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Abstract

For a graph G, n denotes the order (the number of vertices) of G, ¢ the order
of a longest cycle in G (called circumference), p the order of a longest path and ¢
the minimum degree. In 1952, Dirac proved: (i) if G is a 2-connected graph, then
¢ > min{n,25}. The bound 26 in (i) was enlarged independently by Bondy (1971),
Bermond (1976) and Linial (1976) in terms of oy - the minimum degree sum of two
nonadjacent vertices: (ii) if G is a 2-connected graph, then ¢ > min{n,o2}. In this
paper two further extensions of (i) and (ii) are presented by incorporating p and the
length of a vine on a longest path of G as new parameters along with n, § and os.
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1. Introduction

We consider only finite undirected graphs with neither loops nor multiple edges. A good
reference for any undefined terms is [2].

The set of vertices of a graph G is denoted by V(G) and the set of edges by E(G).
Let n be the order (the number of vertices) of G, ¢ the order of a longest cycle (called
circumference) in G' and p the order of a longest path. The minimum degree sum of two
nonadjacent vertices in GG is denoted by o5. In particular, the minimum degree o; is denoted
by §. We use N(v) to denote the set of all neighbors of vertex v and d(v) = |N(v)| to denote
the degree of vertex v. A graph (G is hamiltonian if G contains a Hamilton cycle, that is a
simple spanning cycle. A cycle C' of GG is called a dominating cycle if every edge of G has at
least one of its end vertices on C, or, equivalently, if G — V(C') contains no edges.

The earliest nontrivial lower bound for the circumference was obtained in 1952 due to
Dirac [4] in terms of § and n.

Theorem A: [4]. In every 2-connected graph, ¢ > min{n,24}.

The bound 26 in Theorem A was enlarged independently by Bondy [1], Bermond [3] and
Linial [5] in terms of os.

Theorem B: [1],[3],[5]. In every 2-connected graph, ¢ > min{n, os}.

In this paper two further extensions of these results are presented by incorporating p and
the length of a vine on a longest path of GG in corresponding bounds as new parameters along
with n, 0 and o5. The vine’s definition needs some additional notation.

If @ is a path or a cycle, then the length of @), denoted by I(Q), is |E(Q)]| - the number of

—

edges in ). We write a cycle ) with a given orientation by @ . For x,y € V(Q), we denote
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by x@y the subpath of @ in the chosen direction from = to y. For x € V(Q), we denote the

successor and the predecessor of x on 5 (if such vertices exist) by ™ and 27, respectively.

We use P = x?y to denote a path with end Vertic_>es x and y in the dir_e)ction from x to y.

We say that vertex z; precedes vertex z5 on a path @ if z1, 25 occur on ) in this order, and

indicate this relationship by z; < 2z,. We will write z; < 29 when either z; = 25 or z; < 25.
Let P = x?y be a path. A vine of length m on P is a set

—_—
of internally-disjoint paths such that

(a) V(L)) N V(P) ={zi,yi} (i=1,...,m),

D)z =21 <2y <Yy I3 <Y 324 < e. 2Ty < Ym_1 =< Ym =y on P.

The following result guarantees the existence of at least one vine in a 2-connected graph.
Lemma: (The Vine Lemma) [4]. Let G be a k-connected graph and P a path in G. Then
there are k — 1 pairwise-disjoint vines on P.

In the paper, we obtain a lower bound for the circumference in terms of n, g, and the
length m of a vine on a longest path of G.

Theorem 1: Let G be a 2-connected graph and {Ly, Lo, ..., L} be a vine on a longest path
of G. Then

¢ > min{n, oy + m — 2}.

The minimum degree version of Theorem 1 follows immediately.
Corollary 1: Let G be a 2-connected graph and {Ly, Lo, ..., L;,} be a vine on a longest path
of G. Then

¢ > min{n, 26 + m — 2}.

If m = 1 in Theorem 1, then clearly G is hamiltonian. Therefore, Theorem 1 is an
extension of Theorems A and B by incorporating parameter m along with n and o».

Next, we obtain a lower bound for the circumference ¢ in terms of o5 and p.
Theorem 2: Let G be a 2-connected graph. Then

p when p < oy,

CZ p_l when 02+1§p§03—2,

\/Zp —10+1(oa =72+ 1(02+1) when p>o5—1.

Theorem 2 can be considered as another extension of Theorems A and B. Indeed, if
p < 09, then by Theorem 2, ¢ > p, implying that ¢ = p = n > min{n,o,}. Next, if
o9+ 1 < p < o3—2, then by Theorem 2, ¢ > p—1 > 0y > min{n, 0y}. Finally, if p > 03 — 1,
then observing that 203 > 309, we get

1 1 1
\/2p— 10 + Z(O’Q —-7)2> \/2(03 -1)—10+ Z(O’Q —T7)2= 5(02 - 1),

and by Theorem 2, ¢ > 09 > min{n, 02 }.
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The minimum degree version of Theorem 2 follows immediately.
Corollary 2: Let G be a 2-connected graph. Then

p when p <29,

c>{ p—1 when 20+1<p<30—2,

\/Zp—10+(5—%)2+5+% when p>3§—1.

