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Abstract

Let D be a digraph of order n > 4 and Y be a non-empty subset of vertices of D.
Let for any pair u, v of distinct vertices of Y the digraph D contain a path from u
to v and a path from v to u. Suppose D satisfies the following conditions for every
triple z,y,2z € Y such that x and y are nonadjacent: If there is no arc from z to
z, then d(z) + d(y) + d*(z) + d~(z) > 3n — 2. If there is no arc from z to z, then
d(z) +d(y) + dt(z) + d~(z) > 3n — 2. We prove that there is a directed cycle in D
which contains all the vertices of Y, except possibly one. This result is best possible
in some situations and gives an answer to a question of Li, Flandrin and Shu (Discrete
Mathematics, 307 (2007) 1291-1297).
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1. Introduction

For convenience of the reader, terminology and notations will be given in details in section
2. A set S of vertices in a directed graph D (an undirected graph G) is said to be cyclable in
D (in G) if D (if G) contains a directed cycle (undirected cycle) through all the vertices of
S. There are many well-known conditions which guarantee the cyclability of a set of vertices
in an undirected graph. Most of them can be seen as restrictions of Hamiltonian conditions
to the considered set of vertices (See [1, 2, 3, 4]). Let’s provide some examples below:
Theorem A: (R. Shi [3]). Let G be a 2-connected undirected graph of order n. If S is a
subset of the vertices of G and d(z) > n/2 for all vertices x € S, then S is cyclable in G.
Theorem B: (R. Shi [3]). Let G be a 2-connected undirected graph of order n. If S is a
subset of the vertices of G and d(z) + d(y) > n for any two nonadjacent vertices x € S and
y € S, then S is cyclable in G.

Notice that Theorems A and B generalize the classical theorems on hamiltonicity of Dirac
and Ore, respectively. In view of the next theorems we need the following definitions.

Let D be a digraph of order n > 3 and S be a non-empty subset of vertices of D.
Following [5], we say that a digraph D is S-strongly connected if for any pair z, y of distinct
vertices of S the digraph D contains a path from x to y and a path from y to z.

A Meyniel set M is a subset of vertices of a digraph D such that d(z) + d(y) > 2n — 1
for every pair of distinct vertices z, y in M which are nonadjacent in D.
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16 On Cyclability of Digraphs with a Manoussakis-type Condition

For general directed graphs (digraphs) there are not as many conditions in literature
as for undirected graphs that guarantee the existence of a directed cycle with the given
properties (in particular, sufficient conditions for the existence of a Hamiltonian cycles in
digraphs). The more general and classical ones are the following theorem of M. Meyniel:
Theorem C: (M. Meyniel [6]). Let D be a strongly connected digraph of order n > 2. If the
vertex set of D is a Meyniel set, then D is Hamiltonian.

Notice that Meyniel’s theorem is a generalization of well-known classical theorems of
Ghouila-Houri [7] and Woodall [8]. A beautiful short proof of Meyniel’s theorem can be
found in [9] (see also [10], pp. 399-400).

In [11], the following was proved:

Theorem D: (S. Darbinyan [11]). Let D be a strongly connected digraph of order n > 3 and
Y be a subset of vertices of D. If Y| =n—1 and Y is a Meyniel set, then D is Hamiltonian
or contains a cycle of length n — 1.

From Theorem D we obtain the following corollaries.

Corollary 1: Let D be a strongly connected digraph of order n > 3. If D has n — 1 vertices
of degree at least n, then D is Hamiltonian or contains a cycle of length n — 1.

Corollary 2: Let D be a strongly connected digraph of order n > 3 and Y be a subset of
vertices of D. If Y| =n—1 and Y is a Meyniel set, then D has a cycle that contains all
the vertices of Y.

A sufficient condition for cyclability in digraphs with the condition of Meyniel’s theorem
was given by K. A. Berman and X. Liu [12]. They improved Theorem F by proving the
following generalization of the well-known theorem of Meyniel.

Theorem E: ( K. Berman and X. Liu [12]). Let D be a strongly connected digraph of order
n. Then every Meyniel set M of D lies in a directed cycle.

Later H. Li, E. Flandrin and J. Shu [5] proved the following generalization of Theorem
E.

Theorem F: (H. Li, E. Flandrin and J. Shu [5]). Let D be a digraph of order n and M be
a Meyniel set in D. If D is M-strongly connected, then D contains a cycle through all the
vertices of M.

Let D be a digraph of order n. We say that a non-empty subset Y of the vertices of
D satisfies condition Ay if for every triple of the vertices x,y, 2z in Y such that x and y are
nonadjacent: If there is no arc from z to z, then d(z) + d(y) + d*(z) + d~(z) > 3n — 2. If
there is no arc from z to z, then d(x) + d(y) + d~(x) + d*(z) > 3n — 2.

Y. Manoussakis [13] proved a sufficient condition for hamiltonicity of digraphs that in-
volves triples rather than pairs of vertices.

Theorem G: (Y. Manoussakis [13]). Let D be a strongly connected digraph of order n > 4.
If V(D) satisfies condition Ag, then D is Hamiltonian.

H. Li, Flandrin and Shu [5] put a question to know if this theorem of Manoussakis (or
the sufficient conditions of hamiltonicity of digraphs of Bang-Jensen, Gutin and Li [14] or of
Bang-Jensen, Guo and Yeo [15]) has a cyclable version.

In this paper we prove the following theorem which gives some answers to the above
question when a subset Y # () of the vertices of a digraph D satisfies condition Ay and the
digraph D is Y-strongly connected.

