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Image Reconstruction Using the sinc Kernel Function

Suren B. Alaverdyan

Institute for Informatics and Automation Problems of NAS RA,Yerevan, Armenia
e-mail: souren@iiap.sci.am

Abstract

This study is devoted to address the challenge of solving ill-posed integral equations
for image restoration. The integral equation is widely recognized as an ill-posed prob-
lem [1]. Our study demonstrates that utilizing a two- dimensional function as a kernel
function in the integral equation leads to stable solutions, by establishing a consistent
dependence between the solutions and the input data (images).

We were able to obtain solutions for the integral equation without employing a reg-
ularization process, which significantly reduces the duration of the calculation process.
Keywords: Integral equation, Correct, Kernel function.

Article info: Received 16 March 2023; sent for review 17 April 2023; accepted 18
May 2023.

1. Introduction

There are many publications on the subject of image restoration, and ongoing research
indicates its continued importance in the field.

Numerous methods have been developed for image recovery, including some well-known
examples such as Wiener’s method of filtration [2], Tikhonov’s regularization method for
solving numerical solutions to ill-posed double Fredholm integral equations of the first kind
[1, 3], and a family of methods that utilize the bundle theorem’s result. They are known
as blind deconvolution. Additionally, some methods rely on spectral analysisto restore the
image by altering the spectrum values corresponding to low and high frequencies.

It is worth noting that in solving the image restoration problem, additional challenges
may arise, such as estimating the degree of image distortion, determining the radius of the
scattering function, and finding the image sharpness coefficient or estimation.

The precision coefficient can be used as a characteristic or be one of the characteristics
of the completion of the iteration process.

Since images can have both low-frequency and high-frequency noises simultaneously, the
filtering problem becomes quite delicate. Implementing one filtering method can adversely
affect another one, and vice versa. To address this issue, spectral analysis can be used
to simultaneously alternate the spectrum values in the low-frequency and high-frequency
ranges.
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Considering the importance of V. Kotelnikov’s signal recovery theorem, which uses or-
thogonal basis functions n y, = sinc(r —n), n € Z, however, when using the two- dimen-
sional sinc(z —n,y—mn) = sinc(x —n)sinc(y —n) function as a kernel function in the integral
equation for image recovery, a fundamental question arises whether this approach can make
it a well-posed problem or not. Implementation of the algorithm in the time domain has
yielded positive results making this work worthwhile.

2. Integral Equation for Image Recovery

The integral equation for image reconstruction is a two-dimensional Fredholm integral equa-
tion of the first type (the unknown function is contained within the subintegral expression)
and is expressed as follows:

[ [ k= &y = m (& mydgdn = g(a,v), M

where a <z, <0, c<y,n<d.

The function k(z — &,y — n) is called a kernel of the integral equation and is also known
as a point dispersion (or spread) function, and the integral equation has a free term: g(z,vy),
which is a given function (representing approximate data, images, etc.), f(§,n) is an un-
known function. This equation characterizes a variety of other physical processes, such as
tomography and chemical-mechanical smoothing [4].

It is assumed that the function k(z,y) is a quadratic integrable function:

b

d
// |k(x, y)|*dedy < oo.
Here are some examples of kernel functions:

x2+y2

e Gaussian kernel: k(z,y) = 5o5e 27 ;

1

NEr

e sinc kernel: k(z,y) = sinc(x,y) = sinc(z)sind(y).

e Distance-based kernel: k(z,y) =

Fig. 1. Gaussian kernel.  Fig. 2. Distance-based kernel.  Fig. 3. sinc kernel.
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3. sinc(x) Function Properties

Let’s discuss some properties that are significant in various fields of data processing. Most
of these properties are used in the implementation of the algorithm.

+0o0

/ sinc(z)dr = .

—00

The formula shows that the normalized sinc(z) function takes the following form:

sine(x) = M
e

The following relation is valid for integers:

sinc(n) = { (1): Z ; 8 : (2)

The Fourier transform of sinc(x) is called an orthogonal function, which has the following

form:
—+o00

/ sinc(x)e” ™ dy = rect(w), (3)

where the bounded rectangular function is expressed as follows:

_ L if wl<a,
rect(w) = { 0. if |w>a.

where a = const.
For practical applications, it is more convenient to represent the function rect(w) in the
following way:
1 if 0w <,
rect(w) _{ 0, out of range.

The frequency value of wy = 0.5 is commonly referred to as a center frequency. The
frequency range of wy < 0.5 is considered as a low-pass-frequency range while wy > 0.5 is
referred to as the high-frequency range. It is worth noting that at the value of wy = 0.5, the
filtered function retains its original value.

We can show that the bounded delta function with the integral representation is reduced
to the sinc(x) function:

a a

d(w) = /e’%‘”tdt = 2/cos(wa)dt =
0

—a

9qsi
2asin(wa) = 2asinc(wa). (4)
wa

The delta function has a filtering property. Let us now examine the graphs of the sinc(x)
function and its spectrum (see Fig. 4).

Signals with constant spectral density are called white noise, which contains the entire
range of frequencies: (0,00). By definition, the function rect(w) is the spectral density of
low- frequency w < 5 limited white noise. From (3) and (4) it follows that the sinc function
is the covariance function of low-frequency smooth noise.



12 Image Reconstruction Using the sinc Kernel Function

Fig. 4. Graphs of the sinc(x) function and its amplitude spectrum.

Fig. 5. Graphs of the rect(x) function and its amplitude spectrum.

Formula (2) shows that for all values of n, the vectors y, = sinc(z —n), n € Z form an
orthonormal basis, which is used in signal recovery (V. Kotelnikov’s theorem).

According to the theorem (V. Kotelnikov), any function f(¢), consisting of frequencies
from 0 tof., can be transmitted continuously with any precision, using uniformly spaced
samples taken at intervals of 1/(2f.) seconds.

Any function f(t) containing frequencies between 0 and f. can be transmitted continu-
ously with any level of precision using samples taken at intervals of 1/(2f.) seconds.

wt)= 3 a(kA)sine [Z(t _ m)} L 0<A<

k=—o00

1
2fe

For a signal to be accurately restored, it needs to be broadcast at a frequency of more
than twice its maximum frequency. For instance, audio signals are commonly broadcast at
a frequency of 44,000 hertz, given that the highest frequency audible to humans is 20,000
hertz. Additionally, Formula (4) shows the equivalence of the delta function of the sinc(z)
function. In physics, problems involving the delta function are typically handled by using
the sinc(x) function within a small range during calculations.



S. Alaverdyan 13

4. The sinc Function and Image Reconstruction in the Time Domain

An image is a projection of reflected electromagnetic waves onto a receiver. The main
characteristics of an image, such as its resolution (the number of points per unit area),
illumination, color, and contrast. These characteristics are significantly different from those
characteristics of the signal that created it, such as its frequency, amplitude, and phase.
However, there is a commonality between them: both are the result of wave processes.

In images, frequency and phase have a hidden nature. It becomes an object of study
after the determination of its spectrum. The mentioned generality allows us to assume that
the image is also a signal and represent it as a linear combination of the two-dimensional
function sinc(x — &)sinc(y — n) and an unknown function.

In this case, the integral equation (1) will take the following form:

| [ sincta = €.y =) f(&, mdedn = gl y). (5)

To implement sinc filtering in the time domain, we can present (5) in a discrete form,
where the sinc(x) function will appear in a normalized form:

sinc(a — €,y — ) f(6,n) = Smmwl@ = §)  sin(moly = n)

(6)

2mw(z — &) 2mw(y — n)
Let m, n be the number of splits in [a, b] and [c, d] intervals:
b— d—
dy = a) dr = =
m n

We can represent the functions f(&,n), g(z,y), sinc(x)sinc(y) as matrices F, G and S,
respectively.
The G matrix has dimensions m X n, while the matrix corresponding to the sinc(z)sinc(y)
kernel function is a square matrix, the size of which is optional: £ = 2p + 1. This number is
chosen as an odd value to ensure the symmetry of transformations and prevent data skewing.
Typically, algorithms are implemented for values of k=3.5, as larger values dramatically
increase computation time.

To represent the unknown matrix F' from (5) in the time domain, we use the known
matrix G and a discrete package (such as convolution) of the kernel function (6):

F=GxS,

where * is the convolution operation symbol.
The dimensions of the F' matrix are (m + 2p) x (n + 2p) . The formula for the discrete
package looks as follows:
i+p  J+p
fig= 22 D0 GijSu—itpo—jtps i=pp+L.om—p; j=p+L..n—p (7
u=i—pv=j—p
It is important to note that while implementing the algorithm, the dimensions of the F
matrix may not be changed, but the indices u and v should be controlled to ensure that they
remain within the ranges [0, m) and [0,n).
Here is an example of the result of filtering an image containing Gaussian noise using (7)
(see Fig. 6).
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Fig. 6. a- original image, b- containing noise, 0 = 2, p =9, c- recovered image.

5. sinc Function and Image Restoration in the Spectral Domain

Image restoration in the spectral domain is performed by finding a solution to the linear
integral Equation (5). To find the unknown function, the two-dimensional Fourier transform
and the bundle theorem (convolution theorem) are used.

The set of functions f(x) and g(x) of one variable is the following integral:

(f9)w) = [ fgle ~ tyat. (®)

To understand the meaning of the package formula, let’s consider a simple example that
deals with the product of two polynomials. Consider two polynomials Pj(x) = 2x — 1;
Py(x) = 2% — 3z + 1. We are required to find the product polynomial of these polynomials.

Let’s write the coefficients of these polynomials in the following form, starting with the
coefficients of the polynomial P;(z) in reverse order: (—1,2).

1) Px): 1,-3,1 2) 1, -3 1 3) 1, -3, 1 4) 1, -3, 1
Py(z): 1, 2 1,2 1,2 1,2

It can be observed that at each step, the coefficients of the polynomial P;(z) are shifted
one step to the left. The coefficients of the first polynomial are multiplied by the coefficients
in front of them and added up. As a result we get the following:

1) —1-1=—1; 2) —1-(=3)+1%2=5; 3) —1-1+2%(=3)=—-7; 4) 2-1=2.

We obtain the coefficients of the product polynomial in reverse order. Correcting them we
will get the following numbers: 2, -7, 5, -1.

Py(2)Py(z) = 22° — T2 + 5z — 1.

This calculation helps to characterize the significance of the bounded integral in Formula
(8). Using the Fourier transform, the product of two functions can be computed efficiently.
If £ and G are transforms of the of functions f and g, respectively, then the product is
calculated by the following formula:

~

(f*g)(@) =7 (F-G),
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where ()15 -G is the product of the corresponding elements of the vectors, and &1 is the
inverse Fourier transform.

According to the bundle theorem, the right-hand side of Equation (5) is the two-
dimensional package of functions sinc(z — &,y — n) and f(£,7), so it can be represented
in the following form:

Do(f(&,m) - sinc(z,y)) = Pa(g(x,y)). 9)

P, and ®, ! are direct and inverse two-dimensional Fourier transforms.

Let us denote the Fourier transforms of the functions f(€,7), sinc(z,y), g(z,y) as F, S
and G , respectively. Since we are dealing with a linear equation and linear transformations,
we can obtain the following expression from Formula (9):

Fo8=¢ or F=C
S
where we find the unknown function:
(G
f(xay) = (I)Zl <S,> :

Since image restoration is an iterative process, an estimate of the image quality is needed to
determine when the process should stop. This estimate is typically based on the normalized
image gradient and Laplacian, which characterize the contours of objects in the image.

Given an image A having m x n patches. The coefficient of sharpness is determined by
the following formula:

B 1 m n - azaij 2 U aaij 8@1']‘ 2
° ZZ<8x2+8y2>+ ZZ<8x+ay

2MNamar

In the given example shown in Fig. 6, for the input image 6-a, which doesn’t contain
any noise, the image sharpness coefficient value is assumed to be s = 0.656817. Then, low-
frequency Gaussian noise with radiuse o0 = 2, r = 9 is then added to the image 6-b, and
the sharpness coefficient is calculated again, resulting in s = 0.254214. After filtering in the
time domain, the sharpness coefficient is improved to s = 0.583647, and after filtering in the
spectral domain, the sharpness coefficient is further improved to s = 0.570277.

6. Conclusion

The paper presents a method for finding solutions to the integral equation for image restora-
tion, which bypasses the regularization process of an incorrectly set integral equation. This
is achieved by selecting an appropriate dispersion function (kernel) of the integral equation
of image restoration. The bounded two-dimensional sinc(z,y) function was chosen as the
kernel.



16 Image Reconstruction Using the sinc Kernel Function

References

[1] XK. Apamap, 3aaava Korim AAS AHHEHHBIX YPABHEHHH C YaCTHBIMH
IIPOHU3BOAHBIMH ruIiepboingeckoro tumna, M. Hayka, 1978.

2] H. Axmep u K. Pao, OpTroroHaAbHbBIEe MIPEOOPA30BaHUA IIPH 00paboOTKe
ugpoBbIx cUurHaAoB, MocKBa, CBsa3b, 1980.

[3] A. H. TuxonoB, «O peryasipusaliui HEKOPPEKTHO IIOCTaBAEHHBIX 3apauy», AAH
CCCP, 1. 153, H. 1, cc. 49 - 52, 1963.

[4] R. Ghulghazaryan, S. Alaverdyan and D. Piliposyan, “Accuarate pressure calculation
method for CMP modeling using Fourier analysis”, Reviesed Selected papers, Computer
Science and Information Technologies (CSIT), doi: 10.1109/CSITechnol.2019.8895113,
pp. 43-46, 2019.

Muwuwuybpltph yopwwbqlnuip stnc dhonijh $niGyghwjh vhongny
Unmptl 2. Upuybpyw

<< QUU hGpnpiwmhyuwjh b wjnniwnwgiwG ypnpitdGiph hpGunpnnun, Gplawl, <wujwunwb
e-mail: souren@iiap.sci.am

Udthnthnid

UWyhnwumwbpnid Gepluwjwgyty E ywwmybpltph yopuyuiqbiiwl hGuntqpu hwjwuwpdw b
monuiGtp quGtint dtpnn, npp Jpowlgmu k ny Ynntlm npyuo hGunbgpw hwjwuwpdiwl
ntgnijjuphqughwjh wpngbup: Uju hwlquidwlpp wywydwlwynpjwo L wuwwuytpltph
JtpwyuwbqGiwb hGntgpuw hwjuwuwpiwl gpiwG $niGyghwjh (Ynphg, kernel) pGunpnipjudp:
Npwbtu Ynphq pGupyt b vwhdwGuhwy tpyswth sine(x, y) $niGyghwa:

Pwlwih puntp’ hGuntqpw) hwjwuwpnmd, Ynntlwum, shentyy, $nillyghw:

PeKOHCTPYKLII/ISI I/1306pa)KeHI/I$I C UCIIOAB30OBAHHUEM CPYHKLII/II/I
siApa sinc
Cypen b. AraBeppsH

WucturyT npodbaeM nHpopMaTuku u aproMatrzanuu HAH PA, EpeBan, ApMeHusa
e-mail: souren@iiap.sci.am

AnHoTanuys

B paboTe mpeaCTaBAEH METOA HAaXOXKAEHUST PeIlleHUs] MHTErPaAbHOTO yPaBHEHUS
BOCCTaHOBAEHMUSI N300pa’keHMUs], KOTOPHIH T03BOASIET OOOMTH IIPOIIECC PEryASIPU3aAIUY
HEKOPPEKTHO 33A@HHOTO WHTErPaAbHOTO YPaBHEHUSI. 3TO O0OCTOSITEABCTBO
00yCAOBAEHO BBIGOPOM (DYHKIMH SIAPA MHTEIPAABHOTO YPaBHEHHS BOCCTAHOBAEHUS
n3o0OpakeHusi. B kauecTBe siApa Gblra BhIOpaHa OTpaHUYEHHAst AByMepHast (PyHKIINS
sine(x, y).