The special cases ¢ > p and ¢ > p — 1 in Theorem 2 can be interpreted in terms of
Hamilton and dominating cycles by the following two propositions.
Proposition 1: [6]. A connected graph is hamiltonian if and only if ¢ = p.
Proposition 2: [6]. Let G be a connected graph with ¢ > p — 1. Then every longest cycle
in G is a dominating cycle.

To show that the bounds in Corollary 2 (as well as in Theorem 2) are sharp, observe first
that in general, p > ¢, that is ¢ = p when p < 24, implying that the bound ¢ > p in Corollary
2 cannot be replaced by ¢ > p+ 1. On the other hand, the graph Kjs,q with p =20 +1 and
¢ = 20 = p— 1 shows that the condition p < 2 cannot be relaxed to p < 20+ 1. In addition,
the graph K441 with ¢ = p shows that the bound ¢ > p — 1 (when 20 +1 < p < 3§ — 2)
cannot be replaced by ¢ > p. Further, the graph Ky 4+ 3Ks 1 with n = p = 30 — 1 and
¢ =20 < p— 2 shows that the condition p < 30 — 2 cannot be relaxed to p < 36 — 1. Finally,
the same graph Ky + 3Ks_; with p =36 — 1 and

1
0—2(5—\/2]7—10—1-((5—;)—1-5—1-—2

Y

shows that the bound \/Zp —10+ (6 — %) + 6 + 3 in Corollary 2 cannot be improved to

V2p =10+ (-5 +5+1.

The following theorem will be useful.
Theorem C: [6]. Let G be a 2-connected graph. Then either (i) ¢ > p—1 or (ii) ¢ > 03— 3
or (1ii) k =2 and p > o3 — 1.

2. Preliminaries

The following lemma can be proved by standard arguments (called Dirac and Ore arguments).
Lemma 1: Let G be a connected graph and P = x?y a longest path in G.

(i) If xz,yz~ € E(G) for some z € V(x*?y), then ¢ = p = n, that is G is hamiltonian.

(i7) If d(z) + d(y) > p, then c =p = n.

(13i) Let z1,20 € V(P) and z1 < 2zo. If xz,yz & E(G) for each z € V(zf?z{), then
either c =p orp > d(z) +d(y) — 2+ |21?z2|.

The next lemma is crucial for the proof of Theorems 1 and 2.
Lemma 2: Let G be a 2-connected graph and {Ly, Lo, ..., Ly, } be a vine on a longest path of

G. Then
2p — 10
>

— m+1

+4.
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3. Proofs

Proof of Lemma 2: Let P = x?y be a longest path in G. Put

L; = %fﬂh (i=1,..,m), A = $1?$27 Ay = ym—lﬁyma
— - .
Az‘ = Yi—1 P.T,H_l (Z = 2,3, e, — 1), Bz = Ti+1 Pyz (Z = 1, e, — 1),

By combining appropriate L;, A;, B;, we form m + 1 different cycles to obtain a lower
bound for the circumference as the mean of their orders

=UAulL,
i=1 i=1

m—1 m—1

Q2 = U A;UBy, 1 U U L,

i=1 =1

=2 =2
Rz‘ = Bz U Az‘_;,_l U Bz‘+1 U Lz‘+1 (Z = 1, e, — 2)
Since |L;| > 2 (i = 1,...,m), we have

c>|@1|—zaz+z|L|—1 >3 a4
=1

m—1 m—1 m—1
> Q| = b1+ > ai+ > (|Li| = 1) > bpe 1+Zaz+m 1,
i=1 i=1

C>|Q3|*b1+zaz+z |L|—1)>b1—|—Zaz—|—m—1

=2
c>|Ri| =b; + a1+ big1 + |Liya| — 1
2bi+ai+1+bi+1+1 (Zzl .

sy — 2).
By summing, we get
m—1 m—1
(m+1)c> ZZaz—i-ZZb +2> a;+4m —4
i=1 i=1 =2

m m—1
20 a;i+ D b+ 1) +4m
i=1 i=1

—6=2p+4m —6,
implying that ) 0

p p—

m+1

C

+ 4.

Lemma 2 is proved. [ |
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Proof of Theorem 1: If m = 1, then zy € E(G) and by Lemma 1(7), ¢ = p. Let m > 2.
—
Put Lz = X; Lzyz (Z = 1, ,m) and let
Aia B’ia Qy, b’i7 Q’L

be as defined in the proof of Lemma 2. We choose L, Lo, ..., L,, so as to minimize m as well
as b; and b,,_1.

Case 1: m = 2.
It follows that N(z) U N(y) C V(A; U Ay). By Lemma 1(iii), either ¢ = p or p =
a; +as+ by +1>d(x)+d(y) — 1+ by, implying that

c> Qi =a1+as+2>d(x)+dy) =dx)+dy) + m—2.