Theorem 1: Let D be a digraph of order n > 4 and let Y be a non-empty subset of the
vertices of D. Suppose that D is Y -strongly connected and the subset Y satisfies condition
Ag. Then D contains a cycle through all the vertices of Y maybe except one.

Remark 1: The following erxample shows that there is a digraph D which contains a
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nonempty subset Y of V(D) such that D is Y -strongly connected and the subset Y satis-
fies condition Ay but D has no cycle that contains all the vertices of Y.

To see this, let G and H be two arbitrary disjoint digraphs with |V(G)| = m > 2 and
[V(H)| =n—m > 4. Let y € V(H) and z,z € V(G), x # z. Assume that d(y, H) =
2(n —m — 1), G contains a Hamiltonian cycle, d*(z,G) = m — 1 and d(z,G) = 2(m — 1).
From G and H we form a new digraph D with V(D) = V(G) UV (H) as follows: add all the
possible arcs uz, xu, where u € V(H) \ {y}, and the arc yr. An easy computation shows
that

dly) +d(z)+d (y)+d"(x) =4n —m — 6 > 3n — 2,

since m < n — 4. Thus, we have that the set Y = {z,y, 2} satisfies condition Aq. D is
Y -strongly connected and has no cycle that contains all the vertices of Y.
Our proofs are based on the arguments of [5, 13].

2. Terminology and Notation

In this paper we consider finite digraphs without loops and multiple arcs. Terminology and
notations not described below follow [16]. The vertex set and the arc set of a digraph D
are denoted by V(D) and A(D), respectively. The order of D is the number of its vertices.
For any z,y € V(D), we also write x — y if zy € A(D). If xy € A(D), then we say that x
dominates y or y is an out-neighbour of x and z is an in-neighbour of y. If x+ — y and y — 2
we write © — y — z. Two distinct vertices x and y are adjacent if zy € A(D) or yz € A(D)
(or both). If there is no arc from x to y we shall use the notation zy ¢ A(D).

We let N*(z), N~ (z) denote the set of out-neighbours, respectively the set of in-
neighbours of a vertex x in a digraph D. If A C V(D), then N*(z,A) = AN N*(z)
and N~ (z, A) = ANN~(x). The out-degree of z is d*(z) = [N (x)| and d™ (z) = |[N~(x)| is
the in-degree of z. Similarly, d*(z, A) = |[N*(z, A)| and d”(x, A) = [N~ (z, A)|. If x € V(D)
and A = {x} we sometimes write x instead of {x}. The degree of the vertex x in D is defined
as d(z) = d"(x) + d~(z) (similarly, d(x, A) = d*(z, A) + d~(x, A)). The subdigraph of D
induced by a subset A of V(D) is denoted by D(A) or (A) for brevity.

The path (respectively, the cycle) consisting of the distinct vertices 1, xa, ..., 2, ( m >
2) and the arcs x;x;11, ¢ € [1,m — 1] (respectively, z;x;11, @ € [I,m — 1], and z,,x7), is
denoted by zyzy-- -z, (respectively, 12y ---xpm2z1). The length of a cycle or path is the
number of its arcs. We say that xyz5 - - - x,, is a path from 2, to z,, or is an (21, x,,)-path.
An (z,y)-path Pisan (X,Y)-pathif x € X, y € Y and V(P)N(X UY) = {x,y}, where X
and Y are some subsets of the vertices of a digraph D.

Given a vertex x of a directed path P or a directed cycle C, we use the notations 2+ and
x~ for the successor and the predecessor of z (on P or on C') according to the orientation
and in case of ambiguity, we precise P or C' as a subscript (that is 25 ...).

A cycle (respectively, a path) that contains all the vertices of D is a Hamiltonian cycle
(respectively, is a Hamiltonian path). A digraph is Hamiltonian if it contains a Hamiltonian
cycle. For a cycle C' := x125-- - x3xq of length k, the subscripts considered modulo k, i.e.,
x; = x4 for every s and ¢ such that i = s (mod k). If P is a path containing a subpath from
x to y we let P[z,y| denote that subpath. Similarly, if C' is a cycle containing vertices x and
y, Clx,y] denotes the subpath of C' from x to y. If C'is a cycle and P is a path in a digraph
D, often we will write C' instead of V' (C') and P instead of V(P). A digraph D is strongly
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connected (or, just, strong) if there exists a path from x to y and a path from y to x for
every pair of distinct vertices z,v.

Let C' be a non-Hamiltonian cycle in a digraph D. For the cycle C, a C-bypass is a path
of length at least two with both end-vertices on C' and no other vertices on C. If (x,y)-path
P is a C-bypass with V(P) N V(C) = {z,y}, then we call the length of the path C|z,y] the
gap of P with respect to C.

If we consider a subset of vertices S C V(D), we denote the vertices of S by S-vertices
and the number of S-vertices in a cycle is called its S-length.

The subdigraph of a digraph D induced by a subset A of V(D) is denoted by D(A), or
(A) for brevity. The converse digraph of a digraph D is the digraph obtained from D by
reversing all arcs of D.

For integers a and b, a < b, let [a, b] denote the set of all integers which are not less than
a and are not greater than b.