KaroueBwle cAOBa: VHTerparbHOE ypaBHEHHE, KOPPEKTHBIH, IAPO, (DYHKITUS.



Mathematical Problems of Computer Science 60, 17-26, 2023.
doi: 10.51408/1963-0105

UDC 004.8

Promoting Origination of Dynamicity of Non-Cellular
Cognizers

Edward M. Pogossian

Institute for Informatics and Automation Problems of NAS RA, Yerevan, Armenia
e-mail: epogossi@aua.am

Abstract

Dynamic realities exist at the most basic level of elementary particles, which,
according to quantum field theory emerge as excitations of fundamental quantum fields.
At the same time, the nuclei of cognizers — doers, and their modes -1/2place classifiers
and energizers, are also types of dynamic realities. Trying to trace the origin of the
dynamicity of doers to the dynamics of particles and fields would help enlighten the
origination of classifiers in nature.

As a footstep to a positive answer to this question, we provide cases of such
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1. Introduction

1.1. Questioning the origination of non-cellular cognizers, i.e., their nuclei, classifiers, and then
energizers [1,2], inevitably refers to the nature and origination of the most reliable, fundamental
categories of the universe U* such as fields, energy, particles, atoms and their compounds.

We can reasonably expect that the explanation of non-cellular classifiers and energizers by reliable
fundamentals and regularities of their alliancing could be supportive in revealing their origination,
especially, when their appearance can be regularized.

1.1.1. These expectations rely, at least, on the following premises.
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At first, in nature, durable classifiers can be identified as absorbers (it seems even recurrent),
along with widespread single classifiers as atoms that identify other atoms forming certain outputs,
molecules, but unfortunately, performing this only lonely, solitarily, i.e., not recurrently.

1.1.2. Recall also that 1/2-place classifiers and energizers are one of the modes of a type of dynamic
realities - doers, defined as realities having input-output parts and for realities at the input parts
elaborating certain output ones or remain passive [1,2].

1.1.3. Consequently, it is reasonable to assume that the existence or origination of recurrent 1/2-
place classifiers and, generally doers, are not excluded in nature.

Then, recalling that dynamic realities are one of the fundamentals of quantum field theory (QFT),
it is also reasonable to assume that enriching the dynamicity of doers with those in QFT could be
supportive in interpreting classifiers by fundamentals of QFT and might enlighten the origination
of classifiers and energizers in nature.

1.2. Origination of recurrent classifiers, directly or not, is questioned, particularly, in [3,4,5,6], as
well as in [7].

1.2.1. All molecules in hypercycles are linked so that each of them catalyzes the creation of its
successor, with the last molecule catalyzing the first one. In such a manner, the cycle reinforces
itself. Furthermore, it is assumed that each molecule is additionally a subject for self-replication,
hypercycles could originate naturally, and the incorporation of new molecules can extend them
[3,4].

So, an exciting challenge is to link the recurrence of hypercycles with recurrent classifiers of
cognizers.

1.2.2. Communication, we assume, necessarily requires regular identification of the IDs of
correspondents, and thus, their possession of recurrent classifiers of IDs.

1.2.2.1. Indeed, communication between corespondents r and r’ assumes they are nominated.
Then, as it is refined in [1], nominated corespondents inevitable own recurrent classifiers of ID’s.
Namely, communication of r,r” presumes they’ contain classifiers that identify 1Ds of r,r’,
followed by their processing.

1.2.2.2. Consequently, in such interpretation communicating living molecules, argued in [5],
unavoidably have to control and process certain recurrent classifiers.

Thus, statement in [5] (and, generally, in ontogenesis by Pierce [6]) that “...language is a general
principle of Nature” and the statement that “recurrent classifiers are primordial” can be interpreted
as equal.

1.3. In what follows we question, whether doers can be interpreted as models of dynamicity by
QFT and as a positive footstep provide a variety of cases of modeling dynamicity by doers.

In consequent chapters we detail the above intentions as follows.

At first, we position ourselves in the approvals of the hypothesis, followed by takeaways from
originations by QFT focused on acknowledged originations and formations there.

Then, asking whether doers can be interpreted as models of dynamicity by QFT, we provide a
variety of cases of such interpretation and summarize them.

2. Focusing Approval of Hypothesis

2.1. Questioning origination of non-cellular cognizers refers, first of all, to the approval of
origination of the nuclei of the roots of cognizers (nrcogs) — a variety of 1/2place classifiers either
symbolic or not, then, energizers., based on the category of energy and its processing by
constituents of classification and accumulation of energy, as well as overall compartmenting and
reproduction.

Correspondingly, the answer to the questioning is reduced to a reliable explanation of constituents
of nrcogs based on a contemporary theory of physicists on energy and fundamentals, i.e., on QFT.
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Thus, the answer should provide reliable cause-effect chains between classifiers of fundamentals
of QFT and those of nrcogs.
These chains inevitably should refer to the reliability of classifiers of fundamentals such as energy,
fields, particles, and atoms, as well as to the reliability of relationships chaining these classifiers
with the classifiers of nrcogs.
Thus, to advance in a reliable explanation of the origination of nrcogs, we need to address the
reliability scales of these classifiers with respect to the utilities they identify.

2.2. For this aim, recall that the classifiers of community members are mainly inherited or acquired
from genomes and cultures of communities while they could be revealed and contributed to the
cultures in a lifetime.

Classifiers allow community members to identify favoring or damaging realities, i.e., to identify
utilities of realities, to do, to act with them properly.

2.2.1. Recall also that the reliability of classifiers Cl we interpret as a measure of difference
between the utilities promised by ClI for identified by Cl samples and ones actually provided to the
members by these samples [2].

2.2.2. Our basic, primary do-classifiers dClI identify realities with certain procedures straightly,
while complex, system-classifiers sCl identify them as a result of processing the constituent of sCl
that altogether comprise the meanings of sCl and are associated with certain communicates [1].
Communicates (cms) can be IDs of meanings, compositions of IDs of do-classifiers of meanings,
as well as compositions of samples of input domains (indoms) of classifiers.

2.2.3. Communicating members of communities reciprocally explain and understand the meanings
of their cms to coordinate their efforts in attaining or preserving common utilities.
Communications are effective because the meanings of cms of the members are nearly equal. This
equality is caused either by the fact that meanings of the members were directly acquired from the
same communities or were revealed inductively by approximately equal means for all members,
caused, first of all, by the commonality of their genomes.

2.3. Let us underline also that equal understanding of some cms ¢ in communities C means only
that members of C have approximately equal meanings mc on c, while the degrees of cohesion of
utilities of realities identified by mc classifiers, i.e., identification of realities with prescribed to mc
classifiers utilities, or quality of mc classifiers, can vary greatly.

2.4. Depending on the amount of experience, not always suitable goals and some other reasons
argued in [2], classifiers, in general, can be far from perfectness, i.e., not sufficiently reliable in
identifying the utilities associated with them.

Indeed, all classifiers are formed with a variety of types and amounts of experience, while
massively experienced classifiers are stated as postulates.

Postulates combined with classifiers inferred from postulates by some rules/relationships (say by
cause-effect one or its modus pones abstraction in logics) and possibly together with some not
inferred assertions, hypotheses, comprise theories, where inference rules themselves are also based
on experience also approved massively.

2.4.1. Resuming, it can be assumed that the more dense and reliable the cause-effect chains linking
classifiers of target nrcogs to those with already acknowledged degrees of reliability in theories,
the closer the reliability of target nrcogs to the degrees of such classifiers and chains.

2.4.2. Note that such explanations, as a side effect, could illuminate the limits of current means of
cognizing for adequate representation of U* and, possibly, provide an additional, maybe more
transparent axiomatic views on the fundamentals themselves.

2.5. Another way of approving the classifiers on the origination of nrcogs, i.e., the hypotheses on
it, is an attempt to approve them constructively, namely, by constructing regularized classifiers
Cl that adequately model the target ones CI’ as in [1].
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2.5.1. Regularized classifiers Cl are accompanied by means, say, methods, procedures, and
algorithms, that with some reliability not only identify the samples of ClI, but also reproduce, and
generate such samples.
These means allow the production of realities equal to the samples of indoms of Cl either with
some involvement of humans in their formation, or more without them, if automated.
2.5.2. Positives r of regularized classifiers Cl and ClI themselves are interpreted as models of
classifiers CI if r are also classified as positives of CI', while Cl are interpreted as adequate models
of CI” if positives r meet certain additional requirements induced by positives of CI’.
For example, if CI classify algorithms, while CI’ computability, then, by Church, Cl adequately
model CI” if for any positive r’ of CI’, equal positive r can be produced by CI.
2.5.3. Classifiers Cl are constructively regularized if Cl are regularized and samples sps of Cl are
assembled by explicit algorithms alCl from non-cellular independent units of matter.
And since algorithms alCl are capable of producing positives of Cl, they can, to some extent,
equally substitute CI.
2.5.4. The impact of constructively regularized classifiers Cl on the approval of hypothesis CI’ by
its adequate modeling is based on the assumption that the provision by Cl with such modeling
algorithms alCl acknowledges to some extent the revelation of cause-effect relationships
comprising the nature of CI’.
2.5.5. Note that the criteria of regularization comprise one of the cores of science. Particularly, we
trust scientific classifiers Cl if for prescribed, reproducible conditions Cl procedurally provide
certain predefined realities.
2.6. A mighty instrument of approval of classifiers Cl in science is the quantification of meanings
of Cl.
The meanings of such quantified classifiers Cl include constituent classifiers, and properties
accompanied by certain functions, operators, such as weighting, melting or boiling
points, viscosity, density, etc., capable of corresponding to the positives of Cl in certain quantities.
These quantities allow us to represent the positives of Cl quantitatively, i.e., to model ClI
quantitatively, then, study these models in quantitative theories to interpret the results for the
original CI.
2.7. Thus, the approval of the origination of nrcogs could support explanations in proper theories,
i.e., reliable chains of constructively regularized classifiers, as well as the construction of
regularized classifiers adequately modeling nrcogs.
In practice, however, explanations along with regularized classifiers include ones experienced only
with a variety of degrees of reliability up to the plain hypothesis.
Thus, in approving the origination of nrcogs in theories, at first, it could be available only to chain
targets with adequately and constructively modeled classifiers, followed by attempts of approval
of targets by massively experimenting and/or densely chaining them with already acknowledged
reliable classifiers.

2.7.1. Keep in mind that despite the above ways of enhancing the reliability of approval of
classifiers, eventually, classifiers cannot be absolutely reliable since they always extrapolate some
restricted experiences.

2.7.2. Note also that, generally, if cause-effect chains are short-distanced from the fundamentals
of theories, they explain originations, whereas, otherwise, they explain formations.

3. Takeaways from Originations

3.1. Guiding takeaways. Nowadays, the origination of realities tends to be interpreted by
fundamentals of suitable theories.
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It is acknowledged that quantum field theory (QFT) provides one of the most comprehensive views
on origination and “...properties of nature at the scale of atoms and subatomic particles,
complementing classical physics that describes many aspects of nature at an ordinary
(macroscopic) scale but not sufficient for describing them at small (atomic and subatomic) scales”
[8].

Reasonably, we can assume that QFT could be supportive in the interpretation of origination of
non- cellular 1/2place classifiers and energizers, i.e., the nuclei of roots of cognizers (nrcogs), and
will be looking for it as follows.

3.1.1. In theories such as QFT, assertions/classifiers are eventually based on experiences and
assumptions, and thus vary in reliability as it was already introduced.

Postulates compared with other classifiers of theories, nevertheless, have certain preferences in
reliability since they are massively experienced being only several allowed by cause-effect chains
to infer an enormous amount of reliable classifiers of T, thus, ideally, capable to become necessary
and sufficient for inferring the body of T.

Hence, targeting reliable explanations of the hypothesis on the origination of nrcogs, we need to
position ourselves in postulates comprising the ground of reliability of suitable theories that,
assumingly, can be referenced in explanations of our target nrcogs.

3.1.2. Note, that realities encompassing the already revealed primordial-based chains in theories,
can appear as roots and/or constituents of chains of origination of nrcogs.

3.1.3. Note also that theories such as QFT signify one of the dimensions of physics and cannot,
but are grounded on already accustomed classifiers of sciences and, moreover, on the entire human
knowledge.

Thus, QFT interpretations and our takeaways from it will inevitably include common, accustomed
units of community languages.

3.1.4. Keeping in mind the above notes, let us provide a takeaway from postulated and originated
realities of QFT, as well as address the available premises of origination of nrcogs.

3.2. Originations. According to modern cosmology, the universe is expanding and there is
convincing evidence that it was hot and dense in the past.

We can distinguish between the entire universe (U*), and the part (or the “patch”) of the universe
that we can observe. U* may contain many, perhaps infinite number of such patches, as there is
no evidence of U* having any boundary. Thus, while any finite patch of U* would shrink to an
infinitesimally small size in the past, U* could still contain an infinite number of such tiny regions
and thus be infinite in extent [8,9].

When the density of the universe (both U* and any patch of it) becomes too high, quantum gravity
effects are expected to dominate and the nature of space-time would change. Note, while there are
some theoretical ideas on what may happen at that point, modern physics cannot yet describe the
universe at such high densities.

3.2.1. All dynamical realities we see around us are, ultimately, made of elementary particles, such
as electrons, quarks, and neutrinos that, in addition to gravity, interact via electromagnetic, weak
and strong forces. Where did all these particles come from?

In the current understanding of particle physics, based on QFT, each type of particle corresponds
to a fundamental quantum field that is postulated to have existed at all times.

What we perceive as a particle, is an excitation of the corresponding field. For example, an electron
particle would be an excitation of the electron field.

Producing the excitations, i.e., the particles, requires energy. The energy could be transferred to
the particle fields from other fields, such as the inflaton field responsible for driving a period of
exponentially fast expansion in the early universe known as Inflation.

3.2.2. According to the inflationary paradigm, which is widely accepted by cosmologists, the
universe experienced a period of rapid expansion in which the density of all particles was diluted
to a negligible level.
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This expansion was driven by the potential energy of the inflaton field — a fundamental field that
is postulated to have certain properties that allow it to cause cosmic acceleration. The period of
rapid expansion eventually ends when the inflaton starts to convert most of its potential energy
into kinetic energy.
During this period, known as reheating, rapid oscillations of the inflaton field transfer energy to
the particle fields, producing a large number of particles of all types that would be at very high
temperature at that time.
Effectively, this is the moment of the Big Bang, when the universe became hot. At that time, all
particles were massless.
The electrons and quarks do not acquire mass until later — this happens via the famous Higgs
mechanism after the electroweak phase transition.
3.2.3. During Inflation, quantum fluctuations, that are inevitably present in all fields, are amplified
by the rapid expansion and leave dents, or wells, in space-time after inflation ends. The wells serve
as seeds for structures, such as stars and galaxies in the later universe.
As the universe expands, elementary particles assemble to form nuclei and atoms. The atoms then
congregate in the wells left by Inflation and, through gravity, grow into larger clumps of matter
that later form stars and galaxies.
3.3. Evoking universes and energy.
3.3.1. Universes. Let us recall the assumption that the universe U* is an extrapolation of those U
of communities, in turn, comprised of universes based on experiences of particular observers, the
members of communities that, eventually, are based on the imprints, i.e., the outputs of classifiers
the members own at the time [1].
And realities of members x of communities C so far are defined as imprints of x, along with causers
of imprints and their classifiers, while the universe of the observers x, xU, as totalities comprised
of realities of x.

