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Abstract

Automated semantic information extraction from the image is a difficult task. There
are works which can extract image caption or object names and their coordinates. This
work presents a merged single model of object detection and automated caption gen-
eration systems. The final model extracts from image caption and object coordinates
with their names without losing accuracy according to initial models.

Keywords: Neural networks, Image caption, Object detection, Deep learning,
RNN, LSTM

1. Introduction

Automatically describing the content of an image is a fundamental problem in artificial
intelligence that connects computer vision and natural language processing. The content
can be partially described via image caption and objects names and their locations.

This is significantly harder than the well-studied image classification [1] or object recog-
nition. These studies can help visually impaired people better understand the content of
images on the Web, also it can have a great impact on search engines and in robotics, for
example, self driving cars.

Automatically generated image caption should contain the main object names, their prop-
erties, relations, and actions. Moreover, the generated caption should be expressed through a
natural language like English. There are a number of works approaching this problem. Some
of them [2, 3, 4] offer combining the existing image object detection and sentence generation
systems. But there is a more efficient solution [5] that offers a joint model. It takes an image
and generates the caption, which describes the image adequately. The lastest achievements
in statistical machine translation were actively used in image caption generation tasks. The
reason for this is mainly the proven achievement of greater results when using a powerful
sequential model trained by maximizing the probability of the correct translation for the
input sentence. These models [6, 5, 7] are based on Recurrent Neural Networks (RNNs).
The model encodes the variable length input into the fixed length vector representation.
This representation enables conversion of the input sentence into the target sentence or the
input image into the target image caption.
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Neural nets have become a leading method for high quality object detection in recent
years. Modern object detectors based on Convolutional Neural Network (CNN) [8] net-
works, such as Faster Region-based Convolutional Neural Network (Faster R-CNN) [9],
Region-based Fully Convolutional Network (R-FCN) [10], Multibox [11], Single Shot De-
tector (SSD) [12] and YOLO: Real-Time Object Detection [13], are now good enough to be
deployed in consumer products (e.g., Google Photos, Pinterest Visual Search) and some of
them have been shown to be fast enough to run on mobile devices.

There is work [14] which present a multi-model neural network method closely related to
the human visual system that automatically learns to describe the content of images. The
model consists of two sub-models: an object detection and localization model, which extract
the information of objects and their spatial relationship in images respectively; besides, a
deep recurrent neural network (RNN)-based on Long Short-Term Memory (LSTM) units
with an attention mechanism for sentences generation. Each word of the description is
automatically aligned to different objects of the input image when it is generated. It is
similar to the attention mechanism of the human visual system.

This work present a merged model of object detection and automated caption generation
systems. For object detection we will choose Faster R-CNN [9] based on Inception [15] and
for caption generation Show and Tell [5]. These two models are based on Inception image
classification model. This will allow as save all quality characteristics of the initial models.

2. Object Detection

The R-CNN paper by Girshick et al. [16] was among the first modern incarnations of con-
volutional network-based detection. Inspired by recent successes in image classification [17],
the R-CNN method took a straightforward approach of cropping externally computed box
proposals out of an input image and running a neural net classifier on these crops. This ap-
proach can be expensive, however, because many crops are necessary, leading to significant
duplicated computation from overlapping crops. Fast R-CNN [9] alleviated this problem by
pushing the entire image once through a feature extractor then cropping from an intermedi-
ate layer so that crops share the computation load of feature extraction.

In the Faster R-CNN detection happens in two stages. At the first stage, called the region
proposal network (RPN), images are processed by a feature extractor, and features at some
selected intermediate level are used to predict class-agnostic box proposals.

L(a, I; θ) = α · 1[a is positive] · `loc(φ(ba; a)− floc(I; a, θ)) + β · `cls(ya, fcls(I; a, θ)), (1)

The loss function for this first stage takes the form of Equation 1 using a grid of anchors
tiled in space, scale and aspect ratio. At the second stage, these (typically 300) box proposals
are used to crop features from the same intermediate feature map which are subsequently
fed to the remainder of the feature extractor in order to predict a class and class-specific
box refinement for each proposal. The loss function for this second stage box classifier takes
the form of Equation 1 using the proposals generated from the RPN as anchors. Notably,
one does not crop proposals directly from the image and re-run crops through the feature
extractor, which would be a duplicated computation. However, there is a part of computation
that must be performed once per region, and, thus, the run time depends on the number of
regions proposed by the RPN.

Determining classification and regression targets for each anchor requires matching an-
chors to groundtruth instances. Common approaches include greedy bipartite matching (e.g.,
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based on Jaccard overlap) or many-to-one matching strategies in which bipartiteness is not
required, but matchings are discarded if Jaccard overlap between an anchor and groundtruth
is too low. Paper [18] refers to these strategies as Bipartite or Argmax, respectively. The
model [18] uses Argmax matching throughout with thresholds set as suggested in the origi-
nal paper [9]. After matching, there is typically a sampling procedure designed to bring the
number of positive anchors and negative anchors to some desired ratio.