3. Preliminaries

We now collect the tools which we need in proof of our theorem. In the following, we often
use the following definition:

Definition 1: Let P = x5 ... 2, (m > 2) be a path in a digraph D and Q = y1ys ... yx be
a path in (V (D) \ V(P)) (possibly, k = 1). Assume that there is an i € [1,m — 1| such that
iy and ypxip1 € A(D). In this case D contains the path x1xs ... L1 Ys -« YpZit - - - T ad
we say that Q) can be inserted into P.

The following Lemmas 1 and 2 are slightly modified versions of lemma by Haggkvist and
Thomas [17] and of lemma by Bondy and Thomassen [9], respectively (their proofs are not
too difficult). They will be used extensively in the proof of our result.

Lemma 1: Let Cy := z125... 2521, k > 2, be a non-Hamiltonian cycle in a digraph D.
Moreover, assume that there exists a path Q := y1ya...y., v > 1, in (V(D)\ V(Cy)). If
d~(y1, Cx) +d* (yr, C) > k+1, then for allm € [r+1,k+r] the digraph D contains a cycle
C,, of length m with vertex set V(C,,) C V(Cy) UV(Q).

Lemma 2: Let P := x125... 2%, k > 2, be a non-Hamiltonian path in a digraph D. More-
over, assume that there exists a path Q == y1y2...yr, 7 > 1, in (V(D)\ V/(P)). If

d_(yh P) + d+(yr7 P) > k+ d_(yla {l'k}) + d+(yr7 {:Cl})a

then there is an i € [1,k —1] such that x;y, and y,x;11 € A(D), i.e., D contains a path from
x1 to xy with vertex set V(P) UV (Q), i.e., Q can be inserted into P.

The following lemma from [5] is a slightly modified version of Multi-Insertion Lemma
due to Bang-Jensen, Gutin and H. Li (see [16], Lemma 5.6.20).
Lemma 3: (H. Li, E. Flandrin. J. Shu [5]). Let D be a digraph and let P be an (a,b)-path in
D. Let @ be a path in (V(D)\V(P)) and S be a subset of V(Q). If every vertez of S can be
inserted into P, then there exists an (a,b)-path R such that V(P)US C V(R) C V(P)UV(Q).

The following lemma also was proved in [5].
Lemma 4: (H. Li, E. Flandrin. J. Shu [5]). Let D be a digraph of order n and S C V (D),
S # 0 be a Meyniel set. Assume that D is S-strongly connected and C is a cycle in D of
mazximum S-length. If s is an S-vertex of V(D)\ V(C), then D contains a C-bypass through
S.

By the inspection of the proof in [12] one can state Lemma 4 in the following form (its
proof is the same as the proof of Lemma 4).
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Lemma 5: Let D be a digraph of order n and C' be a non-Hamiltonian cycle in D. Let x be
an arbitrary vertex not on this cycle C' and D contain no C-bypass through x. If in D there
are (C,x)- and (z,C')-paths, then the following holds:

(i). If x is adjacent to some vertex y of C, then D is not 2-strong, d(x,V (C)\ {y}) =0
and d(z) 4+ d(z) < 2n — 2 for all vertices z € V(C) \ {y}.

(ii). Assume that x and any vertex of C' are nonadjacent, i.e., d(xz,V(C)) = 0. Let
P be a shortest (C, x)-path with {u} = V(P)NV(C) and Q be a shortest (x, C)-path with
{v} =V(Q)NV(C) (possibly, wu=wv). Then d(z)+ d(z) < 2n—2 for all vertices z € V(C),
maybe except one from {u,v}. o

In [13], the following was proved:
Lemma 6: (Y. Manoussakis [13]). Let D be a digraph of order n and V(D) satisfy condition
Ag. Assume that there are two distinct pairs of nonadjacent vertices x,y and x,z in D. Then
either d(x) +d(y) >2n —1 or d(xz) +d(z) > 2n — 1.

It is not difficult to show that we can state Lemma 6 in the following much stronger
form:
Lemma 7: Let D be a digraph of order n and Y be a subset of V(D). Assume that'Y
satisfies condition Ay and contains two distinct pairs of nonadjacent vertices x,y and x, z.
Then either d(x) + d(y) > 2n — 1 or d(z) + d(z) > 2n — 1.

For the proof of our result we also need the following simple lemma.
Lemma 8: Let D be a digraph of order n. Assume that xy ¢ A(D) and the vertices x, y in
D satisfy the degree condition d™(xz)+d~(y) > n—2+k, where k > 1. Then D contains at
least k internally disjoint (z,y)-paths of length two.

The following lemma also was proved in [5].
Lemma 9: (H. Li, E. Flandrin. J. Shu [5]). Let D be a digraph of order n and S C V (D),
S # 0 be a Meyniel set. If D is S-strongly connected, then any two S-vertices s and s are
contained in a cycle of D such that they are at distance at most two on this cycle.

We can state Lemma 9 in the following form.
Lemma 10: Let D be a digraph of order n. Assume that a pair of distinct vertices x,y in
D satisfies the degree condition d(x) +d(y) > 2n—1. If D is {x,y}-strongly connected, then
the vertices x and y are contained in a cycle of D such that they are at distance at most two
on this cycle.

Now we will prove the following lemma.
Lemma 11: Let D be a digraph of order n and Y be a subset of vertices of D with |Y| > 4.
Assume that D is Y -strongly connected and the subset Y satisfies condition Ag. If C is a
non-Hamiltonian cycle in D which contains at least two Y -vertices and y € V(D) \ V(C) is
an arbitrary Y -vertex, then D contains a C-bypass through vy.
Proof of Lemma 11. If the cycle C' contains at least three Y-vertices, then the lemma
immediately follows from Lemmas 5 and 7. We may therefore assume that C' contains exactly
two Y-vertices, say x and u, and there exists a Y-vertex, say y, in B := V(D) \ V(C) such
that in D there is no C-bypass through y. From |Y| > 4 it follows that B contains at least
two Y-vertices. Let z be an arbitrary Y-vertex in B other than y.