Uniting xU by members of communities C’, we get the universe of C’, C’U, and uniting C’U
by all communities the universe for all humans - HU, or U.
And while U is regularized (not constructively) since the representation of U is regularly
transferred through generations of humans, an extrapolated coverage U* of U, apparently, cannot
be regularized.
3.3.2. Energy is postulated as a reality owned by any reality and, moreover, by anything [10].
Energy E(r) of realities r appears to observers as motion of r and/or their constituents, classified as
kinetic energy. There is also energy that can potentially be kinetic energy, i.e., the potential energy,
which, to become kinetic, needs to be released from its current reserved, restrained, bounded, mass
and other appearances to observers.
3.3.3. Energy E(r) is quantifiable. For example, in classical mechanics, E(r) is measured by the
work performed over the realities rl to accelerate its mass from rest to its stated velocity and is
expressed in joules or their equivalent derivatives.
3.3.4. Note that in QFT energy of realities r and their constituents can be measured if r explicitly
are identified by systems s with totally nominated constituents.
Then, since the energy E(s) of systems s is invariant with respect to time translation symmetry, it
should be measured for such representations of s that reflect this symmetry as it can do the wave
function ¥(s) of s.
Note that, what in classical physics used to be called physical quantity or measurable quantity, in
QFT the standard term becomes observable to emphasize that the meaning of quantum realities
must be specified by certain operators [11].
Examples of observables in quantum mechanics are position, velocity, momentum, angular
momentum, spin, and energy.
Thus, at present, the Hamiltonian operator applied to ‘¥(s) is used as a quantifier of the energy of
systems s.
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Namely, the measurement of energy E(s) of systems s follows the scheme:
r=>s => ¥ (s) => Input [Hamiltonian operator] Output =>E(S).

4. Premises to Origination of Dynamicity

4.1. QFT, being well tested and continuing to develop a theory, can provide reliable premises in
interpreting target originations.

Indeed, QFT states that the realities r, charged with kinetic energy, for some reasons met with
realities rl causing a variety of changes of rl1 and themselves changing, for example, the location
of r1 in space, destroying or transforming rl into other r1’ ones.

Such acknowledgment allows us to reduce the question of origination of our targets to the question
of what types of compounds can form, get-together such active, dynamic realities.

Following QFT primordial fields, being excited, originate particles, unite them in atoms,
compounded in molecules that embrace the diversity of matter.

4.1.1. Note that the acknowledgment of existence of primordially dynamic realities in U* is the
result of the reliable human experience, allowing us to question the origination of realities strongly

in the frame of laws of science without any reference to extraterrestrial wills or intentions in U*
associated with the existence of Divines or Gods.

4.2. Dynamic realities being one of the fundamentals of QFT are studied also in mechanics,
chemistry, perception, processing of symbols, etc.

On the other hand, constructive models of cognizing — doers, are defined as a type of dynamic
realities having input-output parts and for realities at the input parts elaborating certain output ones
or remaining passive.

Correspondingly, 1/2place classifiers and energizers, interpreted as types of doers, are also
dynamic realities charged with energy allowing them to process input realities into the output ones.
4.2.1. Thus, linking the dynamicity of doers with the dynamicity in sciences will allow us to enrich
the dynamicity of 1/2place classifiers and energizers with those in sciences too.

Particularly, the goal is to enrich the doers and their modes by links with fundamentals such as
energy attributed by forms of appearance, conservation and transition laws, measurement by work,
and others, that could be supportive in their chaining with fundamentals, thus, helping to enlighten
their origination.

5. Can Dynamicity Be Modeled by Doers?

5.1. The aim of linking the dynamicity of doers with those of fundamentals we refine, in general,
questioning, whether the doers can be interpreted as models of dynamicity by QFT?

As premises and a footstep to a positive answer to this question in what follows, we provide cases
of such interpretation of dynamicity in mechanics, chemistry, perception and processing of
symbols by the dynamicity of doers, concluding with some hints to generalize the cases.

5.2. Durables in [1] were defined as realities that, in contrast with others, temporalis, can be
properly identified in the meantime.

Durables are stationaries if the energy they possess in some forms or appearances is either stationer
or its partial transition to some other forms or appearances can be ignored by observers.
Otherwise, durables are dynamics.

Stationaries, for example, are stones, rocks, pendulums or star systems.

Dynamics include rivers, oceans and, apparently, doers.

5.3. Parenting relationship in OOP can be interpreted as a statement.

St.1.5. Classifiers Cl are parents for classifiers Cli, i=1,...,n, if all attributes of Cl are affirmative
for all positives of Cli.
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Then, uniting all positives of Cli into those of classifier uCli, it can be stated as follows.

St.2.5. Classifiers Cl parenting Cli, i=1,...,n are also parenting classifiers uCl of the unions of
Cli.

5.3.1. Classifiers Cli can be interpreted as sensors snCl, doins diCl [2], absorbers abCl, sugar
synthesizers szCl and professionals prClI.

Indeed. A type of doers, classifiers, are parenting classifiers snCl of sensors that cause imprints
from warmth, light, sound or chemical inputs, as well as the classifiers diCl of doins..

Classifiers abCl of some compounds of atoms absorbing certain chemicals, as well as those of szCl
of synthesizing sugars from carbon dioxide and water, are also parented by doers as the type of
classifiers.

Then, classifiers of doers are parents of classifiers prCl of human professionals, specialized in
elaborating certain input realities into other ones. For example, loaders input some loads, cargos
in some locations and relocate them, then, cookers input nutrients and output their processed
modes, etc.

Correspondingly, we can state that

St.3.5. Classifiers dClI of doers parenting classifiers snCl, diCl, atCl, abCl , szCl, prCl are also
parenting their union udCl.

5.3.2. Note, that classifiers snCl, diCl, atCl, abCl , szCl classify occasionally when they by chance
get input positives, while professionals identified by classifiers prCl address some internal or
external stimuli and become active intentionally.

5.4. Let us now address a dependency between parenting and the modeling of doer-classifiers.
Preliminarily, let us recall that

St.4.5. If classifiers Cl are parenting classifiers Cli, i=1,...,n, and are regularized, then Cl become
also the models of Cli and their union classifiers uCl.

Indeed, classifiers dCl are regularized, either constructively or not, for classifiers snCl, diCl, atCl,
abCl , szCl, prCl, udCl and are parenting them.

5.5. Note that atoms, in general, are only single and not recurrent classifiers, thus, they don’t
exactly meet the above statements. For example, atoms of hydrogen bound with some oxygen ones
became unable to recurrently do the same for other oxygen atoms, as, seemingly, do the absorber
abCl or compounds szCl synthesizing sugar seems, to represent such recurrent classifiers.

6. Conclusions

6.1. Relying on the above cases of positive interpretation of doers as models of dynamicity, it is
worth gquestioning whether they can be models of dynamicity by QFT in general, i.e., be nuclei of
dynamicity by QFT?

6.2. For this aim, it can be assumed that QFT doers r as a type of realities are charged by kinetic
energy and reacting with  some types of realities rl they meet, i.e., realities rl1 of their input
domains, are transformed into realities (r1’, r’), the output product of changing rl1 and possibly r
themselves. For example, r1’ could be a new location of rl in space, or be the result of destroying
or transforming rl.

Then r* could be considered as renewed r after their interaction with rl.
6.2.3. For the gravity force field (gff) doers, it could be assumed that they are spread, distributed
and acting at any point of the gravity field, as inputs could have any mass m at any position p,
(m,p) and as output transpositions of (m,p) into (m,p1), where p1 could be attributed.

6.3. Other types of doers induced by QFT can be questioned, including those of interpreting
particles as excitations of fields [11], as well as constituents of uncials [6].
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JluHaMu4eckue peajuy CYIIECTBYIOT Ha CaMOM 0a30BOM YPOBHE 3JIEMEHTAPHBIX YACTHIL,
KOTOpbIe, cormacHo kBaHToBOM Teopum mossi (QFT), Bo3HUKAIOT Kak pe3ynbTaT BO30OYKICHUS
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TUHAMUYECKUX peanbHocTel. [lombITka MpocieauTs MPOUCXOXKACHNE TUHAMUYHOCTH aKTOPOB
(doers) B nTMHAMHMKE YaCTHIT U TOJIEH MOXKET TPOJUTH CBET HA BOZHUKHOBEHHUE KIIACCH(DUKATOPOB
B IIpUpPOJIE.

O06ocHOBBIBas, YTO aKTOPHI (doers) MOTYT OBITh MOJICTISIMU TMHAMHU3MA JJISI TPUMEPOB U3 psia
o0acTeil, MbI 3ajaeMcs BOIIPOCOM, MOTYT JIM OHU OBITh MOJEISIMU JMHAMH3Ma B OoJiee o0IieM
ciydae.

KiarueBble ciaoBa: MopaenupoBanue, akTopbl (doers), 3HEpru3aTopbl, KiacCU(pUKATOPHI,
no3Hanue (cognizing), ocHoBanus (fundamentals), TMHAMHUYHOCTS.
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Abstract

In earlier studies, the notion of generalized primitive recursive string functions has
been presented, and their connections with abstract paring-based primitive recursive
string functions have been investigated. Our study is centered around establishing
a fundamental theorem that states a connection between these two distinct sorts of
functions. The theorem specifically establishes that the universal definition of every
generalized pairing primitive recursive string function is contingent upon its correspon-
dence with a conventional(abstract) pairing primitive recursive string function. This
article introduces innovative concept of Pairing Primitive Recursive String Functions
(P-PRSF) for manipulating and interacting with word pairs. Based on the principles
of primitive recursion and pairing functions, P-PRSF enables the extraction, transfor-
mation, and combination of word components. The proposed theorems validate the
effectiveness of P-PRSF in capturing relationships within word pairs. Moreover, the
interplay between P-PRSF and Generalized Pairing PRSF (GP-PRSF) extends the
concept to involve more intricate interactions.

Keywords: Word pairing, PRSF, Generalized Pairing PRSF, Superposition, Alpha-
betic PRSF.
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1. Introduction

The foundational principles of basic recursive string functions have provided a framework
for comprehending the computing capacities of functions that manipulate individual words
from a specified alphabet[l, 2, 3]. This novel idea introduces the notion of generalized
pairing primitive recursive string functions (GP-PRSF) and endeavors to unveil the intricate
connections between these advanced functions and their conventional counterparts, known
as pairing primitive recursive string functions (P-PRSF) in the existing literature[4, 5].
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The motivation behind this investigation stems from an inherent curiosity: what occurs
when we surpass the limitations of individual words and engage in the process of manipulat-
ing pairs of words? In the context of this endeavor, the notion of GP-PRSF arises, enabling
the integration of indeterminate functions inside this novel framework. This study aims to
explore the fundamental connections between GP-PRSF and P-PRSF through an examina-
tion of a crucial theorem that provides insights into the circumstances under which these
functions are uniformly defined.

2. Pairing Primitive Recursive String Function (P-PRSF)

The concept of Pairing Primitive Recursive String Functions (P-PRSF) emerges as a formal-
ism to operate on pairs of words from a given alphabet. P-PRSFs build upon the foundation
of traditional Primitive Recursive String Functions (PRSF) [5, 6] and extend their capabili-
ties to address the complexities of word pairing.

Let A = {a1, as, .a,} be a set of alphabets comprising p > 1 distinct symbols. The PRSF

function F' is defined as operating on pairs of words, (P, @), where P and () are words
€ A. The aim of F' is to produce an output based on the input pair. Further, introducing
I, (P, Q) = P and II1( P, Q) = @ are basic pairing functions that extract the first and second
components of the pair, respectively|5].
An undefined basic pairing function: In the context of the extension for word pairing
as generalized word pairing (GPRPF), an undefined word pair function through U(P, Q)
returns an undefined value for any input pair (P, ). It may refer to a scenario where a
function is not defined for certain input pairs as similar to an undefined value for PRSF [7].
This could be due to possible specific conditions or restrictions on the input pairs and also
serve as a foundation for generalized pairing.

2.1 Operators for Pairing Functions

Superposition: If F' is a pairing function, and G4, Gs,, G, are pairing functions, then the
superposition F* of F' with G, Ga, , G, is defined[5] as Equation 1 below:

F*<P7 Q) = F(GI(P7 Q>7G2(P7 Q)MGH(P’ Q)) (1)

In the case of only two pairs of words (P1,P2), it can be used as F*(P1,P2) =
F(G1(P1, P2),Gy(P1, P2)), where only two representations are paired in terms of G and
G.

Alphabetic Primitive Recursion for Pairing Functions: If F'is a pairing function, and
H,,H,,, H, are (n + 2) dimensional pairing functions, then the primitive recursive pairing
function[5] F'* of F with Hy, Hs,, H, is defined ”for some” 1 <i < p as Equations 2 and 3:

F(P,Q) ifR=A, 2)

Hi(P,Q,R,F*(P,Q,R)) if R = Qa; for some a € A. (3)

To better understand how operators use word pairing through P-PRSF, we perform these
operations as according to Table 1, where we’ll perform operations over three different input
pairs. The output for each input pair can be understood as a word that has been constructed
through a process that involves paired words and the application of functions. In the context
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Table 1: Perform P-PRSF through superposition and Alphabetic PRPF over different input pairs.

Operations Definitions Inputl Input2 Input3
(ab,ba)  (a,bb)  (ba,aba)
I, ab a ba
I, ba bb aba
Superposition with the following assumptions as ba bb aba
GI(P ) Q) =1L,

Ga(P, Q) = 54(Q)

to extract the first symbol from the 2nd component of word pairs

F<P7 Q) = Hl
F*(Pa Q) : F(Gl(Pa Q)aGQ(P7 Q))
Alphabetic PRPF  F* = F(P,Q) as Equation 2 for R = ab a ba
A
Alphabetic PRPF If R = Qa; as assumed ab H(ab, H(a, H(ba,
. ba, ab, bb, ab, aba,
H(P7Q7R7F (P7QJR>>7 ba) bb) ab’
FT(P,Q, R) can be evaluated aba)

recursively as

[1,(P1, P2, Qai) = [,(P1, P2)[7]

Alphabetic PRPF  For simplicity(*), we assumed the H ba bb aba
function to extract a word with re-
peated occurrences from input word
pairs

of word pairing and incorporating some assumptions in terms of G and H, this output simply
represents an element that emerges from the relationships between the original input words,
with the recursive process playing a role in shaping these outcomes.

Theorem 1. (P-PRSF for Word Pairing) For any word pairing (P,Q) and given pair-
ing functions F and G as defined, the Alphabetic Primitive Recursive String Function F*
effectively captures and manipulates the relationships within word pairs.

Proof. The previously proposed lemma [5] along with the proposed Theorem [5] was
the foundation for the equivalence between GPRSF and PRSF. The connection lies in the
concept of ”S-image” or the superposition operation[4],[5],which transforms a string function
into a new one. This concept is analogous to the idea of combining and manipulating word
pairs using the proposed P-PRSF operations. Therefore, this theorem can be proved by
induction on the length of the third component R of the input (P, Q, R).

