertices with low similarity. 
 
 
 
 



       Information-theoretic Approach to Community Detection Problem 
  

54 

Girvan-Newman Algorithm 
 
Another popular method used for community detection and clustering is the Girvan-Newman 
algorithm. The algorithm is implemented by calculating betweenness values of all edges then the 
edge with the highest betweenness score is removed and after the iterative process when no edges 
remain the original network is split into communities. 
 

                                              
 

Fig. 2. In the left the stochastic block model is given with 60 vertices, within communities and between 
communities edge probabilities 0.9 and 0.2, respectively. In the right Girvan-Newman algorithm is 

implemented partitioning the network into four communities with a modularity score of 0.488  
 
 
 3.  Stochastic Block Model 
 
Block modeling is a common approach in statistics and social network analysis to decompose a 
graph in classes of vertices with common properties. In this way, a simpler description of the graph 
is attained. Vertices are usually grouped in classes of equivalence. There are two main definitions 
of topological equivalence for vertices: structural equivalence in which vertices are equivalent if 
they have the same neighbors; regular equivalence, in which vertices of a class have similar 
connection patterns to vertices of the other classes. Regular equivalence is a more general concept 
than structural equivalence. Indeed, vertices which are structurally equivalent are also regularly 
equivalent, but the inverse is not true. The concept of structural equivalence can be generalized to 
probabilistic models, in which one compares classes of graphs, not single graphs, characterized by 
a set of linking probabilities between the vertices. In this case, vertices are organized in classes in 
such a way that the linking probabilities of a vertex with all other vertices of the graph are the 
same for vertices in the same class, which are called stochastically equivalent [4]. 

The model appeared independently in multiple scientific communities: the terminology 
stochastic block model comes from the machine learning and statistics literature, while the model 
is called a planted partition model in theoretical computer science, and an inhomogeneous random 
graphs model in the mathematics literature. The stochastic block model has recently come back to 
the center of attention at both the practical level, due to extensions allowing overlapping 
communities  that have proved to fit well real data sets in massive networks, and at the theoretical 
level due to new phase transition phenomena discovered for the two-community case.  

The goal of community detection is to recover communities up to some level of accuracy. 
 

1. Weak recovery (also called detection). This only requires the algorithm to output a partition 
of the nodes which is positively correlated with the true partition.  
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2.  Partial recovery. One may ask the question of how much can be recovered about the 
communities.  

3.  Exact recovery (also called recovery or strong consistency.) Finally, one may ask for the 
regimes for which an algorithm can recover the entire clusters.  

One can also study partial-exact-recovery, namely which communities can be exactly recovered.  
 
The investigation of these levels is interesting not only from the mathematical point of view, but 
they are also relevant for applications. 
Definition 1 ([6]): Let a positive integer 𝑛𝑛 indicates the number of vertices, 𝑚𝑚 be the number of 
communities, 𝑝𝑝 = (𝑝𝑝1,𝑝𝑝2 … ,𝑝𝑝𝑚𝑚) be the probability vector on {1, … ,𝑚𝑚} and  𝑃𝑃 be a symmetric 𝑚𝑚 
x 𝑚𝑚 matrix of connectivity probabilities. Stochastic block model 𝑆𝑆𝐵𝐵𝑆𝑆(𝑛𝑛,𝑝𝑝,𝑃𝑃)  is defined by the 
pair (𝑋𝑋,𝐺𝐺), where 𝑋𝑋 is an 𝑛𝑛-dimensional random vector with components valued in {1, … ,𝑚𝑚} in 
proportions 𝑝𝑝 and 𝐺𝐺 is an 𝑛𝑛-vertex undirected graph where vertices 𝑖𝑖 and 𝑗𝑗 are connected with 
probability 𝑃𝑃𝑋𝑋𝑖𝑖,𝑋𝑋𝑗𝑗 independently of other pairs of vertices.  

 
  

Fig. 3. Stochastic block matrix (left) of stochastic block model (right) is given, where probabilities of 
edges between communities is 𝑃𝑃𝑖𝑖,𝑗𝑗 and inside communities 𝑃𝑃𝑖𝑖,𝑖𝑖 