To encode a groundtruth box with respect to its matching anchor, the model uses the
box encoding function φ(ba; a) = [10 · xc

wa
, 10 · yc

ha
, 5 · log w, 5 · log h] (also used by [16, 9]). The

scalar multipliers 10 and 5 are typically used in all of these prior works [18, 9, 16].
For our work we will use pretrained Faster-RCNN based on Inception classifier [18]. We

will extract high level features before object detector. Extracted features will be used to
create an image embedding vector.

3. Caption Generaton

The model encodes the variable length input into the fixed length vector representation. This
representation enables conversion of the input sentence into the target sentence or the input
image into the target image caption. The last model was being trained to maximize P (S|I)
likelihood to generate the target sequence of words S = {S1, S2, ...} for an input image I,
where each word St comes from a given dictionary, that describes the image adequately.
Show and Tell [5] model can generate image descriptions with recurrent neural network. It
maximizes the probability of the correct caption for the given image,

log p(S|I; θ) =
N∑

t=0

log p(S|I, S0, ..., St−1; θ), (2)

where (S|I) is a training example pair. While training, we optimize the sum of the log
probabilities for the whole training set using AdaGrad [19].

p(S|I, S0, ..., St−1; θ) probability will correspond to the t step (iteration) of Recurrent
Neural Network (RNN) based model. The variable number of words that are conditioned
upon, up to t − 1 is expressed by a fixed length hidden state or memory ht. After every
iteration for the new input, memory will be updated by using a non-linear function f .

ft+1 = f(ht, xt). (3)

In this work, we will select Mixed 7c layer from Google Inception [15] (we will use Object
detector’s Inception [18]) and append average pooling layer which will have 2048-dimensional
output for image description. Also, we will append fully connected neural layer with Ne

neurons, which will convert 2048-dimensional vector into Ne dimensional vector. Ne is an
image-words embedding vectors dimensionality [20]. The output vector x1 of fully connected
layer will be the first feed vector for RNN,

x−1 = Mixed7c ∗Wi + bi, (4)

where Wi ∈ R2048xNe and bi ∈ RNe are trainable parameters for image embedding. We also
have lookup embedding matrix Wl ∈ RDxNe , where D is the dictionarys words count. Each
row of the matrix represents a word embedding in image-word embedding space. Each xi

(where i ≥ 0) is the corresponding row at index (Si)(Equation 5).

xi = W Si
e . (5)



Ag. Poghosyan 45

For f from Equation 3 we use a Long Short-Term Memory (LSTM) [21], which has
shown state-of-the-art performance on sequence generation tasks, such as translation or
image caption generation.

Long Short-Term Memory (LSTM) is an RNN cell. It helps in solving RNN training
time problems like vanishing and exploding gradients [21], which is a significant problem
for RNNs. LSTM is commonly used in machine translation, sequence generation and image
description generation tasks. Paper [5] uses recurrent neural network with an LSTM cell to
generate image caption. From a construction perspective, LSTM is a memory cell c encoding
knowledge at every iteration of what inputs have been seen up to this iteration. Later this
knowledge is used for subsequent word generation (10, 11). Behavior of the cell is controlled
by three gates: an input gate, an output gate and a forget gate. Each gate is a vector of
real number elements ranging from 0 to 1. In particular, the forget gate is responsible for
controlling whether to forget the cells old value, the input gate controls the permission for
reading a new input value and finally the output gate controls the permission to output the
new value from the cell. This is done by multiplying the given gate with the corresponding
value (9, 10). The definition of the LSTM is as follows:

it = σ(Wixxt + Wimmt−1), (6)

ft = σ(Wfxxt + Wfmmt−1), (7)

ot = σ(Woxxt + Wommt−1), (8)

ct = ft ¯ ct−1 + it ¯ h(Wcxxt + Wcmmt−1), (9)

mt = ot ¯ ct, (10)

pt+1 = softmax(Wpm ∗mt), (11)

In (6)-(11) equations it, ot, ft are input, output and forget gates, correspondingly, ct is a
cell memory in step t and mt is an output of the LSTM for step (iteration) t. Wix, Wim, Wfx,
Wfm, Wox, Wom, Wcx, Wcm are trainable parameters (variables) of the LSTM.¯ represents
the product with a gate value. Sigmoid σ(·) and h(·) hyperbolic tangent are nonlinearities
of the LSTM. Equation 11 will produce a probability distribution pt+1 over all words in the
dictionary, where Wpm is a trainable parameter.

