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Abstract

In this paper, we present the results on Frege proof complexities of some DNF-
tautologies. At first we introduce the notion of complete DNFs and prove that
complete DNF's are tautologies, we also show that if the proof complexities for the set
of complete DNF's are polynomially bounded, then the set of DNF-tautologies D, for
which the number of non-negated variables in every conjunct is O(log(D)), also has
polynomially bounded proof complexities. Later we show that the set of all balanced
DNF-tautologies has polynomial proof complexities.
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1. Introduction

One of the most fundamental problems of the proof complexity theory is to find an efficient
proof system for classical propositional calculus. There is a widespread understanding that
polynomial-time computability is the correct mathematical model of feasible computation.
According to the opinion, a truly "effective” system should have a polynomial-size p(n) proof
for every tautology of size n. In [1], Cook and Reckhow named such a system a super system.
They showed that NP = coN P iff there exists a super system. It is well known that many
systems are not super. This question about the Frege system, the most natural calculi for
propositional logic, is still open.

In many papers, some specific sets of tautologies are introduced, and it is shown that
the question about polynomially bounded sizes for Frege-proofs of all tautologies is reduced
to an analogous question for a set of specific tautologies. In particular, Lutz Strasburger
introduced in [2] the notion of balanced formulas and showed that if there are polynomially
bounded Frege proofs for the set of balanced tautologies, then the Frege systems are super.
An analogous result for some other class of tautologies is proved in [3].

One of the well-known classes of tautologies is the class of tautologies, given in disjunctive
normal form (DNF-tautologies), and it is an open question if the Frege-proof complexities
for the set of DNF-tautologies have polynomial upper bounds. The Frege-proof complexities
of some DNF-tautology classes are investigated in this paper. At first the notion of complete
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DNF is introduced, and it is proved that if the proof complexities for the set of complete
DNF's are polynomially bounded, then the set of DNF-tautologies D, for which the number
of non-negated variables in every conjunct is O(log(D)), also has polynomially bounded
proof complexities. Then it is proved that the proof complexities of the set of balanced
DNF-tautologies has polynomially bounded proof complexities as well.

2. Main Notions and Notations

Here we give basic definitions, which are necessary to give main results.

Definition 1: A Frege system F uses a denumerable set of propositional variables, a finite
complete set of propositional connectives; F' has a finite set of inference rules defined by a
figure of the form % (the rules of inference with zero hypotheses are axiom schemes);
F must be sound and complete, i.e., for each rule of inference % every truth-value

assignment, satisfying Ay As...A,, also satisfies B, and F must prove every tautology.

The particular choice of a language for the presented propositional formulas is immaterial in
this consideration. However, because of some technical reasons, we assume that the language
contains the propositional variables p; (i > 1) or p;; (i > 1;j > 1) logical connectives
-, A, V, D and parentheses (, ). Note that some parentheses and A can be omitted in generally
accepted cases. Note that our convention for serial disjunction A;V A3V ...V A, (conjunction
Ay N Ay AL AAy) associated from left to right.

By |¢| we denote the size of the formula ¢ defined as the number of all entries of logical
signs in it. It is obvious that the full size of the formula, which is understood to be the
number of all symbols, is bounded by some linear function in |¢|.

In the theory of proof complexity, the four main characteristics of the proof are: t-
complexity (length), defined as the number of proof steps, l-complexity (size), defined as the
sum of sizes for all formulas in the proof (size), s-complexity (space), informally defined as
the maximum of minimal sum of sizes for formulas on blackboard needed to verify all steps
in the proof (formal definitions are, for example, in [2]) and w-complexity (width), defined
as the maximum of sizes of the proof formulas.

Definition 2: Let ¢ be a proof system and ¢ be a tautology. We denote by tf; (lfg, sf;, wg)
the minimal possible value of t-complexity (I-complezity, s-complezity, w-complexity) for all
-proofs of tautology p. By analogy, we can define the mentioned proof complexity charac-

teristics for the proof of any formula A from premises I' and denote them respectively by
t?m (ll(éi—Av 3%—A7 Wy 4)-
Let M be some set of tautologies.

Definition 3: We call the ¢-proofs of tautologies from the set M t-polynomially (I-
polynomially, s-polynomially, w-polynomially) bounded if there is a polynomial p() such that

tg < p(lel) (15 < pllel) 55 < plel) s ws < p(lel)) for all tautologies ¢ from M.

Note that if ¢-proofs of tautologies from the set M are [-polynomially bounded they are also
t-polynomially, s-polynomially, w-polynomially bounded.

Following the usual terminology, we call the variables and negated variables literals for
classical logic. The conjunct K can be represented simply as a set of literals (no conjunct
contains a variable and its negation simultaneously).

In [4], the notion of balanced formulas is introduced in the following way.



G. Petrosyan 9

Definition 4: A propositional formula is called balanced if every variable has only two oc-
currences in it, one positive and one with negative.

In [4], it is shown that the problem on [-polynomially bounded sizes of proofs for all tau-
tologies is reduced to the problem on /-polynomially bounded sizes of proofs for all balanced
tautologies.