 
Particularly if all 𝑃𝑃𝑖𝑖,𝑗𝑗 elements of matrix 𝑃𝑃 are the same, the model is equivalent to Erdos-Renyi 
random graph model which does not have a community structure. Planted partition model is a 
special case where diagonal elements of matrix 𝑃𝑃 are constant 𝑝𝑝 and off diagonal elements are 
constant 𝑞𝑞. If 𝑝𝑝 > 𝑞𝑞 the model is called assortative and if 𝑝𝑝 < 𝑞𝑞 dissortative.     
Definition 2 ([6]): An algorithm detects communities with accuracy 𝛼𝛼 ∈ [0,1], if it takes 𝐺𝐺 drawn 
from 𝑆𝑆𝐵𝐵𝑆𝑆(𝑛𝑛,𝑝𝑝,𝑃𝑃) and outputs a reconstruction 𝑋𝑋՛ of 𝑋𝑋 that has agreement 𝛼𝛼 with probability 
1 − 𝑜𝑜𝑛𝑛(1). 
Definition 3 ([6]): In stochastic block model 

Exact recovery is possible, if there exists an algorithm with accuracy α = 1.  
Strong recovery is possible, if there exists an algorithm with accuracy α = 1 − on(1).  
Weak recovery is possible, if the algorithm detects communities with accuracy α = 1

k
+ ε 

for some ε > 0. 

Communities 𝑪𝑪𝟏𝟏 𝑪𝑪𝟐𝟐 𝑪𝑪𝟑𝟑 𝑪𝑪𝟒𝟒 
𝑪𝑪𝟏𝟏 𝑃𝑃11 𝑃𝑃21 𝑃𝑃31 𝑃𝑃41 
𝑪𝑪𝟐𝟐 𝑃𝑃21 𝑃𝑃22 𝑃𝑃32 𝑃𝑃42 
𝑪𝑪𝟑𝟑 𝑃𝑃31 𝑃𝑃23 𝑃𝑃33 𝑃𝑃43 
𝑪𝑪𝟒𝟒 𝑃𝑃41 𝑃𝑃24 𝑃𝑃34 𝑃𝑃44 
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Fig. 4. In the left Erdos-Renyi random graph with 40 vertices is shown, where probability of edges 
between any pairs is constant. In the right , stochastic block model is given where probability of edges 

inside the communities is greater than probabilities of edges between communities 
 
Majority of work in this field is done by establishing fundamental thresholds illustrating when it 
is possible to detect communities. 
 
 
4. The Role of Information Theory 
  
While the sphere of community detection is developing for many years with the construction of 
various algorithms to solve detecting tasks, the biggest portion of it is still unsolved. Main 
questions are how accurately a particular algorithm detects communities or which communities 
can be revealed. These issues need thorough analysis. The Information theory plays an important 
role in solving different problems. Community detection has natural connections with information 
theory at various levels. Theory behind Stochastic block model is similar to graph-based codes, f-
divergences, broadcasting problems on trees which are renowned topics from information theory. 
 

      
 

Fig. 5. An encoder sends a compressed information to a decoder about the topology of the graph on the 
left. The information gives a coarse description of the graph, which is used by the decoder to deduce the 

original graph structure. Figure reproduced from [3, 12]. 
 
The modular structure of a graph can be considered as a compressed description of the graph 

to approximate the whole information contained in its matrix. Based on this idea, Rosvall and 
Bergstrom [12] envisioned a communication process in which a partition of a graph in 
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communities represents a synthesis Y of the full structure that a signaler sends to a receiver, which 
tries to infer the original graph topology X from it.  

The best partition corresponds to the signal Y that contains the most information about 𝑋𝑋. This 
can be quantitatively assessed by the minimization of the conditional entropy 𝐻𝐻(𝑋𝑋|𝑌𝑌) of 𝑋𝑋 given 
by 𝑌𝑌. One has to look for the ideal tradeoff between a good compression and a small enough 
conditional entropy 𝐻𝐻(𝑋𝑋|𝑌𝑌). 

Rosvall and Bergstrom used the same idea introducing an information-theoretic flow-based 
method to examine the multipartite organization of biological and social systems [13]. The method 
reveals the community structure in weighted and directed graphs. They used the probability flow 
of random walks on a network as a proxy for information flows and by compressing the description 
of the probability flow they decomposed the network into communities. The idea is in expressing 
the Shannon entropy of the random walk within and between clusters. If clusters are well separated 
from each other, transitions of the random walker between clusters will be infrequent, so it is 
advantageous to use the map, with the clusters as regions, because in the description of the random 
walk the codewords of the clusters will not be repeated many times, while there is a considerable 
saving in the description due to the limited length of the codewords used to denote the vertices. 
Instead, if there are no well-defined clusters and/or if the partition is not representative of the actual 
community structure of the graph, transitions between the clusters of the partition will be very 
frequent and there will be little or no gain by using the two-level description of the map. 