Base Case: For R = A, the base case of Alphabetic Primitive Recursion applies
FH(P,Q,\) = F(P,Q). This effectively extracts and manipulates the components of the
input word pair according to F', demonstrating the foundational operation for word pairing.
Inductive Hypothesis: Assume that for any non-empty word R = Qa of length n,
FT(P,Q,Qa) effectively captures and manipulates the relationships within the word pair
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(P, @), guided by the pairing functions F' and G. Consider the word R = Qab of length
n + 1. By the inductive hypothesis, F* (P, Q, Qab) is constructed through interactions be-
tween the word pair (P, @), R, and the results of previous recursion steps.

Steps: i. Apply H(P,Q,Qab, F*(P,Q,Qab)): This step involves interactions between P,
Q, Qab, and F*(P,Q,Qab), effectively capturing relationships within the pair and guiding
the construction of the result. ii. The recursive process navigates through the components of
R and their interactions with F'*, eventually yielding a word that reflects the relationships
between the original word pair.

By induction, for any non-empty word R, F"(P,Q, R) effectively captures and manipulates
the relationships within the word pair (P, Q). The theorem is proven through induction,
demonstrating that Alphabetic PRSF F'* effectively captures and manipulate relationships
within word pairs. B

Theorem 2. (Preservation of Word Pairing Relations) For any word pairing (P, Q)
and given pairing functions F and G as defined, the Alphabetic PRSF F* preserves the
inherent relationships and interactions within the word pair.

Proof. FT(P,Q,R) is demonstrated to accurately preserve and reflect the relationships
between the components of the input word pair (P,() and the recursive components R.
Through Base Case: For R = A, F"(P,Q, ) evaluates to F(P,(Q), capturing the initial
relationship between the components of (P, Q). Using Recursive Case: For R = Qa, where
a is a symbol from the alphabet A, F™ (P, Q,Qa) involves interactions between P,Q,Qa
and the result of F'* for the previous recursive component. This step accurately reflects the
inherent interaction between the components of the word pair and guides the outcome based
on the chosen pairing functions F' and G.

Considering both the base and recursive cases, it becomes evident that F*(P,Q,R) ef-
fectively preserves the relationships and interactions within the word pair (P, Q) and the
recursive components of R. The preservation of the word pairing relations is established
through the accurate reflection of interactions and relationships within the word pair as
guided by Alphabetic Primitive Recursive String Function F'* . This mathematical proof
reinforces the proposed idea of Pairing Primitive Recursive String Functions for word pairing
scenarios. W

Lemma 1. (Preservation of S-Image under P-PRSF Operations) For any word pair-
ing (P,Q) and given pairing functions F and G as defined, the application of Alphabetic
PRSF F* to a pair of string functions F and G preserves the S-image property.

Proof. Consider a string function F' and its S-image F™*. Applying the Alphabetic PRSF
F* on F and G to form F*(F,G), the new function F*(F,G)* is obtained. As in Base
Case: by applying F'* to F and G retains the S-image property for F'*(F,G), as the base
case and operations of F* are defined consistently with the S-image property. Continue
with Recursive Case: that preserves the S-image property under F'", as it relies on the same
underlying pairing functions F' and G that maintain the S-image property.

By induction, the lemma demonstrates that the application of Alphabetic PRSF F* to the
pairing functions F' and G retains the S-image property, analogous to the preservation of
S-image under generalized primitive recursive string functions. While the previous lemma
(2015) deals with generalized primitive recursive string functions and their S-images, the
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proposed new lemma focuses on the preservation of S-image under the proposed P-PRSF
operations for word pairing. W

Lemma 2. (Composition of P-PRSF is P-PRSF) For any Pairing Primitive Recur-
sive String Functions (P-PRSF) F and G, the composition F o G is also a P-PRSF.

Proof. The composition of P-PRSF functions F' and G retains the properties of P-PRSF,
namely the basic functions, superposition, and alphabetic primitive recursion. Both F' and
G are P-PRSF, they inherently preserve the basic functions (pairing functions II; and II5)
as well as alphabetic primitive recursion and superposition operations. Therefore, their
composition F oG also preserves the basic functions. The superposition operation is defined
as F*(G*(P,Q)), where F* and G* are S-images of F' and G, respectively. Both F* and G*
are primitive recursive string functions in the usual sense due to the properties of P-PRSF.
Since the composition of two primitive recursive functions is itself primitive recursive, F o G
retains the property of superposition. In respect of Alphabetic PRSF, F' and G can also be
defined as with respect to pairing functions II; and II,. The composition F' o G is defined
as F*(GT(P,Q, R)), where F* and G* are Alphabetic PRSF. The composition retains the
property of alphabetic primitive recursion as it operates on the components and interactions
of the word pair based on the P-PRSF operations.

By establishing the properties of basic functions, superposition, and alphabetic primitive
recursion for the composition F' o G, we conclude that the composition of P-PRSF functions
is also a P-PRSF. This lemma demonstrates that the composition of P-PRSF functions
adheres to the same principles and operations as individual P-PRSF functions. This supports
the idea that the proposed operations for word pairing maintain their validity even when
combined in a composite manner. W

3. Interplay with Generalized Pairing PRSF (GP-PRSF)

Now extend the notion of Pairing Primitive Recursive String Functions (P-PRSF) to involve
interactions with generalized versions of these functions[4],[6],[5]. This would allow us to
combine the foundational idea of word pairing with more complex interactions based on
GP-PRSF.

Let’s denote the Generalized Pairing PRSF as H(P,Q), where H is a function that involves
interactions between word pairs (P, @) and is guided by specific rules and operations. The
interactions can be more intricate than basic pairing, incorporating additional considerations
or conditions. Here, H is a function that takes two words P and () as input and performs
complex interactions between them according to H. The proposed concept involves applying
Alphabetic PRSF F'* to a pair of P-PRSF F' and GP-PRSF H. This results in the formation
of a new function F'*(F, H), which captures the interplay between the simpler word pairing
operations and the more intricate interactions guided by H. The focus is on demonstrating
that the operations of F'*(F, H) retain the desired properties of both P-PRSF and GP-PRSF,
thus effectively combining the foundational and advanced aspects.

Example 1 Now we’ll define a GP-PRSF that measures the similarity between two words
based on their character composition. It is actually a very well-developed idea where NLP
researchers achieved effective results in this task, but our focus is only on the interplay
between P-PRSF and GP-PRSF. We’'ll then apply the interplay concept to combine this
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GP-PRSF with a P-PRSF. Let’s define a GP-PRSF S(P,Q) that measures the similarity
between two words P and Q) based on their character composition. The function S calculates
the number of common characters between P and @, normalized by the length of the longer
word. The formula for S can be defined[2] as the following equation:

Number of common characters

maz(length of P, length of Q)

S(P,Q) =

Given a P-PRSF F(P,Q) that extracts the first word of a pair (F(P,Q) = P), the interplay
function FT(F,S) would involve applying F(P,Q) to the first word of the pair and then
calculating the similarity S between that word and the second word Q). Suppose we have the
following word pair: P="apple” and Q="ample”. Using The GP-PRSF S calculates the
similarity between P and Q as 8/5=0.6, now to Interplay with GP-PRSF F*(F,S) P-PRSF
F(P,Q) = P to P, which results in P="apple”. Then, we calculate the similarity S between
P and Q as F™(F,S)(P,Q)=S(P,Q)=0.6.

As above, The interplay between the basic pairing operation and the GP-PRSF involves
extracting the first word P, calculating the similarity between P and @), and obtaining a
numeric value that represents the degree of similarity between the words.

4. Conclusion and Future Directions

The concept of Pairing Primitive Recursive String Functions (P-PRSF) within the domain
of word pairing presents a systematic framework for the manipulation and interaction of
word pairs. By integrating fundamental principles of basic recursion[1],[7] with the inventive
methodology of pairing functions, this notion facilitates the extraction, modification, and
integration of linguistic elements. The theorems and lemmas offered in this study provide
evidence for the soundness of P-PRSF, demonstrating its efficacy in accurately representing
and maintaining connections between word pairs. By examining the relationship between
P-PRSF and the more detailed Generalized Pairing PRSF (GP-PRSF), the idea expands its
practicality to encompass complex interactions. The notion of interplay provides opportu-
nities to explore a wide range of applications, wherein fundamental word pairing procedures
may be integrated with sophisticated interactions driven by particular rules. The inherent
capacity of this interaction facilitates the development of novel functionalities that include
the fundamental and intricate procedures.

The scope of future investigation may involve the advancement of algorithms that utilize
the P-PRSF idea in order to facilitate activities such as text analysis, natural language pro-
cessing, and data transformation. Potential applications of this technology include similarity
calculations, text production, and pattern recognition. The study focuses on advanced inter-
action models that aim to investigate a range of GP-PRSF models for intricate interactions
between pairs of words. This exploration has the potential to yield novel functionalities that
effectively capture semantic links, contextually-aware transformations, and sentiment-based
operations. The practical application of the P-PRSF idea to real-world challenges has the
potential to yield innovative solutions. For instance, the use of P-PRSF can provide struc-
tured procedures[4],[5] that could be advantageous in the development of automated text
editing tools, content summarizing techniques, and creative writing applications.
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Uytih Juwn nunmdGuuhpmipynGGpmd Gipujwuwgyt t pnhwipugquo wyunpgniGuy
ntynipuhy (wpuwyhG $mbGyghwltph hwulugnipynilp, hGyybtu Gwlh nundGuuhpyt] GG
nwg Juwwbtpp Ybpwgwlwl gqmquynpiwl ypw hpdGwo wuwpgmbuly ntynpupy
jwpwjhG pnGyghwGtph htm: Ubtp numdGuuhpnipynilp YaGuopnGuguo E hhdGwpwn
ptinptith  hwunmwwmdwl Ypw, npp Jww b hwunwnnd wju Gpym mwpptp mbGuwlh
dnilGyghwGtinh dhol: @tnptdip hwwnn hwumwwmnd E, np jnipuwpwGyynip pinhwGpugyuo
gniquynpiwl wuwpqniGwly ntynipuhy qwpuyhlG $mlGlyghwyh hwdipnhwlnp vwhdw-
Gnuip wuwyiwlwynpywdo E Gpw hwdwwyuwunwufuwlnpjudp unynpuui (Jtpugulub)
gniquygynn  wuwpqniGwly ntynpupy wnnqughG  $nGyghwyh htwu: Uyju  hnnuon
Gipyujywuglnd & wqupgniGuy ntynipupy qwpughG $nibGyghwGtph (P-PRSF) gqniquygiwG
G(npwpwpuwluwl hwjiguupgp” pwnwqnijqiph htim dwihwnijughwjh b thnfuwgntignipjuG
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hwdwp: <{piGytny yupgniGuy ntynipuhwjh b gniquynpiwl $niGyghwbtph uyqpnilp-
Gtph Yypw' P-PRSF-p hGwpwynpnipyniG L wmwihu pweh pwnunphsGiph punywopp, thn-
fuwmytipynuip L hwdwygnuip: Unwownpywo ptnptivGipp hwumwwmnmd GG P-PRSF-h
wnpyniGuwybmnnipmnilp pwnwgniyqtiph Wb thnfuhwpwpbpnipynGGtpp $hpubtiint hwpgmu:
UytjhG, P-PRSF-h U pnhwlpuguo qniquljgiwl PRSF-h (GP-PRSF) thnfuwgntgmpniln
nnuwjlimud £ hwjtguunpgp® Ghpuwnting wyth pwnpn thnjuwqnbgmpnGGop:
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AnHoTanuys

B Oonee paHHUX HCCAEAOBAHUAX OBIAO IIPEACTABACHO IIOHATHE OOOOIEeHHBIX
IIPUMUTUBHO-PEKYPCUBHBIX CTPOKOBBIX (PYHKIIMM M HNCCAEAOBAHBI UX CBA3U C
a0CTPaKTHBIMU IIPUMUTUBHO-PEKYPCUBHBIMU CTPOKOBBIMU (DYHKIIUSIMU, OCHOBAHHBIMU
Ha CIApPUBAHUMU. Hamre wunccaepoBanne cOCpepOTOUYEHO BOKPYI YCTAHOBAEHUSA
dPyHAAMEHTAABHON TEOpPEMBl, KOTOpas YCTAHABAMBAET CBA3b MEKAY ITUMU ABYMSI
Pa3AUYHBIMU BUAAMU (PYHKIUU. TeopeMa KOHKpPETHO VYCTAQHABAUBAET, YTO
YVHUBEPCAABHOE OIIPeAEAeHHe Ka’KAOU OOOOIIeHHOM CIIapuBaIolel NTPUMUTUBHO-
PEKYPCUBHOM CTPYHHOU (DYHKITUY 3aBUCUT OT €€ COOTBETCTBUSA OOBIYHOM (aOCTPAKTHOM)
CIIapUBalollel IPUMUTUBHO-PEKYPCUBHOU CTPYHHOU (PYHKIIVMN.

B oTOM cTaThe NpepCTaBA€HA MHHOBAIIMOHHAA KOHIENNUS OObeAUHEHUS IIPUMU-
TUBHBIX PEKYPCUBHBIX CTPOKOBBIX (pyHKIUM (P-PRSF) Arg MaHunyAMpoBaHug napaMu
CAOB U B3aumMOAeUCTBUSA ¢ HUMHU. (OCHOBBIBASACh Ha IPUHIMNAX IIPUMUTHUBHOU
pekypcuu U (pyHKuAx cnapusanusd, P-PRSF nmo3zBoageT n3Baekars, IpeoOpPa3oBbIBATH
1 KOMOWHMPOBATH KOMIIOHEHTHI CAOBa. IIpepro’KeHHBIE TeopeMbBl MOATBEPIKAQIOT
s¢ppextuBHOCTE P-PRSF nipu 0OHapy’keHUM OTHOILIEHUM BHYTPU Hap CAOB. bBoaee
TorO, B3amMopercTBue MexAy P-PRSF u Generalized Pairing PRSF (GP-PRSF)
pacInpsieT KOHIENIUIO U BKAIOYAaeT DOAee CAOJKHBIE B3aUMOAEUCTBUS.

KaroueBrle caoBa: Ilapwl caoB, PRSF, oG6ob6miennnie mapsl PRSF, o6o001ieHHBIE
napsl PRSF, cynepno3unus, ardasutaeie PRSF.
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Abstract

The optimal Neyman-Pearson procedure of detection is investigated for models
characterized by four continuous probability distributions arranged into two groups
considered as hypotheses. It is worthy to note that the case of three discrete probabil-
ity distributions arranged in two groups was studied by Haroutunian and Yesayan in
[1]. The Neyman-Pearson theorem holds immense importance when it comes to solving
problems that demand decision making or conclusions to a higher accuracy.
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1. Introduction

The Neyman-Pearson theorem states that the likelihood ratio test is the most powerful test
for a given significance level (or size) in the context of simple binary hypothesis testing
(null hypothesis against alternative hypothesis) problems. It provides a theoretical basis for
determining the critical region or decision rule that maximizes the probability of correctly
detecting a true effect while maintaining a fixed level of Type I error.

Statistical power represents the ability of a hypothesis test to detect a true effect or
difference when it exists in the population. The theorem emphasizes the importance of
optimizing this power while controlling the risk of both Type I and Type II errors. Type I
error, also known as a false positive, occurs when we reject the null hypothesis (assuming
an effect or difference exists) when it is actually true. Type II error, on the other hand,
refers to a false negative, where we fail to reject the null hypothesis (assuming no effect or
difference) when an effect or difference truly exists. The Neyman-Pearson theorem allows us
to strike a balance between these errors by maximizing power while setting a predetermined
significance level (the probability of Type I error).