We will consider two cases depending upon the value of d(y, C).

Case 1: d(y,C) > 1.

Without loss of generality, assume that the vertex y is adjacent to a vertex w of V(C).
If w ¢ {u,z}, then from Lemma 5(i) it follows that y,u and y,z are distinct pairs of
nonadjacent vertices of Y, d(y) +d(u) < 2n —2 and d(y) +d(x) < 2n — 2, which contradicts
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Lemma 7. We may therefore assume that w € {x,u}, for example, let w = v and yu € A(D).
Since we assumed that D had no C-bypass through y, by Lemma 5(i) we have

dly) +d(x) <2n—2 and d(y,V(C)\{u})=0. (1)

Now we consider two subcases zz € A(D), xz ¢ A(D).

Subcase 1.1. xz € A(D).

Then zy ¢ A(D) (for otherwise, xzzyu is a C-bypass through y, which contradicts our
assumption that D has no C-bypass through y). Therefore, the triple of Y-vertices z,vy, z
satisfies condition Ay, i.e.,

d(y) +d(x) +d (y) +d"(z) > 3n— 2.

This together with d(y) + d(z) < 2n — 2 (by (1)) imply that d*(z) + d~(y) > n. Hence, by
Lemma 8, z — v — y for some vertex v other than u. From d(y, V(C) \ {u}) = 0 (by (1))
it follows that v € B. Thus, xzvyu is a C-bypass through y, a contradiction.

Subcase 1.2. xz ¢ A(D).

Then by condition Ay we have

d(y) +d(z) + d"(z) + d~(2) > 3n — 2.

Therfore, by (1), d™(x) + d (z) > n, and hence by Lemma 8 and zy ¢ A(D), there exists
a vertex v other than uw and y such that x — v — 2. It is easy to see that vy ¢ A(D)
and zy ¢ A(D). In this subcase, again we have that d*(z) + d~(y) > n. Hence, by Lemma
8, 2 — a — y for some vertex a other than u and v. By (1), a ¢ V(C). Therefore, a €
B\ {y, z,v} and vzayu or xvzayu is a C-bypass through y when v € C or not, respectively,
a contradiction. The discussion of Case 1 is completed.

Case 2: d(y,C) = 0.

By Lemma 5(ii), we have either d(y) + d(x) < 2n — 2 or d(y) + d(u) < 2n — 2. Without
loss of generality, assume that

d(y) +d(x) < 2n—2. (2)

This together with condition Ay imply that
d ' (y) +d (u) >n and dt(u)+d (y) >n. (3)

This together with Lemma 8 imply that there are vertices a and v (possibly, a = v) other
than z such that u — v — y and y — a — u. Observe that v and a are not on C since
d(y,C) = 0.

First consider the case d(z,V(C) \ {u}) # 0. Without loss of generality, assume that
w € V(C)\ {u} and zw € A(D) (for the case wz € A(D) we will consider the converse
digraph of D). If yz € A(D), then uvyzw is a C-bypass through y, a contradiction. We
may therefore assume that yz ¢ A(D). Then from (2) and condition Ay it follows that
d*(y) + d~(z) > n. Therefore, by Lemma 8, for some vertex b € B\ {v}, y — b — z, and
hence, uvybzw is a C-bypass through y, which is a contradiction.

Now consider the case d(z,V(C) \ {u}) = 0. Then the vertices z and x are nonadjacent.
From (2) and condition Ay it follows that

dt(x) +d (2) >n and d¥(z)+d (z) >n.
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From d*(z) + d”(z) > n and Lemma 8 it follows that there are at least two (z,z)-paths
ofthe length two.

Subcase 2.1. There is a (z, x)-paths of the length two, say z — b — x, such that b ¢ {u,v}.

In this subcase, yz ¢ A(D) and yb ¢ A(D) (for otherwise, uvyzbz or uvybz is a C-bypass
through y, for yz € A(D) and for yb € A(D), respectively). Since x,y, z are Y-vertices, from
condition Ay and (2) it follows that d*(y) + d~(z) > n. Now using Lemma 8 and the facts
that yz ¢ A(D) and yb ¢ A(D), we obtain that there exists a vertex ¢ € B\ {v,b, 2z} such
that y — ¢ — z. Thus, uvyqzbx is a C-bypass through y, a contradiction.

Subcase 2.2. There is no w € B\ {v} such that z — w — z.

Then from Lemma 8 and d*(z) + d (z) > n it follows that d*(z) + d~(z) = n and
zv,vx, zu € A(D) (i.e., there are exactly two (z,x)-paths of the length two). Now using the
inequality d*(u)+d (y) > n (by (3)) and Lemma 8 we conclude that there exist at least two
(u, y)-paths of the length two. If there is a path u — ¢ — y such that ¢ is other than v and
z, then we may consider the paths u — ¢ — y and z — v — z. For these paths we have the
above considered case (b ¢ {u,v}). We may therefore assume that there is no ¢ € B\ {v, z}
such that v — ¢ — y. From this and Lemma 8 it follows that d*(u) + d (y) = n and
u — z — y since d"(u) +d (y) > n (by (3)). This together with vx € A(D) imply that
yv & A(D) (if yv € A(D), then uzyvz is a C-bypass through y). Now by condition A, and
(2) we have

d(y) +d(z) =2n — 2,

since x,y, u are Y-vertices, x,y are not adjacent and uy ¢ A(D). The last equality implies
that d™(y) +d~(z) >n—1ord (y) +d*(z) >n—1.