3. Main Results

In this part, Frege-proof complexities for some classes of DNF-tautologies are investigated.
A. Here the notion of complete DNF-tautologies is introduced, and it is proved that
if the set of complete DNF-tautologies has [-polynomially therefore also t-polynomially, s-
polynomially, w-polynomially bounded proofs, then the set of DNF-tautologies D, where
the number of non-negated variable in each conjunct is O(log(|D|)), also has [-polynomially
therefore also t-polynomially, s-polynomially, w-polynomially bounded proofs.

Let all variables of a DNF N; V Ny V ... V N,, be negated variables. Conjunct K is called
representative for D if K contains at least one variable (without negation) from each N;
(1 <i < n), and every variable of K is from D.

Definition 5: DNF D, = C; VvV Cy V ...V C,, is called a completion of DNF Dy = Ny V
Ny V ...V N, iff for every representative K of Dy there is a N; (1 <1 < n), which is a subset
of K, and the expression D = (N1 V Na V...V N,)V (C1VCy V...V Cy,) is called a complete
DNF.

Theorem 1: Complete DNFs are tautologies.

Proof. Let’s assume the opposite: there is a complete DNF D = (N;VNa V...V N, )V (C1V
Cy V...V C,y,) such that it is not a tautology. If D = 0 in any collection, then N1V Ny V...V N,
should also be 0 in that collection. Ny V Ny V ...V N,, = 0, only if each conjunct is equal to
0, therefore, we have that in each conjunct N; (1 < i < n) there is a literal equal to 0. If we
consider the conjunct P constructed by the conjunction of the variables of these literals, as
we have a complete DNF, there is a C; (1 < j < m) such that C; is a subset of P, hence
C; = 1, but we have assumed that D = 0, which is a contradiction. W

From this proof it is easy to see that all DNF-tautologies, the conjuncts of which do not
contain a variable and a negated variable simultaneously, are complete DNF's. To evaluate the
proof complexities of DNF-tautologies by reducing the proof to the proof of complete DNF-
tautologies, we must use some transformations of formulas, therefore we give the following
auxiliary statements, which are used to perform those transformations.

Lemma 1: For all formulas A,B and C, the set of the following formulas
1. AVBD>C=(ADC)N(BDC(C)

2. ADAVDB

3. AD(BvVC)=(AD>DB)V(ADC(O)

4. BOD(ADANAB)

5. (ADB)D ((AVC)D(BVC(O)
has l-polynomaially bounded proofs.
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Proof. The proof is obvious. W

Most DNF-tautologies , the proof complexities of which are being investigated, have small
conjuncts sizes compered to their size. Using complete DNFs, we can construct polynomial
proofs for such DNF-tautologies. The following theorem gives such a construction.

Theorem 2: If the set of all complete DNFs has [-polynomially bounded proofs then, the
set of DNF-tautologies D, where the number of non-negated variables in each conjunct is
O(log(|D))), also has l-polynomially bounded proofs.

Proof.  Let’s consider D DNF-tautology, where the number of non-negated variables in
each conjunct is O(log(|D])). For each conjunct, we separate the sub-conjunct of variables
with positive entrance and the set of all such conjuncts and its subsets we denote by P.
Since the number of non-negated variables in each conjunct is O(log(|D|)), there is such a
polynomial p() function that |P| < p(|D]).

If DNF is a tautology, it should have at least one conjunct, where all the variables
are negated, otherwise it does not cover the 0 point we denote the disjunction of all such
conjuncts by N. If D is a tautology, then there is a completion of N such that all conjuncts
are from P. If such a completion did not exist, we would take a conjunct constructed by
taking one variable from each conjunct of N, and this conjunct would not be covered by P,
therefore if we set the values of these variables 1 and the values of all other variables 1, the
value of D will be 0. Let’s denote that completion by C. N V C'is a completion DNF; to
prove D, we need to prove N VC and NV C D D, the first part follows from our condition.

Let’s prove the second part N D D. From Lemma 1.1 we get two tautologies to prove
N D D and C D D. From Lemma 1.2 we get the polynomial proof of N D D. Now
let’s prove C' O D. Suppose C = C; V Cy V ... V Cy,, where C;(1 < i < m) is a conjunct.
Using Lemma 1.1, we can convert C' O D into (C7; D D) A (Cy D D) A ... A (Cyy D D). As
C; (1 <i <'m) is a conjunct, we can prove each one alone and later join them with A. Note
that the number of such C; conjuncts is less than P, therefore it has a polynomial upper
bound. Using Lemma 1.4 and 5, we can reduce the proof of each (C; D D) (1 <i < m) to
a new DNF, which also satisfies the condition that the number of non-negated variables in
each conjunct is O(log(|D])). We can use the same technique to prove these new tautologies
and note that their P sets are subsets of our initial P set, therefore we will use only the
first P. If we continue the proof in this way, we will have several tautologies, the number of
which is polynomial from |D|, and each reduction is performed using polynomial steps and
polynomial formulas, therefore the proof is [-polynomially bounded. B

Corollary 3: If the set of complete DNFs has l-polynomially bounded proofs, than the set of
DNF-tautologies D, where the number of negated variables in each conjunct is O(log(|D|)),
also has l-polynomially bounded proofs.