In [2]-[4], Cox formulated several divers examples of problems for two families of hypothe-
ses testing and developed a general modification of the Neyman-Pearson maximum-likelihood
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ratio procedures for the solution of such problems for the parameters of known continuous
probability distributions (CPDs). In [I], Haroutunian and Yesayan studied the problems
concerning the Neyman-Pearson criterion where discrete probability distributions are ar-
ranged in many groups and where the error probabilities decrease exponentially as 27VF,
when the number of observations N (size of sample) tends to infinity. In [5], Tusnady studied
the hypotheses testing problem of two CPDs, where error probabilities also exponentially
approach zero. The optimal hypotheses testing problems, when error probabilities exponen-
tially approach zero were also studied in [6] and in [7]-[9]. In [§], Haroutunian, Hakobyan
and Hormosi-nejad studied on two-stage optimal testing of multiple hypotheses for the pair
of families of discrete distributions. In [9], Yesayan and Gevorgyan solved the problem of
many CPDs by means of two-stage asymptotically optimal testing of multiple hypotheses
based on Tusnady’s result.

The hypotheses testing problems for two hypotheses were described in detail by Borovkov
[10], Levy [11], van Trees [12], Csiszar and Longo [13], Csiszar and Shields [14], Longo
and Sgarro [I5]. The Neyman-Pearson criterion of multiple hypotheses testing for discrete
random variable was explored in [16].

This paper is devoted to the generalization of the Neyman-Pearson criterion for composite
hypotheses testing problem of CPDs. The result is based on the method proposed by Thomas
and Cover [17] in the paragraph of information theory and statistics.

2. Problem Presentation and Solution

Let P(X) be the space of all CPDs. Let X be a continuous random variable (CRV) with
one of 4 possible CPDs given by probability density functions (PDFs) f,,, m = 1,4. Let
x = (21, %9, ...,ZN), T, € X, n =1, N, be a vector of results of N independent observations

N
of the RV X, then the PDF will be f¥(x) = [] fn(zn).

For a CRV X, four PDFs f1, fa, f3, fa a?re1 given, called the hypotheses. A statistical
hypothesis H is a conjecture about the distribution of population X.
The statistician should make a decision about CPD of CRV. In this paper, we consider this
problem in two stage. These PDFs are divided into two groups (hypotheses) such that the
first hypothesis H; is the group of k£ = 1,2,3 PDFs and the second hypothesis is the group
of 4 — k PDFs. Let us consider the partition when & = 2 and the hypotheses are as follows:

Hy:{fi, fo}, Ho:{fs, fa} (1)

In the first stage the statistician must accept or reject the first hypothesis on the base of
sample x. If the first hypothesis is not rejected the statistician can detect which PDF (f; or
f2) corresponds to CRV. So, if it is rejected the second stage detection will be between f3
and f;.

Taking decisions about the hypotheses statistician can commit the errors.

The probability ozl]ﬁ is to accept a hypothesis different from the true hypothesis H;, [ =
1,2.

We will show that the proposed Thomas and Cover’s proof of Neyman-Pearson theorem for
discrete probability distributions will also work for this case.

We will use these notations for the mazimum-likelihood ratio procedure, so we will take the
mazimum of a pair of PDFs: ¢V (x) = max(fi™ (x); f2"V (x)), g5 (x) = max(f5" (x); fs"¥ (x)).
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Theorem 1. For the threshold t > 0, consider the test Uy defined by region of acceptance

AN* for hypothesis H,:
N
AN*:{X: 91 (%) >t},
g2 (x)

and acceptance region AN* for H,.

So, by these definitions, the corresponding error probabilities (mentioned also in the
introduction) will be

ot (t) = ad (1) = g (A7) = / oY (%)d(x),

o350 = ali) = ) = [ ol

Let AN C XV be the decision region for H; of another test ¥y with error probabilities aflfl
and Oéé\‘g If 041‘1 < O‘1|1’ then 042|2 > aé\lf;

Proof. Let ¥ ~v. and Wy~ be indicator functions of regions. The indicator function is

1, if the sample belongs to the corresponding region, and 0, otherwise. It is obvious that for
all x € XV,

(W 4 (%) = W yn (%)) (g1 (%) — tg2™ (%)) > 0.
Then

/ EXN(‘PAN* (x)gr" (%) — £ an+ (x)g2" (x) — W an (x)g7 (%) + 1V 4n (x) 92" (x))d(x)

[ 66—t G0y — [ (60— 103 )
x€AN*

xe AN
= (1 —aqy) — tagp — (1 — amp) + tage = (aup — ajpy) + tazp — agp) 2 0.

So, from oy < oq‘l it follows that cqp > Oz§|2.

3. Conclusion

This paper discussed a suitable strategy of hypotheses testing for models with 4 known CPDs
grouped in 2 clusters, considered as hypotheses. This problem can be generalized for M > 4
hypotheses, which can be grouped into 2 clusters in various combinations, i.e., the first
hypothesis will be composed by K = 1,2,...M — 1 PDFs and the second by M — K PDFs.
The solving method will be the same, but it is obvious that the result of each combination
will be different.

References

[1] E. A. Haroutunian and A. O. Yesayan, “A Neyman-Pearson proper way to universal
testing of multiple hypotheses formed by groups of distributions”, Mathematical Prob-
lems of Computer Sciences, vol. 54, pp. 18-33, 2020.



38  On Testing of Multiple Hypotheses of Continuous Probability Distributions Arranged into Two Groups

2]

D. R. Cox, “Tests of separate families of hypotheses” In Proceeding 4th Berkley Simp.
Math. Statist. Prob., University of Callifornia Press, Berkelly, pp. 105-123, 1961.

D. R. Cox, “Further results on tests of separate families of hypotheses”, Journal of the
Royal Statist. Society: Serie B, vol. 24, issue 2, pp. 406-424, 1962.

D. R. Cox, “A return to an old paper: Tests of separate families of hypotheses”, Journal
of the Royal Statist. Society: Serie B, vol. 75, issue 2, pp. 207-2015, 2013.

G. Tusnady, “On asymptotically optimal tests”, Annals of Statatistics, vol. 5, no. 2, pp.
385-393, 1977.

W. Hoeffding, “Asymptotically optimal tests for multinomial distributions,” The Annals
of Mathematical Statistics, vol. 36, pp. 369-401, 1965.

E. A. Haroutunian, “Reliability in multiple hypotheses testing and identification prob-
lems” Nato Science Series I1I, Computer and System Sciences, vol.198, IOS Press, pp.
189-201, 2003.

E. A. Haroutunian, P. M. Hakobyan and F. Hormosi-nejad, “On two-stage LAO testing
of multiple hypotheses for the pair of families of distributions”, Journal of Statistics
and Econometrics Methods , vol. 2, no. 2, pp. 127-156, 2013.

A. O. Yesayan and H. Z. Gevorgyan,On two-stage testing of multiple hypotheses testing
concerning continuous random variable , Furopian academia: Collection of scientific
articles, vol. 7, pp. 294-299, 2016.

A. A. Borovkov, Mathematical Statistics (in Russian). Nauka, Novosibirsk, 1997.
B. C. Levy, Principles of Signal Detection and Parameter Estimation, Springer, 2008.

H. van Trees, Detection, Estimation and Modulation Theory, pt.1 New York, Wiley,
1968.

I. Csiszar and G. Longo, “On the error exponent for source coding and for testing simple
statistical hypotheses”, Studia Sc. Math. Hungarica, vol. 6, pp. 181-191, 1971.

I. Csiszar and P. Shields, “ Information theory and statistics: A tutorial”, Foundations
and Trends in Communications and Information Theory, vol. 1, no. 4, 2004.

G. Longo and A. Sgarro, “ The error exponent for the testing of simple statistical
hypotheses: A combinatorial approach”, Journal of Combinatorics and Informational
System Science, vol. 5, no. 1, pp. 58-67, 1980.

E. A. Haroutunian and P. M. Hakobyan, “On Neyman-Pearson principle in multiple
hypotheses testing”, Mathematical Problems of Computer Sciences, vol. XL, pp. 34-37,
2013.

T. M. Cover and J. A. Thomas, Elements of Information Theory, Second Edition, New
York, Wiley, 2006.



A.Yesayan 39

Gnynt fjudpnid nuuwynpjuo wintnhwum hwdwlwlwlwjhG
pwfundGbph Yytpwpbpjw) pwqiwyh Jupyuwoltph umnignid
Upwd O. Guwjwl

X< QUU hGpnpiwnmphlyuwgh b wjmniwnmwgiw ypnpitdGiph hpGunpnnon, Gplawd, <wujwunwb
Lwjwunwlnd dpwGuhwiuwl hwiwuwpwl, Gplwb, Lwjuunwi
e-mail: aram.yesayan@pers.ufar.am

Udthnthnid

‘UhipdwG-Nhpunth uvinniquwl oyumhdw) pGpuguwlupgp hbmwgnuynid £ w6 dnnkiGhpp
hwdwn, npnlp pnipugpynid G0 ynpu wiplnhwwm hwjwlwlwlwihG pwfumdiGtpny, npnlp
pwdwijwo G0 npytiu Jupywottp nhunwlynn tpynt fudph dke: <wny t G2t np ipynt fudph
ut9 pwdwljwo tptip ghulptin hwjwlwlywlwjhG pwpuniGbiph nhwypp htmwgnuyby L
LwpnipymGyubh b Guwywbh Ynnihg [1]:

‘UhpdwG-NhpuntGh pbnpbidp 0o GQwlwympyniG niGh, Gpp funupp ybpwpbpmd E
wjlwhuh fulnhpGtph Modwlp, npnlp wwhwlonid GG npnpnmudGbp uywglby yud wytih
pwndén G2qpunipjudp bqpujugmpynGibp wiby:

Pwluwjh pwntp’  UbjdwG-NhpunGh  wbuwm, wipphwun pwpfumd,  funmpjul
Inyghw, JupyuwoGtiph unmnignid, vjuwih hwywlwlywlnipnil, hntuwhnipymG:

O mpoBepKe MHOTHUX TMIIOTE3 HEIIPEPHIBHEIX PAaCIpPeAeAeHUN
BEPOSITHOCTEM PAaCIOAOKEHHEIX B ABYX Irpynnax

Apam O. Ecagn

WuctuTtyT npodbaeM nHdpopMaTuku u aproMatuianuu HAH PA, EpeBan, ApMmeHusa
®panrrysckuit yuusepcureT B Apmennn, EpeBaH, ApMeHus
e-mail: aram.yesayan@pers.ufar.am

AnHoTanus

HNccaepyercss onTuManbHasg Ipolepypa TectupoBaHusa Helimana-IlupcoHa aag
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PaCIIOAOKEHHBIX B ABYX I'pyHIlaX, ObIA u3ydeH ApyTioHSHOM U EcagHoM [1].
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Abstract

In most existing machine learning and deep learning settings, classification and re-
gression prediction problems may be described as a process where the model output is
based on a single-stage input. In most real-life scenarios achieving the desired medical
state for the patient may involve dynamically solving drug prescription problems based
on the input data at different stages, where each stage is a logical grouping such as
timestep division, ICU stay, etc. Data at a given stage represents a recovery progres-
sion and can be fundamentally different from the datasets from the previous and future
stages. Although A single model may solve the task, a multi-stage learning procedure
may be more suitable. To solve this task, we propose an FNN-driven ensemble-based
approach for predicting the medications that the patient should receive at each stage
of the recovery process. The final medical discharge location is predicted as a result
of sequential predictions of drugs and features. In this work, we combine model en-
sembling and multi-stage iterative learning for solving an optimal drug prescription
generation task as a contribution to the existing literature.

Keywords: Multi-stage classification, Treatment-optimization, Model-ensembling,
Machine learning.
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1. Introduction

In this work, we propose a feedforward neural network-based iterative ensemble model archi-
tecture for solving the target class classification task for the medical domain, where the target
class is the Home Discharge E] The proposed approach involves Feature, Drug, and Output
prediction networks, which can be considered as an extension of decomposition-based (e.g.,
divide and conquer) and multi-objective optimization-based ensemble methods. Similar to

LCode source: https://github.com/karen-gishyan/project
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some of decomposition methods, the original dataset is divided into a collection of datasets
for multiple sub-processing, and similar to multi-objective optimization, we output multi-
ple diverse predictors instead of a single predictor. Unlike decomposition methods, single
Drug and Feature networks are optimized on different datasets at different stages instead of
multiple predictors being optimized of the same type. This approach provides flexibility in
adding more stages to the model architecture. This also means that the same set of network
parameters is updated multiple times during a single forward pass. The alternative could
be to construct a different network for each of the input datasets for each stage, where the
downside would be that the number of networks that need to be optimized linearly would
increase with each additional stage in the model architecture. Training is divided into three
fixed stages (steps). For each stage s except the last one, we train two distinct FNN models:
the Drug prediction network and the Feature prediction network, which predict drugs and
features for the next stage s + 1, respectively. The feature and drug prediction training
inputs at stage s+ 1 are concatenated with the features and drugs at stage s. The rationale
behind this approach is that the drugs given to a patient at each stage depend not only
on the drugs at the previous stage but also on the patient’s features at the previous stage.
The same logic applies to the features, which depend not only on the past features but
also on the past medication. We believe this approach results in more diverse datasets and
better learning. Currently, the actual datasets for model training are available only at the
first stage, and the training datasets at each stage s are iteratively generated based on the
predicted features and drugs using only the observed data at the first stage as an initializa-
tion point. For the last stage, we train an Qutput model for learning the discharge location
classes. Overall, we use three models across all stages: Drug network, Feature Network, and
Output network. The main method can be considered a model-based approach with a strong
emphasis on data-driven stage-based logic, data components, and logical variations of which
were first described in [I] and [2] and further detailed in this work. The contributions can
be summarized in the following points:

e We provide an ensemble-based iterative classification/regression pipeline that includes
not just one but three different networks, each being optimized simultaneously in the
forward pass. In addition, each Feature and Drug network is used multiple times de-
pending on the number of stages. This is different from some of the existing approaches,
where a new network is initialized at each stage.

e Having patient features for time ¢, we predict treatment for ¢ + n periods, where n is
the number of stages (3 for this experiment).

e We train our models on synthetic datasets and give a detailed description of the stage-
based data preprocessing technique.

2. Related Work

Ensemble methods have been widely used in research fields such as computational intel-
ligence and machine learning. Ensemble methods can be categorized into conventional
ensemble methods such as bagging, boosting and random forest, decomposition, negative
correlation learning multi-objective optimization-based methods, fuzzy ensemble, multiple
kernel learning ensemble, and deep learning ensemble Diversity is important in ensemble
methods, and the three ways to create diversity are data diversity, parameter diversity,
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and structural diversity [3, [4, [5]. Data diversity creates multiple datasets from the input
dataset to train different models. The more diverse the datasets, the more diverse the model
learning. Parameter diversity uses different parameter sets for generating different base pre-
dictors, and even with the same training set, the output of the predictors may differ. In
structural diversity, ensemble predictors have different structures and architectures, and this
kind of ensemble is also known as a heterogeneous ensemble [3]. Besides data, parameter,
and structural diversity methods, there are other methods such as divide and conquer [6],
multi-objective optimization [7], and fuzzy ensemble. In multi-objective classification, the
training process yields a collection of optimal and diverse predictors instead of a single pre-
dictor [3]. Divide and conquer is mostly seen in time series forecasting, where the original
dataset is often divided into a collection of parallel or hierarchical datasets, forming sub-
tasks. Predictors are applied to each subtask, and then the outputs are aggregated. Datasets
usually have different characteristics, and predictors mainly differ from each other. In di-
vide and conquer methods, the original time series is decomposed into a collection of time
series from which the original series can be reconstructed [6]. The goal is to obtain smaller
and simpler time series, apply predictions to the decomposed time series, and aggregate the
predictions. Both seasonal decomposition and wavelet transform are decomposition-based
ensemble methods. While the first approach implies a prediction algorithm such as an SVR
being applied to each seasonally decomposed component, in the second approach, a predic-
tion algorithm is applied to the sub-series obtained by decomposing the original series into
orthonormal series by the time domain [6]. [§] presents a divide-and-conquer-based hierar-
chical optimization framework for ensemble classifier learning. The framework includes a
data training environment (DTE) creation that divides the data into multiple clusters and
then trains heterogeneous base classifiers, which are later combined for an optimal ensemble.
For optimizing multi-stage cascade classifiers, [9] proposes a deep model, which jointly opti-
mizes multiple classifiers through several stages of backpropagation. Cascade classifiers were
first proposed in [10] for solving a multi-stage recognition problem. Since then, cascading
classifiers have been successfully applied to tasks such as image recognition [I1], name entity
recognition in clinical notes [12], anomaly detection and localization [13], and so on.