If d*(y)+d (z) > n—1, then, since yv ¢ A(D) and d(y, C') = 0, from Lemma 8 it follows
that there exists a vertex z; € B\{v} such that y — z; — x. Therefore, uvyz,x is a C-bypass
through y, a contradiction. We may therefore assume that d*(y) + d~(z) < n — 2. Then
d~(y)+d*(z) > nsince d(y)+d(z) = 2n—2. Therefore, since d(y,C) = d(z, V(C)\{u}) = 0,
by Lemma 8 there exists a vertex zp € B\ {a} such that © — 2z, — y. Hence, zzyau is
a C-bypass through y, which is a contradiction. This contradiction completes the proof of
Lemma 11.

4. Proof of the Main Result

For readers convenience, again we will formulate the main result.

Theorem 1: Let D be a digraph of order n and let' Y be a nonempty subset of the vertices
of D, where |Y| > 2. Suppose that D is Y -strongly connected and the subset Y satisfies
condition Ay. Then D contains a cycle through all the vertices of Y maybe except one.
Proof: If |Y| = 2, then there is nothing to prove. If |Y| = 3, then from Y-strongly
connectedness of D it follows that Y is an independent set. By Lemma 7, for some two
vertices of Y, say = and y, we have d(z) + d(y) > 2n — 1. Therefore, by Lemma 10, there
is a cycle in D that contains the vertices x and y. In the sequel, assume that |Y| > 4.
Now suppose that the subset Y of the vertices of D satisfies the supposition of the theorem
but any cycle in D does not contain at least two Y -vertices. By Manoussakis’ theorem, we
may assume that Y # V(D). Since D is Y-strongly connected, using Lemmas 7 and 10
we obtain that in D there exists a cycle which contains at least two Y-vertices. If C'is a
non-Hamiltonian cycle in D which contains at least two Y-vertices and y € V(D) \ V(C) is
an arbitrary Y-vertex, then from Lemma 11 it follows that D contains a C-bypass through
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y. In D we choose a cycle C' and a C-bypass Fy through a Y-vertex of V(D) \ V(C) such
that

(a) C contains as many vertices of Y as possible (C' contains at least two Y-vertices),

(b) the gap of C-bypass Py is minimum, subject to (a) (by Lemma 11, for the cycle C
there exists a C-bypass through any Y-vertex not on C'), and

(c) the length of C-bypass Fy is minimum, subject to (a) and (b).

In the sequel we assume that the cycle C' := xy25... 2,21 and the C-bypass Py :=
121« ZKYZkt1 - - - 2tTqr1 satisfy the conditions (a)-(c), where 1 < a < m —1 and y €
V(D)\V(C) is a Y-vertex (possibly, z; = y or y = z;). Since the cycle C' has the maximum
Y-length, it follows that a > 2 and Cfzy,x,] contains a Y-vertex. Note that the gap of
C-bypass Py is equal to a.

Denote P := zy...2Y2p41 ... 2, B = Plz1, 2] and L := P|zp41,2]. Since the gap a
is minimal, the vertex y is not adjacent to any vertex of C[xy,x,], i.e, d(y, Clzs,z,]) = 0.
Therefore, by Lemma 2,

d(y,C) = d(y, Clwasr,m1]) <m —a+d (y, {z1}) + d"(y, {zas1}), (4)

since any Y-vertex of B := V(D) \ V(C) cannot be inserted into C'. From the minimality of
the path P it follows that

d(y, V(P)) < V(P)| +1—=d (y,{z1}) — d"(y, {zatr }). ()

Notice that |Clzy, 2,]| = @ — 1 and |C|x,41,21]| = m — a + 1. Firstly for the cycle C' and
C-bypass Py := 2121 ... 2kYZs1 - - - ZT441 We prove the following two claims.

Claim 1: There is a Y -vertez, say yi, in Clxy, z,] such that y,y; are nonadjacent, d(y) +
d(y1) <2n —2 and y, cannot be inserted into Clxay1,x1]. Moreover,

(i). The path P contains exactly one Y -vertex, namely only y.

(ii). Any Y -vertex of Clxy,x,] other than y; can be inserted into Clx, 1, x1].

(7ii). There are three (Tq11,21)-paths, say Py, Py and Py, with vertex set C|xq41, 21U FY,
Clzar1, 1] U Fy and Clxay, 1] U F3, respectively, where Fy C Clxg, z,], F» C Clza, yq |,
F3 C Clyf,za) (if y1 = xa, then Clza,yy] = 0, if y1 = x4, then Cly,x,] = 0) and F,
(respectively, Fy, F3 ) contains all the Y -vertices of Clxq,x,] \ {y1} (respectively, all the
Y -vertices of Clxa,yr], all the Y -vertices of Clyi, x4]).