Information theory has also been used to detect communities in graphs. Ziv et al. [14] have 
designed a method in which the information contained in the graph topology is compressed in such 
a way as to preserve some predefined information. As a criterion the mutual information 𝐼𝐼(𝑋𝑋;𝑌𝑌)  
of two random variables 𝑋𝑋 and 𝑌𝑌 is used [15]. If 𝑋𝑋 is the input variable, 𝑍𝑍 is the variable specifying 
the partition and 𝑌𝑌 is the variable encoding the information we want to keep relevant variable, the 
goal is to minimize the mutual information between 𝑋𝑋 and 𝑍𝑍 (to achieve the largest possible data 
compression), under the constraint that the information on 𝑌𝑌 extractable from 𝑍𝑍 be accurate. The 
optimal tradeoff between the values of 𝐼𝐼(𝑋𝑋;𝑍𝑍)  and 𝐼𝐼(𝑌𝑌;𝑍𝑍) (i. e., compression versus accuracy) is 
expressed by the minimization of a functional. In the case of graph clustering, the question is what 
to choose as a relevant information variable. Ziv et al. proposed to adopt the structural information 
encoded in the process of diffusion on the graph. 

Information theory is also useful when comparing different partitions of the network. When a 
particular algorithm is implemented, to assess the quality of the partition, it must be compared with 
other partitions or with available ground truth. This can be done using several evaluation measures. 

Most similarity measures can be divided into three categories: measures based on pair 
counting, cluster matching and information theory. 

The third class of similarity measures is based on reformulating the problem of comparing 
partitions as a problem of message decoding within the framework of information theory [15]. The 
idea is that, if two partitions are similar, one needs very little information to infer one partition 
given by the other. This extra information can be used as a measure of dissimilarity.  

The mutual information is not ideal as a similarity measure: in fact, given a partition 𝑋𝑋, all 
partitions derived from 𝑋𝑋 by further partitioning (some of) its clusters would all have the same 
mutual information with 𝑋𝑋, even though they could be very different from each other. In this case 
the mutual information would simply equal the entropy 𝐻𝐻(𝑋𝑋), because the conditional entropy 
would systematically be zero. To avoid that, Danon et al. [16] adopted the normalized mutual 
information   

𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚(𝑋𝑋;𝑌𝑌) =
2𝐼𝐼(𝑋𝑋;𝑌𝑌)

𝐻𝐻(𝑋𝑋) + 𝐻𝐻(𝑌𝑌), 
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which is currently very often used in tests of graph clustering algorithms. The normalized mutual 
information equals 1 if the partitions are identical, whereas it has an expected value of 0 if the 
partitions are independent.  

Meila [17] introduced the variation of information 𝑉𝑉(𝑋𝑋;𝑌𝑌) = 𝐻𝐻(𝑋𝑋|𝑌𝑌) + 𝐻𝐻(𝑌𝑌|𝑋𝑋) which has 
some desirable properties with respect to the normalized mutual information and other measures. 
In particular, it defines a metric in the space of partitions as it has the properties of distance. It is 
also a local measure, i.e., the similarity of partitions differing only in a small portion of a graph 
depends on the differences of the clusters in that region, and not on the partition of the rest of the 
graph. The maximum value of the variation of information is log n, so the similarity values for 
partitions of graphs with different sizes cannot be compared with each other. For meaningful 
comparisons one could divide 𝑉𝑉(𝑋𝑋;𝑌𝑌) by log n, as suggested by Karrer et al. [18]. 

In recent years fundamental limits were obtained using the new f-divergence function, which 
is called the CH-divergence in [5] as it generalizes both the Chernoff and Hellinger divergences. 
The definite characterization of the recovery threshold in the general stochastic block models 
provides an operational meaning to a divergence function analog to the Kullback – Leibler 
divergence (KL-divergence) in the channel coding theorem. 