There are a few examples of multi-stage classification used in the medical domain. [14]
solves a multi- stage classification problem for HER2 breast cancer by proposing a transfer
learning-based approach used on the BCI dataset. [15] proposes an effective feature ensemble
with multi-stage classification for breast cancer diagnosis, and the verification happens on
a publicly available mammogram image dataset collected from the TIRMA project. [16]
proposes an automatic system involving multi-stage classification for diagnosing congestive
heart failure using short-term heart rate variability analysis. For the experiments, open
databases from Physionet, Normal Sinus Rhythm Database (NSR2DB), and Congestive
Heart Failure Rhythm Database (CHF2DB) are used. [I7] uses a multi-stage approach for
performing arrhythmia recognition and classification. [I8] uses a machine learning-based
multi-stage classification method to classify Alzheimer’s disease more efficiently. [19] uses a
two-stage machine learning classification approach for heart disease prediction. [20] proposes
a two-stage multi-modal learning algorithm for multi-label skin disease classification. [21]
proposes a multi-stage approach to detect tumors, classify them into glioma or meningioma
and perform their segmentation. [22] uses a transformer-based model for automatic multi-
stage classification of diabetic retinopathy. [23] uses multi-stage superpixel classification for
classifying four lung diseases and healthy lungs using chest X-ray images.
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3. Data

For the experiments from the MIMIC-III clinical database, we use ADMISSIONS, D_Items,
PRESCRIPTIONS, datasets, and a subset of the CHARTFEVETS dataset, the latter contain-
ing 5 million rows from the whole dataset. We use the datasets listed above for generating
Features and Drugs datasets. The Features dataset includes admissions and a list of those
features for which the patient has had between 10 and 300 measurements throughout the
stay. Similar logic is applied to the Drugs dataset, where we select the admission for which
the patient was given more than 10 drugs. These two datasets are further filtered based on
the admission IDs that are present in both. This approach is performed for the DIABETIC
KETOACIDOSIS diagnosis.

3.1 Stage-Based Features and Drugs

As a result of data processing, where we generate the initial versions of the Features and
Drugs datasets, the results of which can be observed in Table [T we proceed to do extra
stage-based processing to obtain the datasets for each time-stage.

3.1.1 Step 1 Processing

From Features and Drugs, we filter those observations where the patient’s stay length was
between 6 and 8 days. We define three stages and generate one Features dataset, and one
Drugs dataset for each stage and one Qutput dataset only for the third stage. The first stage
is defined as the Initial stage, the second as the Intermediary stage, and the third stage
as the Final stage. The features are O2 saturation pulse oximetry, Heart Rate, Respiratory
Rate, Non-Invasive Blood Pressure mean, Non-Invasive Blood Pressure systolic, Non-Invasive
Blood Pressure diastolic, Temperature Fahrenheit, Arterial Blood Pressure systolic, Arterial
Blood Pressure diastolic, Arterial Blood Pressure mean. We define a stage to be a period
corresponding to 2 days spent at the hospital for the first two stages and between 2 and 4
days spent at the hospital for the final third stage. This means that the features observed
and drugs given for the first 2 days become the Features and Drugs datasets for the first
stage, the ones for the 3rd and 4th days the datasets for the second stage, and from the 5th
day up to the 6th or to the 8th day, depending on admission, the datasets for the third stage.
The rationale behind choosing these numbers for defining the stages is that we want each
stage to have at least 2 days’ worth of data. The final stage can have up to two days of more
data compared to previous stages to loosen the restriction for the total admission duration
to be precisely 6 days. However, a bigger difference in the number of days between stages
means more time series observations for some stages compared to others, and we keep it to
2 to avoid increasing the tradeoff further. The more the difference between observations,
the more value padding should be performed to make sure that the datasets have the same
shape.

At this point, we have 3-dimensional data, where the first dimension (batch) is the given
admission, the second dimension (rows) is the number of time steps for each of the given
stage, and the third dimension (columns) is the features or the drugs, depending on if the
dataset is the Features or the Drugs. The structure of the Features dataset can be seen in
Table 2
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Table 1. Initial preprocessing results.

Dataset Statistics

Features Dataset Drugs Dataset

Original
N Observations 2949897 4945985
Unique Admissions 3869 47031
Unique Diagnoses 1445 13880
After Filtering
N Observations 2948538 474213
Unique Admissions 3859 3859
Unique Diagnoses 1443 1443

Table 2. Features dataset for a single batch before averaging.

Features Dataset

Timestep Feature 1 Feature 2 -.- Feature 10
t value 1 value 1 value 1
to value 2 value 2 . value 2
to value 10 value 10 - -- value 10

3.1.2 Step 2 Processing

Processing of this stage allows us to obtain datasets that will be used as a basis of synthetic
data generation used for modeling and experimentation. The processing described in Section
has one limitation. Each patient will surely have a different number of drugs given and
a different number of charted feature measurements for each stage. As most deep learning
frameworks, including the one used in this work, assume that each batch input (admission
data) for the model has the same shape, this means that all the batches need to be padded
with a predefined value for the input data to have a certain shape of (i, j, k). After padding,
we remove the second dimension by averaging the time series instances over the rows, which
we believe makes the data for each stage more representative and less dependent on a single
time-stage observation, which in most cases would be an artificially padded value. For the
Drugs dataset, each drug is first encoded and is assigned a discrete numerical value, but as
there is no natural ordering between the drugs, we further do a dummy conversion, which
means each drug will be present for each patient in the form of either 0 or 1 (absent or
present) showing whether the given drug was part of the patient’s treatment procedure for
the given stage. At this stage, we also generate an Qutput dataset, which again holds values
of 0 or 1, which are later used for the binary classification task. To summarize, we end up
with three datasets. In stages 1, 2, and 3, we get Features, Drugs, and Qutput datasets with
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the following shapes (n, 10), (n,902), and (n, 1), respectively, where n is the number of rows
or unique admissions. Note that the Output dataset is only present for the 3rd stage.

stage: 1 (initial) stage: 2 stage: 3 (final)

'"‘\ /- N N\

Vo \

Features FNN Iy Features . Featurss
(linear regression)

Concatenation J\L JF FNN d@:’_, \ {GQSI.:F:;EEQD“] Quiput

N

Drugs FNN
{logistic regression) Drugs

Drugs

\ AN J\ Y,

Fig. 1. Multi-stage classification pipeline.

4.  Methodology

4.1 Synthetic Data Generation

Due to the particular data processing logic, the Drugs and Features datasets that we obtained
for DIABETIC KETOACIDOSIS have only 16 observations, a shape of (16,902). To be
able to train a machine learning model, we augment our datasets using a synthetic data
generation technique using the Synthetic Data Vault (SDV) package [24]. We use a TVAE
model, a VAE-based deep learning data synthesizer [25]. We augment each dataset to a
size of 5000 observations; however, not all the observations are eventually used for model
fitting. The average synthesized Features dataset similarity to the original Features dataset
across three stages is 64%, while the synthesized Drugs dataset similarity to the original
Drugs dataset across three stages is 98%. Output is generated as part of the Features for
the third stage. As you can see, the similarity is very high for the Drugs dataset, which
is understandable as the data is in a binary format compared to the continuous Features
dataset. There is still, however, a significant class imbalance in the augmented datasets. For
demonstration, there are only 184 instances where the final discharge outcome was positive
(labeled as 1), while for the rest of the observations, the labeling is 0. The model training
suffers from such imbalance, and the training results are poor. To overcome this problem,
from dataset instances that have discharge outcomes of 0, we filter the first 184 instances
and concatenate them to the other 184 instances that have positive discharge outcomes, and
we obtain perfectly balanced datasets. This is performed for both Drugs and Features for
each timestep. One may observe that the augmented datasets are significantly reduced, but
we do this action willingly to make sure that the model results are attributable to the model
itself and do not suffer from poor data. We still do acknowledge that results from synthetic
datasets may not be fully representative of the original datasets.

4.2  Networks and Evaluation

To solve the problem of multi-stage classification, we construct an Ensemble pipeline com-
prising three networks; Feature prediction network, Drug prediction network, and OQutput
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prediction network. Each network is a Feedforward Neural Network (FNN) model. The first
network predicts patient features at the next stage, while the second network predicts patient
drugs at the next stage. Each network takes a concatenated matrix of features and drugs
from the previous stage as an input, then predicts features, drugs, or output depending on
the network. Since learning is divided into multiple stages, which represent logical group-
ings, such as recovery periods in terms of time, using this approach allows obtaining feature
and drug predictions solely based on the features and drugs of the previous step, allowing
for more targeted learning. The Feature network essentially performs linear regression fit-
ting over the stages, while Drug and Output networks perform logistic regression fitting,
predicting probabilities as a result of sigmoid activation. Although we deal with 3 stages,
this process may iteratively continue for i stages until the last stage, where the features and
drugs at stage n — 1 are combined and trained in the Output network to predict the output.
The pipeline can be seen in Fig. 1. The parameters can be observed in Table [3]

Table 3. Pipeline parameters.

Parameters Values
Folds 5
Optimizer Adamax
Loss Function MSE Loss
Epochs 50
Batch Size 100

Learning Rate 0.01

We train the full pipeline using 5-fold cross-validation with shuffled observations, however,
shuffled observation IDs are still the same across stages to make sure that patient’s result
is trained against the results from other stages. Such validation means that 80% of the
observations are held for training, while the remaining 20% is for validation, and this is
performed 5 times. The parameters of the main network are reset for each fold. For all
three networks, we use an MSE loss function, which provides the best learning results. In
a single forward pass, which for each stage s predicts outputs for stage s + 1, including the
final stage, we use an Adamax optimizer that simultaneously optimizes the parameters of
the networks for all three stages. We evaluate learning using recall and F'I-scores on drug
prediction in Stages 2 and 3 and on output in Stage 3. The results are presented as averages
of folds for drugs and output, and each fold average is an average of batches.

Table 4. Multi-stage evaluation results on test folds for a given run.

Drug Prediction Output Prediction

Results Results

Metrics Stage 2 Stage 3 Output

Recall 99.09%  99.98% 99.41%
(fold average)

Flscore  —gg e 94.55% 66.37%

(fold average)
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5. Results

Model training results can be seen in Fig. 2. We see drastically decreasing loss when
predicting drugs and more oscillating loss when predicting the output. T7-T72 means we
predict timestep 2 drugs using timestep 1 input data, and T'2-T3 means we predict timestep
3 drugs using timestep 2 input data. The test evaluation results can be seen in Table[d The
model can predict drugs across stages with significantly high accuracy. There is room for
improvement in output network prediction. The results validate the model training results
shown in Fig. 2, where the learning of the output network is not very smooth. It should be
noted that evaluation results may change depending on the run as a result of cross-validation;
however, the results should be close across the runs.

DIABETIC KETOACIDOSIS

T1-T2 Drugs T2-T3 Drugs Output
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Fig. 2. Training results.

6. Limitations

We identify one main limitation of the paper. Stage-based and generated synthetic datasets
do not allow us to benchmark our approach and results with existing similar studies. Al-
though we provide evaluation results for these datasets, verifying the validity of the approach
with existing studies could add significant value to the work. Providing benchmark datasets
with the logic described in the paper can be part of future work.

7. Conclusion

In this work, we proposed an FNN-based pipeline that combines ensemble learning and
iterative classification for modeling a multi-stage drug prescription procedure. The goal of
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the approach was to make treatment assignments a dynamic rather than a one-stage static
process by utilizing multiple predictor networks. Preprocessed and synthetic datasets for
each stage are also provided. In addition, we also evaluated the performance of the whole
approach based on how well the pipeline predicted drugs and the output on the testing
folds. Although the results are promising, we acknowledge that the evaluations are based on
synthetically derived datasets, which may affect the findings.

As part of future work, we can try to achieve class balance for bigger datasets, provide
dataset benchmarks, improve the output prediction network, and come up with other logical
groupings of a stage besides time. We also acknowledge that treatment predictions may
become credible only after proper medical testing and validation.
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OTAMYATBCI OT HAOOPOB AQHHBIX C MPEABIAYIINX U OYyAYIIUX OTaIlOB. XoTs
OAHY MOAEAb MOJKeT PEeUIuTh 3aAadyy, MHOI'O3TAIlHAs MHpOoIlepAypa OOYUYeHUS MOJKET
0OKas3aThbCsd OoAee TOAXOASIIEH. AN pellleHHWd 3TOU 3apAauy MBI [IpeAAATaeM
ocHOBaHHEIM Ha FNN aHcaMOAeBBIM TOAXOA AAS IIPOTHO3MPOBAHUA AEKapCTB,
KOTOpBIE IaIeHT AOAKEH ITOAYYaTh Ha Ka’KAOM 3Talle Mpollecca BBI3AOPOBAEHUA.
OKOHUYaTEeABHOE MEeCTO MEAWIIMHCKOW BBIMMCKM IIPOTHO3UPYETCI B PpPe3yAbTaTe
IMOCAEAOBATEABHOTO MPOTHO3UPOBAHMS MpelapaToB U ocobeHHOCTeM. B aToit paboTe
MBI OOBEAVMHSEM aHCAaMOAb MOAEAEM ¥ MHOTO3TAIlHOE MTepaTUBHOE OOydYeHUe ANI
pelieHns 3apAauu CO3AaHUS ONTUMAABHOTO peljelTa Ha AeKapCTBa B KaueCTBe BKAAAQ
B CYILIECTBYIOIIYIO AUTEPATYPY.

KaroueBele cAoBa: MHoOrosTamHasi KAaCcCUPUKAIWSA, OINTAMM3AIINS A€UYEeHUS,
aHCAaMOAB MOAEAEN, MAllIMHHOEe OOy4YeHue.
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Abstract

Speaker diarization is the process of partitioning an audio recording into segments
corresponding to individual speakers. In this paper, we present a robust speaker di-
arization system and describe its architecture. We focus on discussing the key compo-
nents necessary for building a strong diarization system, such as voice activity detection
(VAD), speaker embedding, and clustering. Our system emerged as the winner in the
Voxceleb Speaker Recognition Challenge (VoxSRC) 2023, a widely recognized compe-
tition for evaluating speaker diarization systems.