Proof. The proof can be obtained from the proof of Theorem 2 with slight changes. B
B. Here, the proof complexities of some subset of balanced DNF-tautologies are investigated.

Definition 6: A DNF-tautology is correct if DNF, obtained from it by removing any con-
junct, is no longer a tautology.

Lemma 2: The number of conjuncts in a balanced correct DNF-tautology with n variables
15 n+1.
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Proof.  We prove the lemma by induction on number n of variables in a balanced DNF-
tautology D. If n = 1, we have D = —p V p. Suppose the statement is valid for a balanced
DNF-tautology, which has < n variables. If the number of variables is n + 1, then the
correctly balanced DNF should have at least one conjunct with at least two literals pg\'p;.’.
After assigning oy to the variable p;, everywhere in the given DNF, both the number of
variables and the number of conjuncts decrease by one, hence the number of conjuncts in
the primary DNF should be n +2. R

Corollary 4: FEvery balanced correct DNF-tautology has at least one conjunct, consisting of
one literal.

Theorem 5: All balanced correct DNF-tautologies have [-polynomially bounded proofs.

Proof. Let us have a balanced correct DNF-tautology D = Dy V Dy V ...V D, 1, which
depends on the variables py, ps,...,p,. We take =D and prove the a contradiction. =D =
Ny ANy A ... ANpyq, where N; = =D; (1 <i<n+1)and N; = pi Vpi? V...V pi", where
a; € {0,1} (1 <i<n+1). Based on N;, we construct the formula E; by adding instead
of every variable p; from py, ps, ..., p, which has no occurrence in N;, the formula p; A —p;
on the j-th place with a disjunction. It is obvious that N; = F;, and this equivalence can be
derived with polynomially bounded characteristics of proof complexities. By this notation
we have that formula =D is equivalent to formula D' = F; A E,... A E,, 1. Now we introduce
new propositional variables p;; (1 <i <n+1;1 < j < n), where p;; is true if the variable
p; occurs in V; and is false for the opposite case, and construct on the base of E; new
disjunctions D by replacing both the primary literals and the formulas p; A —p; with the
corresponding variables p;;.
Now we consider the well-known formulas of Pigeon Hole Principle

PHP, = N, VZ;(% DPik O \/Z;(l) Vo<i<j<n (Dik A Djk)-

These formulas have [-polynomially bounded proofs. Using this fact, we can derive the
formulas

NZ2EDE DV Vicickens (Pij A Prj)s
and then we derive the formulas
Vi_1 Vicick<ntt (Dij A Drj)-

Denote by H, the formulas C,, = A}_; Aicick<nt1 —(Pij A prj)- It is not difficult to derive
formulas H,, D C,, with a polynomially bounded proof. If for every 7,5 we denote by [p;]
either the primary literal or the formula p; A —=p; from the formula E;, then it is obvious,
that

L. [Hy] = Ny M<ickznsr ~([pig] A [is])

2. the formulas [H,], [H,] D Vi1 Vigick<nt (pij Apk;) and PH P, [5] have [-polynomially
bounded proofs.

We have derived a contradiction and the proof is [-polynomially bounded. H
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4. Conclusion

Even though the question of polynomial proofs of DNF-tautologies is open here, we gave
some subsystems and showed that if complete DNF-tautologies have polynomial proof com-
plexities, then there is a broad range of DNF-tautologies, which also have polynomial proof
complexities. Balanced tautologies are as hard to prove as all tautologies; in this work we
gave the polynomial proof for balanced DNF-tautologies.
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AHHoTanus

B 9TOM cTaThe MCCAEAOBAHBI CAOKHOCTH BBIBOAOB B cucremax ODpere aasa
HeKOTOpbIX KraccoB AH®-TtaBTOAOTUY. BBepeHo mousTHe moAHBIX AH® 1 pAoKazaHO,
yTO TToAHBIe AH®D SBASIOTCS TaBTOAOTHUSIMU UM, €CAU MHOKeCTBO MOAHBIX AHD mmeeT
TTOAMHOMMAABHO OTpPaHUYEHHBIE CAOKHOCTH BBIBOAOB, TO MHOecCcTBO Bcex AHOD-
TaBTOAOTHH D B Ka>KAOM KOHBIOHKTE KOTOPBIX YMCAO HEOTPUIIATEABHBIX TTePEeMeHHBIX
aBasiercst O(log(|D|)), Takke nMeeT NOAMHOMHAABHO OTrpaHUYEHHBIE CAOKHOCTHU
BBIBOAOB. Aanee AOKazaHO, UYTO HEKOTOPBIM Kaacc cbaraHcupoBaHHBEIX AHO-
TaBTOAOTMH TaKKe UMeeT MTOAMHOMHAABHO OTPaHWYEeHHBIE CAOSKHOCTU BBEIBOAOB.

KaroueBble caoBa: cucteMbl Dpere, croskHOCTU BBIBOAOB, AH®, moansie AHO,
cbaraHCUPOBaHHBIE (DOPMYABL.
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