At a high level, clustering the stochastic block model is similar to reliably decoding a 
codeword on a channel which is non-conventional in information theory. The channel inputs are 
the nodes' community assignments and the channel outputs are the network edges. It is shown [6] 
that this analogy is more than just high-level: reliable communication on this channel is equivalent 
to exact recovery, shows that the “clustering capacity" is obtained from the CH-divergence of 
channel-kernel PQ, which is an f-divergence like the KL-divergence governing the communication 
capacity. Interestingly recovering communities in stochastic block model have parallels with 
sending a codeword through discrete memoryless channel in coding theory. 
More generally, community detection pairs well with information theory as it can be viewed as a 
decoding problem on a noisy channel: the community labels are the input to a black-box channel 
that provides local and noisy interactions of the inputs. This view point was further developed in 
[19], with the notion of graphical channels. 
Definition 4 ([6]): Let 𝑉𝑉 = {1, … ,𝑛𝑛} and 𝐺𝐺 = �𝑉𝑉,𝐸𝐸(𝐺𝐺)� be a hypergraph with 𝑁𝑁 = |𝐸𝐸(𝐺𝐺)|. Let 
𝒳𝒳 and 𝒴𝒴 be two finite sets called the input and output alphabets respectively and 𝑄𝑄 be a channel 
from 𝒳𝒳𝑘𝑘 to 𝒴𝒴 called the kernel. To each vertex in 𝑉𝑉, assign a vertex variable in 𝒳𝒳, and to each 
edge in 𝐸𝐸(𝐺𝐺), assign an edge variable in 𝒴𝒴. Let 𝑦𝑦𝐼𝐼 denote the edge variable attached to edge 𝐼𝐼, 
and 𝑥𝑥[𝐼𝐼] denote the 𝑘𝑘 node variable adjacent to 𝐼𝐼. A graphical channel with graph 𝐺𝐺 and kernel 
𝑄𝑄 is defined as the channel 𝑃𝑃 given by 𝑃𝑃(𝑦𝑦|𝑥𝑥) = ∏ 𝑄𝑄(𝑦𝑦𝐼𝐼|𝑥𝑥[𝐼𝐼])𝐼𝐼∈𝐸𝐸(𝐺𝐺) , where 𝑥𝑥 ∈ 𝒳𝒳𝑉𝑉,𝑦𝑦 ∈ 𝒴𝒴𝐸𝐸(𝐺𝐺). 

                                                           
Figure reproduced from [6] 

 
Definition 4 strongly connects community detection in stochastic block model and information 
sent through channel in coding theory. 
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     Figure reproduced from [5] 

 
Reliable communication through noisy channel is possible if 𝑅𝑅 < 1 − 𝐻𝐻(𝜀𝜀) and this is close to 
exact recovery of communities in stochastic block model. 

Community detection has a strong connection with information theory also because X is 
typically discrete. 
 
 
5. Conclusion.  

Recent analysis of community detection problems and stochastic block model proved to have a 
strong perspective with information theory. We hope that our experience in solving coding 
problems for various noisy channels [20] will lead us to new results by investigating both 
community detection problems and stochastic block model by applying information-theoretical 
approach. 
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Ինֆորմացիոն տեսական մոտեցում համայնքների 
հայտնաբերման խնդրին 

 
Մ. Հարությունյան և Կ. Մխիթարյան 

 
Ամփոփում 

 
Իրական աշխարհի բարդ ցանցերը օժտված են թաքնված ինֆորմացիայով, այսպես 

կոչված համայնքներով կամ խմբերով, որոնց  ներսում հանգույցները ավելի խիստ են 
կապված, քան համայնքների միջև: Համայնքների հետազոտությունը հիմնավորված է 
մեծ թվով կիրառություններով տարբեր գիտություններում, ինչպիսիք են` 
կոմպյուտերագիտությունը և մեքենայական ուսուցումը, կենսաբանությունը, 
տնտեսագիտությունը և սոցիալական ցանցերը: Համայնքների հայտնաբերման 
տարբեր ալգորիթմների մշակման հետ զուգահեռ հետազոտողների ուշադրությունն են 
գրավում նաև հավանականային ցանցերի մոդելները, մասնավորապես, ստոխաստիկ 



M. Haroutunian and K. Mkhitaryan 61 

բլոկ մոդելը, որը պատահական գրաֆների կառուցման մոդել է և ստեղծում է 
համայնքների կառուցվածքով ցանցեր: Այս հոդվածում ուսումնասիրվում է 
ստոխաստիկ բլոկ մոդելի և ինֆորմացիայի տեսության միջև կապի վերաբերյալ 
գիտական արդյունքների վիճակը:  

 
 
 
 

Информационно-теоретический подход к задаче  
обнаружения сообществ 

 
М. Арутюнян и К. Мхитарян 

 
Аннотация 

Реальные сложные сети обладают скрытой информацией под названием сообщества 
или кластеры, состоящих из узлов, тесно связаных в кластере и слабо связанных между 
сообществами. Исследование сообществ подтвердило бесчисленное множество 
применений в различных науках, таких как компьютерные науки и машинное обучение, 
биология, экономика и социальные сети. Параллельно с развитием различных алгоритмов 
обнаружения сообществ, модели вероятностных сетей также привлекают больше внимания, 
в частности стохастическая блочная модель, которая создает сети со структурой 
сообщества. В данной статье исследуется современное состояние  науки о связях 
стохастической блок модели с теорией информации. 
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