Keywords: Speaker recognition, Speaker diarization, VoxSRC 2023.
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1. Introduction and Related Work

Speaker diarization (SD) is the process of dividing audio into segments according to the
speaker’s identity. It is the process of determining ”who spoke when” in a multi-speaker audio
signal. A typical SD system usually consists of several steps: (1) segment the input audio into
speech segments using a Voice Activity Detector (VAD), (2) generate speaker segments from
the speech segments by either using a uniform sliding window segmentation or by detecting
speaker turns, (3) extract speaker embeddings for each of the speaker segment, (4) group
the resulting speaker embeddings into clusters using clustering algorithms. Commonly used
clustering algorithms include Spectral Clustering (SC) [1] and Agglomerative Hierarchical
Clustering (AHC) [2].

Despite recent advancements in speaker diarization [3], several factors make solving SD
task difficult:

o Uniform speaker segmentation: Long segments very likely contain speaker turn bound-
aries, while short segments carry insufficient speaker information.

52
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o Unknown number of speakers: In general, both the identity of the speakers and the
number of speakers are unknown beforehand.

e Speaker talk time: A speaker needs to talk long enough to be accurately detected.
e Querlap speech: Talking over each other or interrupting.

e Background noise, room acoustics: Environmental sounds and room conditions can
interfere with speaker recognition.

e Consisting of multiple steps: The SD system involves several steps, each of which
introducing some level of error.

Speaker change detection systems have been proposed to mitigate the uniform segmenta-
tion issue [4, 5]. These systems involve a dedicated model trained to detect the exact moment
when speakers change. To deal with a trade-off between long and short segment lengths, a
group of works employs multi-scale segmentation [6, 7]. They use multiple scales (segment
lengths) and fuse the similarity scores between embeddings obtained from the results of each
scale.

To address the overlap speech problem, the recently introduced target-speaker voice
activity detection (TS-VAD) model [8] has attracted much interest due to its great success
in challenging tasks such as VoxSRC [9, 10, 11] and DIHARD-III [12]. Based on the speaker
profiles obtained from a clustering-based diarization, the TS-VAD system can estimate each
speaker’s frame-level voice activities to refine the initial clustering-based results.

A line of research aims to improve the performance of conventional clustering-based meth-
ods by enhancing either through methods like embedding refinement [13, 14] or by refining
similarity scores among speaker embeddings [1]. In [15], the Teacher-Student approach was
employed to increase the robustness of the speaker embedding extractor against different
acoustic conditions.

An alternative line of research ([16, 17, 18]) tackles the segmentation and clustering
modules jointly. These models are referred to as "end-to-end”. End-to-end algorithms have
demonstrated their effectiveness over traditional modular systems in controlled situations
with a limited number of speakers. However, their performance suffers in real-world record-
ings with a larger number of speakers.

In this paper, we describe our clustering-based SD system! for the Diarization Task of
the 2023 VoxCeleb Speaker Recognition Challenge (VoxSRC23)2. The proposed system con-
sists of several sub-modules, such as voice activity detection, speaker embedding extraction,
clustering, and overlap speech detection (OSD). Along with the description, we will outline
how to build a strong speaker diarization system and give a detailed analysis of each method.

2. About the VoxSRC 2023 Challenge

The goal of the VoxSRC challenge is to probe how well current methods can recognize
speakers from speech obtained ’in the wild’. The Voxconverse dataset [19] was used for the
speaker diarization task. The VoxConverse dataset contains 74 hours of human conversation

1
http:
//mm.kaist.ac.kr/datasets/voxceleb/voxsrc/data_workshop_2023/reports/krisp_report.pdf
’http://mm.kaist.ac.kr/datasets/voxceleb/voxsrc/interspeech2023.html
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extracted from YouTube videos. The dataset is divided into a development set (20.3h, 216
recordings) and a test set (53.5h, 232 recordings). The number of speakers in each recording
has a wide range of variety from 1 speaker to 21 speakers. The audio comprises a variety of
noises, such as background music, laughter, and so on. It also contains a significant portion
of overlapping speech from 0% to 30.1% depending on the recording. The primary metric for
this task is the Diarization Error Rate (DER), which is the sum of three terms: false alarm
(FA, incorrectly marking non-speech as speech), missed detection (MS, incorrectly marking
speech as non-speech) and speaker confusion error rate (CER, assigning the wrong speaker
ID within a speech region). A separate evaluation dataset (VoxSRC-23 Test) was used to
establish the rankings on the leaderboard.

3. System Configuration

3.1 Voice Activity Detection

Voice Activity Detection is the process of identifying speech segments within an audio signal,
serving as an essential initial phase for speaker diarization. We employ four different VAD
models, each designed to capture various facets of the task.

3.1.1 GRU-Based VAD

We use a stack of 4 Gated Recurrent Unit (GRU) layers, incorporating layer normalization
between each layer. The final dense layer with sigmoid activation is responsible for calculat-
ing the likelihood of speech occurrence. With this setup, we generate a probability score for
every 30ms of speech. Values nearing 1, signify the presence of speech, whereas values closer
to 0 suggest its absence. We use the Voxconverse dev set for training and the Voxconverse
test set for validation.

3.1.2 NC-Based VAD

We adopt the Noise Cancellation (NC) model [20] to detect voice activity. First, we apply the
NC model to remove any noise and non-speech signals from the original audio. Subsequently,
for each 50ms interval, we calculate the energy of that interval and establish a threshold.
If the energy level exceeds the threshold, we label the segment as speech; otherwise, it is
categorized as non-speech. Additionally, we apply simple post-processing steps to obtain
homogeneous speech activity segments. The architecture of the NC model is the same as
the GRU-VAD architecture, with the exception that it generates a mask. This mask is
subsequently applied to the input spectrogram and transformed into a waveform using the
Inverse Fourier Transform.

3.1.3 ASR-Based VAD

Another approach to detecting voice activity segments involves making use of an Automatic
Speech Recognition (ASR) model to generate timestamps at the level of individual words.
We derive word-level timestamps by employing the Conformer-Medium checkpoint available
in the NeMo?® package. Similar to NC-based VAD, here we also apply post-processing steps
to obtain homogeneous speech segments.

Shttps://github.com/NVIDIA/NeMo
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3.1.4 Pyannote VAD

We also provide evaluation results for an open-source VAD model available in pyannote
package [21]. Specifically, we employ the pyannote.audio 2.1* segmentation pipeline for
computing the voice activity regions.

Table 1. Detection Error Rate of the VAD model on Voxconverse test set.

#Model FA  MISS Detection Error

GRU-based 2.59% 1.40% 3.99%
NC-based 2.83% 2.09% 4.92%
ASR-based 3.04% 1.74% 4.79%
Pyannote 2.01% 1.19% 3.20%
Fusion 2.02% 0.82% 2.84%

Table 1 shows that NC-based and ASR-based VAD models have inferior performance
compared to systems trained under direct supervision. However, when we fuse these models
using a majority vote, we achieve a reduction in detection error rate by 0.36%.

3.2 Speaker Embedding Extraction

Speaker embeddings are fixed-size vector representations from a speech signal that exclusively
capture unique characteristics of the speaker’s identity. Speaker embeddings are commonly
used to classify and discriminate between different speakers.

A few publicly available speaker embedding models listed in Table 2 were compared with
the corresponding performance results and the corresponding training datasets. Performance
results are reported in equal error rates (EER), which is a standard metric used to evaluate

speaker verification.

Table 2. Equal Error Rate values for different embedding extraction models evaluated on the
Voxceleb test benchmark. |

Embedding ‘ EER Training Datasets
TitaNet-Large[22] Vogf—igC(ﬁan Voxcelebl+Voxceleb2, Fisher, Switchboard, Librispeech

. 1.08% . . -
TitaNet-Small[22] Vox 1-Clean Voxceleb1+4Voxceleb2, Fisher, Switchboard, Librispeech

RawNet3[23] \90}?3(-%0 Voxceleb1+Voxceleb2
ECAPA-TDNN|24] Vogi%%ian Voxcelebl+Voxceleb2

To increase the accuracy of speaker recognition and speaker diarization for noisy audios,
we finetune TitaNet-Small with the Teacher-Student method [15] by adding Lo-regularization
term to the AAM loss [25], between embeddings for augmented and non-augmented ver-
sions of the same audio utterance. We follow the fine-tuning steps presented in [15]. For

‘https://huggingface.co/pyannote/segmentation
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fine-tuning, we use the VoxCelebl [26] and VoxCeleb2 [27] datasets. By employing this ap-
proach, we achieved EER comparable to the pre-trained TitaNet-Small® model under normal
conditions. However, the technique demonstrated superior performance in noisy conditions.

3.3 Clustering

Once computed, the speaker embeddings are grouped into clusters. We use two different
clustering algorithms for SD. One method relies on spectral clustering and the other is based
on agglomerative hierarchical clustering.

3.3.1 Spectral Clustering

Our SC-based diarization is similar to [15]. We perform multi-scale segmentation [7] and
extract embeddings with different window and shift sizes. The affinity matrices are con-
structed using the cosine similarity between segment embeddings and are then fused into a
single matrix (see Fig. 1). We further apply the following sequence of refinement operations
on the affinity matrix A (see Fig. 2):

e Row-wise Thresholding: For each row, keep the top-p largest elements and set the rest
to 0

o Symmetrization: Y = (A + AT)
e Diffusion: Y = AAT

Afterwards, we apply the spectral clustering algorithm to obtain speaker IDs. The number
of speakers is determined using the maximal eigen-gap approach [1].
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Fig. 2. Refinement operations on the affinity matrix.

Shttps://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/titanet_small



D. Karamyan and G. Kirakosyan a7

3.3.2 Agglomerative Hierarchical Clustering

First, we extract speaker embeddings from uniformly segmented speech regions. Then, we
refine these embeddings through spectral dimensionality reduction® and affinity aggregation
(AA) techniques [14]. We merged consecutive segments into a longer one if the distance was
greater than the segment threshold. Afterwards, we perform a plain agglomerative clustering
on the refined embeddings with a relatively high stop threshold to obtain the clusters with
high confidence. The clusters from AHC were further processed using the short-duration
filter [2, 10]. We categorize a cluster as "short” if the combined duration of that cluster is
below the specified duration threshold. Later, each short cluster is assigned to the nearest
long cluster based on the cosine distance of their central embeddings. Finally, if a short
cluster significantly differs from all long clusters, which means that the distance between
them is lower than a speaker threshold, we consider it as a new speaker.

3.4  Overlap Speech Detection

To detect regions where two or more speakers are speaking simultaneously, we use pyannote
overlap speech detection pipeline”. After an overlapped region is detected, we replace the
label with the two closest speakers near this region in the time domain.

3.5 Fusion

To improve the diarization accuracy, a series of studies were conducted on the fusion method
of multiple diarization results. More recently, the diarization output voting error reduction
(DOVER) method [28] was proposed to combine multiple diarization outputs based on the
voting scheme. The DOVER method has an implicit assumption that there is no overlapping
speech, i.e., at most only one speaker is assigned for each time index. To accommodate di-
arization outputs with overlapping speakers, the DOVER-LAP [29] method was subsequently
introduced.

We combine different diarization systems using the DOVER-Lap® fusion method with
the Hungarian label mapping algorithm.

4. Experimental Results

Table 3 shows the results on the voxconverse test set and the challenge evaluation test
set. The first row of the table displays the baseline result (VGG baseline), provided by the
challenge organizers. We start with the pyannote VoxSRC22 pipeline (#1) as our initial
system and enhance it by applying the affinity aggregation technique (#2) to refine the
embeddings. This adjustment results in a reduction of 0.59% in DER on the voxconverse
test set.

Next, we designed several diarization systems based on spectral clustering with different
embedding extractors (#3 — #9). These systems all rely on uniform speaker segmentation,
which leads to speaker errors, mainly around the speaker turns. To mitigate this issue, we use

6
https:
//scikit-learn.org/stable/modules/generated/sklearn.manifold.SpectralEmbedding.html
"https://huggingface.co/pyannote/overlapped-speech-detection
Shttps://github.com/desh2608/dover-lap
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different segmentation setups by changing both the window size and the shift size. Multi-
scale segmentation (#5, #8) is also designed to tackle this problem and to remove noisy
entries from the affinity matrix. Furthermore, to make the systems more robust, we apply a
sequence of refinement operations on the affinity matrix. In single-scale segmented setups, we
establish the top-p value for row-wise thresholding as 8. In the case of multi-scale segmented
setups, this value is adjusted to 30. As one can see from Table 3, multi-scale segmented
systems outperform single-scale ones by a margin of 0.3%. Surprisingly, system #9, which
was finetuned with the Teacher-Student technique, achieves a similar score (5.23%) on the
voxconverse test set without using multi-scale segmentation.

As noted in [10], SC-based and AHC-based clustering methods complement each other.
Through our experiments, we also observed similar behaviour. Spectral clustering pro-
vides a more precise estimation of the number of speakers, whereas AHC-based clustering
tends to consistently overestimate it. Conversely, AHC-based clustering excels at identifying
the dominant speakers and demonstrates superior performance on shorter audio files com-
pared to spectral clustering. We conduct a hyperparameter search for AHC-based systems
(#10, #11, #12) on the voxconverse test subset to determine the optimal values for segment
threshold, stop threshold, duration threshold, and speaker threshold. As it is illustrated in
Table 3, AHC-based systems show slightly worse DER scores (5.32%-5.41%) compared to
SC-based systems.

Table 3. The performance of different speaker diarization systems.

N System Window [s] Shift [s] Voxconverse Test VoxSRC-23 Test
DER|[%] DER[%]

VGG baseline - - - 8.68

#1 Pyannote VoxSRC22 - - 5.89 7.33
#2 Pyannote VoxSRC22+AA - - 5.30 -
#3 TitaNet-Large-SC 1.0 0.75 6.00 -
#4 TitaNet-Large-SC 2.0 1.0 5.59 -
#5 TitaNet-Large-SC [2.0, 1.5, 0.75] [1, 0.5, 0.25] 5.25 -
#6 ECAPA-TDNN-SC 1.0 0.75 6.05 -
#7 ECAPA-TDNN-SC 2.0 1.0 5.71 -
#8 ECAPA-TDNN-SC [2, 1.5, 0.75] [1, 0.5, 0.25] 5.38 -
#9 TitaNet-Small-SC 1.5 0.5 5.23 -
#10 TitaNet-Large-AHC 1.5 0.5 5.41 -
#11 ECAPA-TDNN-AHC 1.5 0.5 5.38 -
#12 RawNet3-AHC 1.5 0.75 5.32 -

Fusion(3+4+5+6+7+8)+0SD - - 4.80 6.35

Fusion(2+3+4+5+6+7+8)+0SD - - 4.76 5.98

Fusion(245+8+9410+11+12)+0SD - - 4.39 4.71

Our best system combines 7 different systems fused by DOVER-Lap. Among them,
3 systems are based on spectral clustering, while 4 systems are based on AHC (including
pyannote system #2). We first fused the systems and then dealt with the overlap because
fusing with overlapping labels did not demonstrate any improvement on the voxconverse test
set. This fused system achieves 4.39% DER on the voxconverse test set and 4.71% DER on
the challenge evaluation set, which ranks 2nd place in the VoxSRC 2023 challenge.
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5. Discussions

Throughout our experiments, we observed that better performance on widely adopted
speaker verification evaluation protocols does not lead to better diarization performance.
Additionally, the embedding extractors did not encounter situations where multiple speak-
ers were present in audio utterances. Such scenarios are unavoidable in speaker diarization
due to factors like overlapping speech and speaker transitions.

In contrast to speaker verification, which uses speaker embeddings to represent an endless
number of speakers, speaker diarization only uses embeddings to represent a small number
of speakers in a single session. For instance, only a small part of the information included
in the embeddings will be used to distinguish between a small number of speakers, even if
high-dimensional embeddings are extracted.