Proof: Since we assumed that the cycle C' has maximum Y-length, from Lemma 3 it follows
that some Y-vertex, say y;, of C[xs,x,| cannot be inserted into C[z,,1,21]. Hence, using
Lemma 2, we obtain

d(y1,C) = d(y1,Clza, x]) + d(y1, Clzar1, x1]) <2a—4+m—a+2=m+a—2. (6)

From the minimality of C[xs,z,] it follows that the vertices y and y; are nonadjacent.
Put R:=V(D)\ (V(C)UV(P)). Now we want to compute the sum of degree y and y;.
By minimality of C[x,,x,] we have

d(y1, R) + d(y, R) < 2[R| and  d(y, Clws,24]) = 0. (7)
From the minimality of C|xs,x,] also it follows that

d*(y1,{z1,. ., 2z}) =d (g1, {zre1, .-, 2 }) = 0. (8)
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Therefore, d(y,, P) < |P| — 1 since y and 7, are nonadjacent. This together with the above
inequalities (4)-(7) give

d(y) +d(y) = d(y, R) + d(y1, R) + d(y, P) + d(y,C) + d(y1, P) + d(y1,C)

< 2|R|+2|P|+2m —2=2n—2.

Thus, d(y)+d(y;) < 2n—2 for any Y-vertex y of P and for any Y-vertex y; of C[xs, x,] which
cannot be inserted into C|x,,1,x1]. This together with Lemma 7 imply that P contains only
one Y-vertex, namely y, and any Y-vertex of C|xs, z,| different from y; can be inserted into
Clzas1,21]. From this and Lemma 3 it immediately follows the third assertion of the claim.
Claim 1 is proved.
By Claim 1, we have
d(y1) +d(y) <2n—2. (9)

Claim 2: Let y; be a Y-vertex of Clxs, x,] which cannot be inserted into Clx,y1,x1]. Then
d(yh P) = 0.

Proof: Suppose, on the contrary, that d(y;, P) > 1. Then from (8) it follows that either
ziyy € A(D) or y12; € A(D), for some i € [1,k] or j € [k+1,1], respectively. Let y;2; € A(D).
We consider the cycle Cy := P3C[z1,11]P|2j, 2t)xqa+1. This cycle contains all the Y-vertices
of C, and hence, has maximum Y-length. It is easy to see that @ := x121 ... kY241 ... 2, is
a C1-bypass through y. By the choice of the cycle C' and C-bypass F, we have that y; = z,,
i.e., the C-gap of I and C-gap of () are equal but the path 2; ... zzy2zp41 ... zj-1 is shorter
than the path z;...25Y2k41 ... 2, which contradicts (c). Therefore, y12; ¢ A(D) for all
J € [k + 1,t]. Similarly, we can prove that z;y; ¢ A(D) for all ¢ € [1, k]. Thus,

d”(y1,{z1, .-, 2z}) = d (v, {zrg1, .-, 2}) =0

which together with (8) imply that d(y;, P) = 0. Claim 2 is proved. o

Let  be an arbitrary Y-vertex in B = V(D) \ V(C) other than y. Claim 1(i) implies
that x is not on P. We distinguish two cases according as in (B \ (P \ {y})) there exists a
path with end-vertices x and y or not.

Case 1: In (B\ (P\{y})) there exists a path from x to y or there ezists a path from y to x.

Without loss of generality, we may assume that in (B \ (P \ {y})) there is an (x, y)-path
(for otherwise, we consider the converse digraph of D).

Let H be a shortest (x,y)-path in (B \ (P \ {y})). Observe that z1x ¢ A(D), since
otherwise, if 212 € A(D), then the path P, (Claim 1(iii)) together with the arc 12z and the
paths H and Pyly, x.+1] forms a cycle, say C1, which contains more Y-vertices than C, which
contradicts our assumption that C' has maximum Y-length (C} contains all Y-vertices of C,
except 41, but contains Y-vertices = and y).

Put Ry := B\ (V(P)UV(H)) and H' := H[x},yy] (if zf; =y, then H' = 0).
From the minimality of the gap a (or of the existence of the path Pj) it follows that
y1x ¢ A(D) (therefore either zy; € A(D) or x and y; are nonadjacent) and

d+(y1,R0) + d_(l',RQ) S |RQ| (10)

Subcase 1.1. xy, € A(D).
From Lemma 2 it follows that

d”™(z,P1) +d" (g1, P) < [Pl (11)
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since zyx ¢ A(D) and the arc zy; cannot be inserted into P, (for otherwise, D contains a
cycle which contains all Y-vertices of C' and Y'-vertices x, y, which is a contradiction). From
the minimality of the gap a, the existence of the paths P, Py (by Claim 1) and Claim 2 it
follows that

d*(y1,PUH) =d (z,Clzy,7,]) =d (z,P) = 0. (12)

Clearly,
d™(y,S) < 15| =1 and d”(z, H') <[H|, (13)

where S := C|xq,z,] — P;. By adding the above relations (10)-(13), we obtain
d+(y1) + d_(l') = d+(y1, RO) + d_(l', RO) + d_(l', Pl) + d+(y1, Pl) + d+(y1, S) + d+(y1, P UH)

+d (x,S)+d (x, H) +d (z,P) < |Ro| + || +|S|+ |H| =1 <n—2.
This together with (9) give

d(y) +d(y) +d~(x) +d*(y1) < 3n — 4,

which contradicts condition Ag, since y,y; and x are Y-vertices, y,y; are nonadjacent and
yx & A(D).
Subcase 1.2. The vertices x and y, are nonadjacent.
We will distinguish two subcases, according as there exists a (y, z)-path in (B\ (P \ {y}))
or not.
Subcase 1.2.1. In (B \ (P \ {y})) there is no (y,z)-path, in particular yz ¢ A(D).
Then, clearly

d+(y,R0 UH/) + d_(.I',RQ UH/) < |RQ UH/| = |R0| + |H/| (14)