Case 2: m = 3.
Let xz1,yz € E(G) for some zq, z5 € V(P). If 25 < z1, then {zz1, Y25} is a vine consisting
of two paths (edges) and we can argue as in Case 1. By the choice of Ly, Lo, L3,

and z; < 2z, for each z; € N(x) and 29 € N(y). Therefore, a; +as+ as > d(z) +d(x) —2 and
c> |Q1| :CL1+CL2+CL3+3

>d(z)+d(z)+1=d(z)+dx)+m-—2.

Case 3: m > 4.
By the choice of Ly, Lo, ..., L,,,

N(:C) - V(Al U A2)7 N(y) - V(Am—l U Am)
and z; < 2y for each z; € N(z) and z2 € N(y). Observing also that

ay + as Z d(l.) - 17 Ap—1 + Ay, Z d(y) - 17

we get
c> Q] —iai—i—m— (a1+a2+am_1+am)+§2ai+m
i=1 - =3
>d(z)+d(y) —2+ Y a;+m >d(z) +d(y) +m — 2.
=3
Theorem 1 is proved. [ |

Proof of Theorem 2: Let P = x?y be a longest path in G.

Case 1: p < 0s.

If zy € E(G), then by Lemma 1(i), ¢ = p. Let zy € E(G). Then d(x) +d(y) > 02 > p
and by Lemma 1(ii), again ¢ = p.

Case 2: 09+ 1 <p<o3—2.

If ¢ > 03 — 3, then by the hypothesis, ¢ > p — 1. Next, if kK = 2 and p > o3 — 1, then
p>o03—12>p+ 1, a contradiction. Hence, by Theorem C, ¢ > p — 1.
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Case 3: p> 03— 1.
Since G is 2-connected, then by the Vine Lemma, there is a vine {Ly, ..., L,,} on P. By
Theorem 1, m < c¢—d(z) —d(y) +2 < ¢ — 02 + 2. Using Lemma 2, we get

2p — 10 2p — 10
p=10 , 2p-10

4
m+1 _C—0'2+3+

Y

implying that

1 1
c> \/Zp— 10 + 1(02 —-7)2+ 5(02 +1).

Theorem 2 is proved. ]
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2-juyuigquo qpudltiph wikGuwtpnyuwnp ghytinph dwuhG
U. Lnyjupqyub L d. ‘Ghynnnujw

Udthnthnid

Shgnip n-p Gubuymd £ G qpubh ququpltiph pwGwyp, -G G-h" wikGubpywup ghljh
tpyupmpnilp, p-6° wikGwbplun npwjh ququpltiph pwluyp L 5-6° gpudh GJuquagniG
wuwmhdwln: 1952-hG Fhpwlyp wywugnighg, np (1) tpt G-G 2-juyuwlygyuo qpud b, wmuyuw
¢ > min{n, 26}: YGhpwyh 26 GepphG qGwhwwwlwlp hpuwphg wiwiu pguwyGeghG PnlnhG
(1971), RtpinGnp U LhGhwp (1976), oqumugnpobiny o2 (ny hwplwG tpynt ququpltph
wumhdwlitph GuquagniyG gnidwpp) yuwpwdbumpp, (i) Gph G-G 2-juyulyguo qpudh
L, wyw ¢ > min{n,oy}: Lhpju wpuwumwlipmyd (1) L (i) pGyuyGmiGpp wybih 66
nlnuyGymy’ qGwhwnwlwubibph sty Gipdnotiny p-G L G qpuiph wikGubtipljup ynpujh
puntinh tpyuwpnipyniGp nputiu Gnp Wyuwpwdtupbp 7, §, oo yupwdtwptiph YnnphG:
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O AMHHENIINX IIMKAAX 2-CBSI3HBEIX IrpadgoB
M. KyaakagaH u 7K. Hukorocsan

AnHoTanuys

[Tycts n, ¢, p m § 0O0O3HAUAIOT YUCAO BepliuH rpada (G, AAUHA AAUHHEMIIEro
IIUKAQ, YMCAO BEPIIWH AAMHHEWIIeN el U MUHUMaAbHas cTeneHb rpacga. B 1952
roAy AMpak AokKaszaa, uTo (i) ecan G siBasgeTcs 2-CBSI3HBIM rpadoM, To ¢ > min{n, 20 }:
OTy oOLeHKy He3aBucuMoO pacmiupuru bouam (1971), Bepmonp m Aumnman (1976) c
IIOMOIIIBIO ITapaMeTpa 0y (MUHUMAaAbHAd CyMMa CTelleHer ABYX He COCEAHUX BePIINH):
(ii) ecam G aBasieTcst 2-CcBsiI3HBIM TpadoM, TO ¢ > min{n,o,}. B HacrosIen paboTe
IIPEACTaBAEHBI ABe HOBBIE PACIIMpPEHMs OIeHOK (i) 1 (ii) ITOMOIIBIO ITapaMeTpOB P U
AAVHBI TIAIOIIA AAMHHeNIe! 1enu rpada GG Ha pSAYy C HapamMeTpaMu n, 0, Os.