The LSTM model is trained to predict the probability for the next word of an image
caption after it has observed all the previous words in the captions and image features. For
easier training LSTM is represented in unrolled form, which is a copy of the LSTM memory
for the image and each word of the sentence. Also all LSTMs share the same parameters.

Thus, x−1 is the first input for the first LSTM. Initial state of the LSTM is c−1 zero-filled
memory. For the next LSTMs, inputs correspond to the word embedded vectors. Also, all
recurrent connections are converted into feed-forward connections. Loss function will be sum
of the negative log likelihood of the correct word at each step:

L(I, S) = −
N∑

t=1

log p(St).

For training, we have used AdaGrad instead of multi-batch stochastic gradient descent.
We have trained on Microsoft Common Objects in Context (MSCOCO) [22] image dataset
and keep the same metrics from the original work in caption generation task. [5].

Inference has been made via using Beam Search which gives us variants for the best
scored sentence after many predictions in Table 1.
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Table 1: Image caption generation and object detection via a single model.

1) a group of elephants standing next to each other .
2) a group of elephants standing in a pen .
3) a group of elephants standing next to each other in a zoo.

1) a group of people standing on top of a sandy beach .
2) a group of people standing on top of a beach .
3) a group of people standing on a beach next to the ocean .

1) a baseball player holding a bat on a field .
2) a baseball player swinging a bat on a field .
3) a baseball player swinging a bat at a ball

1) a man sitting in a chair holding a banana .
2) a man sitting in a chair holding a hot dog .
3) a man sitting in a chair holding a banana

4. Conclusion

We have built an image caption generation model on top of object detection model. As our
chosen object detection model has same object classifier (feature extractor) as our chosen
captions generation model, we have the kept all accuracy metrics from both initial works.
Thus, we have created a single model that can generate an image caption and detect objects
names and their locations.
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ä³ïÏ»ñÇ í»ñÝ³·ñÇ ·»Ý»ñ³óáõÙÁ ¨ ûµÛ»ÏïÝ»ñÇ Ñ³ÛïÝ³µ»ñáõÙÁ
Ù»Ï Ùá¹»ÉÇ ÙÇçáóáí

². äáÕáëÛ³Ý

²Ù÷á÷áõÙ

ä³ïÏ»ñÇ Ù³ëÇÝ ÇÙ³ëï³µ³Ý³Ï³Ý ÇÝýáñÙ³óÇ³ÛÇ ³íïáÙ³ï³óí³Í ëï³óáõÙÁ
µ³ñ¹ ËÝ¹Çñ ¿: Î³Ý ³ßË³ï³ÝùÝ»ñ, áñáÝù ·»Ý»ñ³óÝáõÙ »Ý å³ïÏ»ñÇ í»ñÝ³·ÇñÁ
Ï³Ù ·ïÝáõÙ ûµÛ»ÏïÝ»ñÇ Ïááñ¹ÇÝ³ïÝ»Á í»ñçÇÝÝ»ñÇë ³Ýí³ÝáõÙÝ»ñÇ Ñ»ï Ù»Ïï»Õ: ²Ûë
³ßË³ï³ÝùÁ Ý»ñÏ³Û³óÝáõÙ ¿ Ù»Ï ³ÙµáÕç³Ï³Ý Ùá¹»É, áñÁ Ï³ñáÕ³ÝáõÙ ¿ ·»Ý»ñ³óÝ»É
å³ïÏ»ñÇ í»ñÝ³·ÇñÁ ¨ ûµÛ»ÏïÝ»ñÇ ³Ýí³ÝáõÙÝ»ñÁ Çñ»Ýó Ïááñ¹ÇÝ³ïÝ»ñáí:
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Ãåíåðàöèÿ çàãîëîâêà èçîáðàæåíèÿ è îáíàðóæåíèå îáúåêòà
ñ ïîìîùüþ åäèíîé ìîäåëè

À. Ïîãîñÿí

Àííîòàöèÿ

Àâòîìàòè÷åñêîå èçâëå÷åíèå ñåìàíòè÷åñêîé èíôîðìàöèè èç èçîáðàæåíèÿ
- ñëîæíàÿ çàäà÷à. Ñóùåñòâóþò ðàáîòû, êîòîðûå ìîãóò èçâëåêàòü çàãîëîâêè
èçîáðàæåíèé èëè èìåíà îáúåêòîâ è èõ êîîðäèíàòû. Ýòà ðàáîòà ïðåäñòàâëÿåò
ñîáîé îáúåäèíåííóþ åäèíóþ ìîäåëü îáíàðóæåíèÿ îáúåêòîâ è àâòîìàòè÷åñêîãî
ôîðìèðîâàíèÿ çàãîëîâêîâ.
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