It is not difficult to see that the path H cannot be inserted into C. Hence, from Lemma
1 it follows that
d-(2,C) +d*(y,C) < [C]. (15)

Moreover,
d (z,P)=d (z,E)+d (z,L) <|L|, since d (z,E) =0,

recall that E := P[z, z;| and L := P|z,.1, 2], and by the minimality of P, we have
d(y,P)=d*(y,E)+d"(y,L) < |E|+1, since d*(y,L)<1.
Hence,
d"(z,P)+d"(y,P) < |L| + |E|+ 1 =|P|.
The last inequality together with (14), (15) and (9) imply that

d(y) +d(y) +d (v) +d"(y) < 2n =2+ |R[ + [H'[ +|C| + |P| = 3n - 3,

which contradicts condition Ag, since y,y; and x are Y-vertices, y,y; are nonadjacent and
yxr ¢ A(D).

Subcase 1.2.2. In (B\ (P \ {y})) there is a (y, x)-path.

First consider the case when in (B \ (PU H \ {z,y})) there is a (y,z)-path. Let @ be a
shortest (y,z)-path in (B\ (PUH \ {z,y})).
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Let Ry := B\ (PUHUQ). We want to compute the degree sum of the vertices x and
y1. From the minimality of the C[zy, x,] and the existence of the paths H and @ it follows
that

d(l’, Rl) +d(y1,R1) < 2|Rl| and d(yl,H/UQ/) = 0, (16)

where Q' = Q[yg,xé] (here if yg =z, then Q' = ). By Claim 2, d(y1, P) = 0. This and
(6) imply that
d(y,CUP)<m+a—2. (17)

Now we consider the vertex x. It is not difficult to see that x cannot be inserted into P
(for otherwise there exists a (21, z;)-path with vertex set V(P)U{z} which together with the
arcs 121, 2txq+1 and the path P; (Claim 1) forms a cycle which contains all the Y-vertices
of C' except y; but contains Y-vertices x and y, this contradicts the assumption that C' has
the maximum Y-length). Therefore, by Lemma 2,

d(z,P) <|P|+ 1. (18)
From the minimality of the paths H and (@) it follows that
d(z,Q) <|Q'+1 and d(xz,H)<|H'|+1. (19)

Since the gap a is minimal, we obtain that d(x, C[z3,x,]) = 0. Using the path P; (Claim
1), it is not difficult to see that z;x ¢ A(D) and xx,,1 ¢ A(D). Therefore, by Lemma 2,
d(z,C) =d(z,Clxei1,21]) < m — a, since x cannot be inserted into C. Summing the above
inequalities (16)-(19) and the last inequality, an easy computation shows that

d(y)) +d(z) <2|Ri| +2m+ |P| +|Q'| + |H'| +1 < 2n — 2.

This together with d(y;) + d(y) < 2n — 2 (by (9)) contradict Lemma 7, since y;, z and y,y
are two distinct pairs of nonadjacent vertices in Y.

Now consider the case when any (y,z)-path in (B \ (P \ {y})) has a common internal
vertex with (z,y)-path H. Then, in particular, the vertices y and = are nonadjacent. Let T
be a shortest (y,x)-path in (B \ (P \ {y})).

Denote T" := Ty, z7) and Ry := B\ (P U H' UT' U {z}). Observe that |H’| > 1 and
|T"] > 1 since y and x are nonadjacent.

Now we want to compute the sum d*(x) + d~(y). It is easy to see that

d+ (1.7 RQ) + d- (y7 RQ) S |RQ|7 (20)

since for otherwise in (B\ (P\{y})) there exists a minimal (y, x)-path which has no common
internal vertex with the 7. Observe that (y, z)-path T' cannot be inserted into C|x,1, 1] (for
otherwise in D there is a cycle which contains more Y-vertices than the cycle C'). Notice that
xxq1 & A(D) (for otherwise, if zz,.; € A(D), then the paths P[z,y|, T and P; (Claim 1)
and the arcs zz,1, 212 form a cycle which has more Y-length than the cycle C'). Therefore,
by Lemma 2 we have

d"(z,Clzat1, 71]))+d (y, Clxas1, 71]) < m—a+d (y, {z1})+d" (z, {xas1}) < m—a+1. (21)

From the minimality of C'[zs, z,] (i.e., of the gap a) and the existence of the path 7" it follows
that
d~(y,Clz2, x4)) = d*(x, Clze, 24)) = 0. (22)
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By the minimality of P we have

d~(y, P) = d"(y, E) + d"(y, L) < |L| + L.
It is not difficult to see that

d*(z, P) = d*(z, ) + d* (z, L) < | B,

since if zz; € A(D) for some j € [k + 1,t], then using the paths T, P, and the subpaths
Plz1,yl, P[z;, 2] we can obtain a cycle which contains more Y-vertices than C. The last two
inequalities imply that

d(y,P) +d"(z,P) < |L| +|E|+ 1=|P|. (23)

It remains to compute d*(z, H' UT") and d~(y, H UT"). Denote 7" := T'"\ H'. From
the minimality of the path H it follows that d*(z, H") = d (y, H') = 1.