Another drawback of conventional clustering-based SD systems is that they do not take
into consideration embedding ordering. Conversations involving multiple speakers are highly
structured, and turn-taking behaviours are not dispersed randomly throughout time.

In our future work, we plan to investigate speaker verification evaluation protocols that
better simulate the diarization scenario. Additionally, we will explore techniques aimed at
adapting and contextualizing speaker embeddings for the speaker diarization task, as well
as exploring approaches to leverage ordering information of embeddings.

6. Conclusions

In this paper, we described our submitted SD system for the diarization task of the 2023
VoxSRC challenge. We mainly focused on reducing speaker confusion errors. To achieve
this goal, we used various methods, such as multi-scale segmentation, affinity refinement
operations, and teacher-student techniques to make our SD systems robust to background
noise and errors that might arise from uniform speech segmentation. Our final system
yielded notable results, reaching a DER of 4.39% on the voxconverse test set and 4.71% on
the challenge evaluation set.
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This paper presents a novel 2D convolutional layer motivated by the principles of
Partial Differential Equation (PDE) of Neural Interaction. Our objective is to leverage
this layer to enhance the classification accuracy of Deep Convolutional Neural Net-
works (DCNN) for various classification tasks. We place a particular emphasis on its
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1. Introduction

Deep Learning is a subfield of machine learning [1]. Neural networks simulate the learning
process of the human brain. This article explores the synergy between deep learning and
PDEs, specifically in the context of enhancing image classification accuracy using ResNet
architecture [2].

PDEs hold significant importance in the realms of sound, image, and video processing
[3].  Their application in image processing primarily revolves around noise removal and
reconstruction[4, 5]. The foundational models relying on PDEs are adept at noise reduction
while simultaneously maintaining the image integral features.

Transitioning our focus to DCNNs, challenges like gradient vanishing and gradient ex-
ploding have often been obstacles in training Neural Networks effectively. ResNet, or Resid-
ual Network, addresses such issues. At its core, the ResNet architecture employs Residual
Blocks. These blocks incorporate skip connections, bypassing selected layers, offering a
unique approach to handling these challenges. We will delve deeper into the intricacies of
the ResNet architecture in the ensuing sections.
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Fig. 1. Equivalent scheme for successive cylindrical segments of a dendritic
membrane of a neural cell.

The essence of this article lies in optimizing DCNNs, specifically ResNet, by leveraging
the capabilities of PDEs. An insightful source for our research is Bresslof’s book, which
introduces the Cable Equation [6](Section 1.4). The cable equation describes the variation
of potential in neural cells.

Our principal objective is to harness the prowess of PDEs in image processing and inte-
grate it within DCNNs, particularly with ResNet.

2.  Mathematical Background

The main focus of this article is on the application of a CNN layer, obtained from Cable
equation for classification tasks. As it was mentioned, the cable equation is an important
mathematical model of the potential transmission in neural cells. The equivalent scheme is
described in Fig. 1.

Taking into account that the transmission of potentials, that is, the transmission of
information in neuronal cells, is governed by the equation described above, we propose to
use the discretization of this equation in the construction of a neural network. According
to the Book designations, the potential transmission in a neuron cell is described by the
following equation:

Ov(x,t)
ot

0*v(z,t)

2
= —’U(I',t) + )\mw

Tm + Tm]emt(x7t>7 t> 07 (1)
where v is a membrane potential at position x along a cable at time ¢, C,, is a capacity per
unit of the membrane, R is a resistance of the intracellular fluid, R,, is a cell membrane resis-
tance, a is a cable radius, 7, = R,,C,, is a membrane time constant and \,, = (R,,a/2R)"/?

is a membrane space constant.
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Therefore, we propose to apply the discretization of this equation in a neural network.
We will employ the grid method to discretize this equation. The grid method is a fundamen-
tal technique that transforms PDEs into discrete computational forms. PDEs are converted
into algebraic equations by segmenting space into a grid of discrete points, facilitating inte-
gration. The distribution of these points establishes the foundation upon which the PDEs
are approximated using the finite difference method. The discretized form of the formula is
obtained through the finite difference method.

In schematic form, Equation (1) takes the following form:

ou
5 alAu —u
or

U = (Ugy + Uyy) — .
Replace the partial derivatives with their finite difference approximations
t+1 t t t t t t t
Uy — Uyp, Ui g — 2Ujp + Ui Ui oq — 2U  + WG gy '
=« 5 a 5 — U, (2)
T h2 h; ’

From (2) follows

t t t t t t
Uiy g =2+ Uiy g Uigq — 22U + Uy

i - , 3)

ule = ufk(l —7)+

where ) )
(I)Q — hx \I’Q — hy
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The resulting scheme is called an explicit scheme because the solution’s value at the given
moment ¢ + 1 is strictly obtained by the solution’s value in the previous ¢ moment.
Equation (3) is equivalent to

t+1 _ t
e =1 —=7) u, + (P + R)-U, (4)
where
¢ ¢ ¢ 1
Ui k-1 Y1k i1 k+1 0 0 0 0 3z 0
— t t t —_ |1 2 1 _ 2
U=y uwy Uy |SD= g —5 g =|0 —5 0
t t t 1
Uit1 k=1 Yirrk  Uit1 k1 0O 0 0 0 g 0

P, and P, are defined as two-dimensional, weighted convolution operators for the neural
network with weights ®, W, and 7 is also a weight. (3) represents our CNN layer, uf*,;l is our

present layer, and ufk is our previous layer, which we will call a cable equation layer.

3. Architecture

In this paper, we introduce a new component within DCNN, which we call a cable equation
layer, and it is designed to be trainable. Our new layer usage highlights the features of
the image, and since the layer is trainable, it allows us to optimize its configuration for
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image processing. Traditional DCNNs begin with a standard convolutional layer. Here we
introduce our cable equation layer at the outset, which enables us to process the image before
the other layers of the network process it further. We investigate the efficacy of our layer in
two convolutional blocks: first, we integrate the cable equation layer into a standard CNN
Block, and second, we integrate the cable equation layer into the ResNet Block (see Fig. 2).

! 1
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Fig. 2. Left: Standard CNN block, Right: ResNet block.

4. Experiments

The CIFAR10 dataset [7] is used for our experiments, consisting of 50K training images and
10K testing images. Input images have 3 channels and a size of 32 x 32, and use the STL10
dataset[8], which consists of 5K training images and 8K testing images, and have 3 channels
and a size of 96 x 96. Network architecture will be presented in the table. Our Cable
Equation layer incorporates BatchNorm [9] and employs the ReLLU activation function. We
conducted two experiments incorporating the Cable Equation layer. In the first experiment,
we introduced the Cable Equation layer along with the preceding layers before the core
Neural Network. For the second experiment, we crafted a residual block infused with a
Cable Equation layer, iteratively applied one or more times, strategically positioned prior to
the Neural Network. Table 1 below is a description of the architecture of the original and
experimental models for the CIFAR10 dataset.

Initially, we implement the k-cable equalization layer, followed by 3x3 convolutions gen-
erating 64 output channels. Subsequently, the architecture encompasses 8 ResNet Blocks,
partitioned into four sections, each with output channels (64, 128, 256, 512). The sequence
continues with 4x4 averaging for CIFAR10 and 12x12 for STL10, a fully connected layer,
and culminates with LogSoftmax activation. We used this architecture for both datasets.
For the CIFAR10 dataset, we initiate preprocessing steps before feeding the data into the
neural network. This involves padding each side with 4 pixels, followed by a random crop
of size 32x32. Additionally, a RandomHorizontalFlip operation is applied, and ultimately,
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Table 1: CIFARI10 dataset: From top to bottom: Original ResNet, ResNet with 1, 2, 3 CabEq
standard blocks, ResNet with 1, 2, 3 CabEqgBIl Residual Blocks. O. S. is the output shape after
each layer.

Original
o
CabEqSdBI1 [3 x 3, 3] x 1 é
[¢]
CabEGSABI2 | [3x 3, 3] x2 %
CabEqSABI3 | [3x 3. 3] x3 3 x 3, 3 x 3, 3 x 3, 33, £
I ] 3x3 64 128 256 512 x
3x3, 3 ,
CabEqRNBI1 "7 x1 { ] x2 x 2 x 2 X2 =
3x3, 3] 64 3 x 3, 3 x 3, 3 x 3, 3% 3, §_
(353 3] 64 128 256 512 I
CabEqRNBI2 i X 2 g
[3%3, 3] %
3x3, 3 g
CabEqRNBI3 x 3 g
3x3, 3]
0.8. 32 x 32 32 x 32 32 x 32 16 x 16 8 x 8 4 x4 1x1

the image is normalized using the means of (0.4914, 0.4822, 0.4465) and standard deviations
of (0.2023, 0.1994, 0.2010). These transformations are conducted on the training data. For
the test data, normalization is exclusively applied using the same means and standard devi-
ations. The outcomes for CIFAR10 are presented in Table 2.

Table 2: The result of testing CIFAR10 dataset in Original ResNet and ResNet with Cable equation
standard blocks and Cable equation ResNet blocks.

Model Accuracy(%) | Parameter cnt

Original 88.92 11181642
CabEqSdBI 1 89.41 11181675
CabEqSdBI 2 89.57 11181708
CabEqSdBI 3 89.4 11181741
CabEqRNBI 1 89.68 11181708
CabEqRNBI 2 89.83 11181774
CabEqRNBI 3 88.9 11181840

For the STL10 dataset, we employ preprocessing procedures tailored to its distinct char-
acteristics. To prepare the data for neural network input, we apply 4-pixel padding to all
sides, followed by a randomized crop of dimensions 96x96. Additionally, a RandomHorizon-
talFlip operation is implemented. Subsequently, the image is normalized using mean values
of (0.44671097, 0.4398105, 0.4066468) and standard deviations of (0.2603405, 0.25657743,
0.27126738). These transformations are integral to the training data, while for the test data,
normalization is consistently applied using the same mean and standard deviation parame-
ters. Table 3 shows the architecture for STL10. The outcomes for STL10 are presented in
Table 4.
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Table 3: STL10 dataset: From top to bottom: Original ResNet, ResNet with 1, 2, 3 CabEq layers,
ResNet with 1, 2, 3 CabEq Residual Blocks. O. S. is the output shape after each layer.

Original >

[e]

CabEGSABIL | [3x3, 3] x 1 F

[e]

CabEqSdBI2 [3 « 3, 3] 2 g

L J s

CabEqSdBI3 | |3x 3, 3| x3 3 %3, 3x 3, 3% 3, 3% 3, Oé

i 7 3x3 64 128 256 512 x

3x3, 3 , <

CabEqRNBI1 ' x 1 [ } X2 X2 X 2 X2 B

3x3, 3 64 3% 3, 3 x 3, 3 x 3, 3 x 3, z

= = =

3x3, 3 64 128 256 512 =

CabEqRNBI2 ' x 2 -

3x3, 3 8

= = LOD

3x3, 3 g

CabEqRNBI3 x 3 g
3% 3, 3]

0.S. 96 x 96 96 x 96 96 x 96 48 x 48 24 x 24 12 x 12 1x1

Table 4: The result of testing STL10 dataset in Original ResNet and ResNet with Cable equation
standard blocks and Cable equation ResNet blocks.

Model Accuracy(%) | Parameter cnt

Original 73.625 11181642
CabEqSdBI 1 75.68 11181675
CabEqSdBI 2 75.33 11181708
CabEqSdBI 3 70.8 11181741
CabEqRNBI 1 75.025 11181708
CabEqRNBI 2 75.6625 11181774
CabEqRNBI 3 75.45 11181840

Our training strategy involves stochastic gradient descent (SGD)[10] coupled with a mo-
mentum of 0.9. The learning rate is managed using a OneCycleLR scheduler[11], featuring
a maximum rate of 0.5. Throughout the training process, we iterate through 100 epochs for
both datasets. Fig. 3 and Fig. 4 show the loss and accuracy for testing images per epoch
for the CIFAR10 and STL10 datasets.
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Fig. 3. Left: Relation between accuracy and epoch count for testing images of CIFAR10 dataset,
Right: Relation between loss and epoch count for testing images of CIFAR10 dataset

- —— Original
70 —— CabEq 1l
—— CabEq 2
60 1 8 —— CabEq 3
—— CabEqgBI 1
> 50 + —— CabEqgBI 2
© w6 R
3 w0 Original & CabEqBI 3
< —— CabEq 1
—— CabEq 2
30_
—— CabEq 3
—— CabEgBI 1
20
—— CabEgBI 2
—— CabEgBI 3
10 4
0 20 40 60 80 100 0 20 20 60 80 100
Number of Epochs Number of Epochs

Fig. 4. Left: Relation between accuracy and epoch count for testing images of STL10 dataset,
Right: Relation between loss and epoch count for testing images of STL10 dataset

5. Conclusion

The aim of this article is to increase the efficiency of DCNNs for classification tasks. We
obtained the discretization of the PDE using the Grid method. Based on this, a convolution
layer was constructed from the obtained convolution operators, which we called this the
Cable equation layer. Motivated by the application of PDEs in image processing, we built
the architecture by adding the Cable equation layer in front of the DCNN as a learnable
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image processing layer. This enables us to find the best layer to process the image. Our
experiments were conducted on the ResNet architecture, and the tests were performed on
the CIFAR10 and STL10 datasets. Based on the obtained results, we can say that having a
layer with a few parameters can increase effectiveness. The subject of further research can
be integrating the Cable equation layer into other architectures, as well as thinking about
creating new architectures based on the Cable equation layer itself.
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thnfuwgptignipjul dwulwyh nhtiptlghw; hwjwuwpiwl ulyqpnlploph Yypw: Utp
Gywwnwll £ oquuugnpot] wju tipnp’ pwpépwuglhnt funpp YnGynpnighnG GtjpnGuwjhG
guwlgtnph nuwuwlwpqiwb 6yqpunmpnilip nwpptp quuwlwpqiwl wowownpulpGtinh
hwdwp: Utlp hwummly tpmp nlnd GGp ResNet dwpunmwpuwwybumnmpjuwl dhe npw
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Pwluyh puntp' funpp YnGynymghnG GEjpnGwjhl gulg, nuuuwjupgiwl wnwownpwip,
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Pa3paboTKa CAOSI CBEPTOUYHOM HEMPOHHOM CETH AAS
IIOBHIIEHUS 3P PEeKTUBHOCTU 3aAa4 KAaCCU(pPUKALIUU
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AHHoTanus

B sTOM CTaThe IIpeACTaBAE€H HOBBIU ABYMEPHBINM CBEPTOYHBLIM CAOU, OCHOBAHHBIU
Ha MPUHIWIAX YPAaBHEHUS B YACTHBIX IIPOM3BOAHBIX HEUPOHHOTO B3aMMOAENCTBUA.
Hama meap MCIIOAB30BATh 3TOT CAOU AAS TIOBBIIIEHUS TOYHOCTU KAACCHU(PUKAIINU
IAYOOKMX CBEPTOYHBIX HEUWPOHHBIX CEeTeU AAS PA3AWYHBIX 33Aa4 KAACCU(pUKaLVWN.
MEI yaeasdgeM ocoboe BHUMaHUe ero MHTerpanuu B apxuTekKTypy ResNet u mpoBoaum
SKCIIepUMeHTaAbHBIe olleHKM HabopoB paHHBIX CIFAR10 u STL10 Arg mpoBepKH ero
3¢ (PEKTUBHOCTH.
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