This together with the above expressions (20)-(23) imply that
d* (‘I.)—i_d_ (y) = d+($7 R2)+d_ (y7 R2)+d+($7 C['I.a-"—la $1])+d_ (y7 C['I.a-"—la $1])+d+ ('1.7 0[1.27 'I.a])

+d (y, Clez, zo) + d" (@, P) +d"(y, P) + d" (2, H') +d " (y, H') + d" (@, T") + d" (3, T")
<|Ryl+m—a+1+|P|+2+d"(x, T")+d (y, T")
= [Ro| +[Cl+ [P| +3+d" (@, T") +d " (y,T") - a. (24)
Assume that |H'| > 2, then d* (2, T")+d "~ (y,T") < |T"], since otherwise in (B\ (P\{y}))
there is an (z,y)-path shorter than H. The last inequality together with (24) give
d*(2) +d"(y) < [Ro| + |C] + |P] + 3+ |T"| —a+ |H'| - [H]]
=n+2—a—|H|<n-2,
since a > 2 and |H'| > 2. This together with (9) imply that
d(y) +d(y1) +d (y) + d"(z) < 3n—4, (25)
which contradicts condition Aq since z,y,y; are Y-vertices, y,y; are nonadjacent and xy ¢
A(D).

Now assume that |H’| = 1. We may assume that |7”| = 1 (for otherwise, we consider the
converse digraph of D). It follows that 7" = (). Now using (9), (24), a > 2 and |H'| > 1, we
see that again (25) is true, which is a contradiction. The discussion of Case 1 is completed.

Case 2: In (B\ (P \ {y})) there is no path between the vertices x and y. In particular,

x and y are nonadjacent.
Let R3 := B\ (P U {z}). Then it is easy to see that

d(l.aR?:) + d(y7R3) < 2|R|7

since in (B\ (P \ {y})) there is no path between x and y. Using Lemmas 1 and 2 we obtain
that

d(z,P) <|P|+1 and d(z,C)<m,
since the vertex = can be inserted neither into P nor in C'. The last three inequalities together
with (4) and (5) imply that

d(y) +d(x) <2|Rs|+ |P|+m+m—a+|P|+2<2n—a<2n—2.

This together with (9) contradict Lemma 7, since {z,y} and {y,y;} are two distinct pairs
of nonadjacent vertices of Y. The discussion of Case 2 is completed and with it the proof of
the theorem is also completed.
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5. Concluding Remarks

Observe that the example of the digraph in Remark 1 is not 2-strongly connected and |Y'| = 3.
We believe that the following may be true.

Conjecture 1: Let D be a digraph of order n > 4 and let Y be a nonempty subset of
vertices of D which satisfies condition Ag. Then D has a cycle that contains all the vertices
of Y if either (i) or (ii) or (i) below is satisfied:

(i) D is 2-strongly connected.

(ii) D is Y -strongly connected and |Y| > 4.

(#ii) for any ordered pair of distinct vertices x,y of Y there are two internally disjoint
paths from x to y in D.

C. Thomassen [18] (for n = 2k + 1) and the author [19] (for n = 2k) proved the following

theorem.
Theorem H: ( C.Thomassen [18], S. Darbinyan [19]). Let D be a digraph of order n > 5
with minimum degree at least n— 1 and with minimum semi-degree at least n/2 —1. Then D
1s Hamiltonian or belongs to a non-empty finite family of non-Hamiltonian digraphs, which
are characterized. o

A question was put in [20]:

Let D be a digraph of order n > 5 and let T' # () be a subset of V(D). Assume that D
is strongly connected (or D is T-strongly connected) and every vertex of 7" has a degree at
least n — 1 and has an outdegree and an indegree at least n/2 — 1. Does D have a cycle that
contains all the vertices of T7.

For n = 2m + 1 in [20] it was proved:

If D is strongly connected and contains a cycle of length n — 1, then D has a cycle
containing all the vertices of T' unless some extremal cases.
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Uwlnniuwyhuh mhyh ygwjdwGh6 pwujwpwpnn YnniGnpn)ywo
qpuipltiph ghlyihynmpywl dwupd
U. QwpphGyuG

Udthnthnid

‘Uhpjuw wuwnmwlpnd gniyyg £ mpynud np tpt YnniGnpnpquwo gqpudbh ququpltph Y
tipwpwqinipmilp pwjwpwpnd £ D YnndGnpnpgwo gpudltph hwdiwp Uwlnniuwyhup
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hwidhjnnbjulmpjwl pwjuwpwnp wywjdwbhG (J. Graph Theory, 16, 1992), wwyw wyn qpudp
wuwpniGwynd £ ghyy, npG whglnd t Y Gapuwpwqinipjulp yuwwmlwlnn pninp ququpltinny
pwgh qnigh dtyhg: Unwgwo wprynilpp niond k Lhh, djwlnphGh b Snih (Discrete Math-
ematics, 307, 2007) ynnihg wnwownlwo julnhpnp:

O IMKAMYHOCTHU Oprpa(oB Ipu yCAOBUM TuIla MaHOyCcaKuca
C. AapbunsaH

AnHoTanus

B paboTe AOKa3aHO, YTO €CAM IOAMHOXXeCTBO Y BepwmunH oprpaga D
YAOBAETBOPSAET AOCTATOYHOMY YCAOBHIO IaMUABTOHOBCTM Manoycakuca (J. Graph
Theory, 16, 1992 ), To B D cyuiecTByeT KOHTYDP, KOTOPBIM COAEP’KUT IO KpauHeun
mepe |Y| — 1 BepuinH nopMHOKecTBa Y . [TOAyUEHHBIN pe3yABTAT pellaeT 3apavy Ay,
Onauppud u lly (Discrete Mathematics, 307, 2007).



