

 ISSN 2579-2784 (Print)

 ISSN 2538-2788 (Online)

 MATHEMATICAL

PROBLEMS

OF COMPUTER

SCIENCE

 LIX

Yerevan
2023

Հայաստանի Հանրապետության Գիտությունների ազգային ակադեմիայի
Ինֆորմատիկայի և ավտոմատացման պրոբլեմների ինստիտուտ

Институт проблем информатики и автоматизации Национальной академии наук
Республики Армения

Institute for Informatics and Automation Problems of the National Academy of
Sciences of the Republic of Armenia

Կոմպյուտերային գիտության
մաթեմատիկական խնդիրներ

Математические проблемы
компьютерных наук

Mathematical Problems of Computer
Science

LIX

ՀՐԱՏԱՐԱԿՎԱԾ Է ՀՀ ԳԱԱ ԻՆՖՈՐՄԱՏԻԿԱՅԻ ԵՎ ԱՎՏՈՄԱՏԱՑՄԱՆ
ՊՐՈԲԼԵՄՆԵՐԻ ԻՆՍՏԻՏՈՒՏԻ ԿՈՂՄԻՑ

ОПУБЛИКОВАНО ИНСТИТУТОМ ПРОБЛЕМ ИНФОРМАТИКИ И
АВТОМАТИЗАЦИИ НАН РА

PUBLISHED BY THE INSTITUTE FOR INFORMATICS AND AUTOMATION
PROBLEMS OF NAS RA

ԵՐԵՎԱՆ 2023 YEREVAN

Կոմպյուտերային գիտության մաթեմատիկական խնդիրներ, LIX

Կոմպյուտերային գիտության մաթեմատիկական խնդիրներ պարբերականը
հրատարակվում է տարեկան երկու անգամ ՀՀ ԳԱԱ Ինֆորմատիկայի և ավտոմատացման
պրոբլեմների ինստիտուտի (ԻԱՊԻ) կողմից: Այն ընդգրկում է տեսական և կիրառական
մաթեմատիկայի, ինֆորմատիկայի և հաշվողական տեխնիկայի ժամանակակից
ուղղությունները:

Այն ընդգրկված է Բարձրագույն որակավորման հանձնաժողովի ընդունելի ամսագրերի
ցանկում:

 Տպագրվում է Խմբագրական խորհրդի 2023թ. մայիսի 25-ի N 23-05/1

նիստի որոշման հիման վրա

ԽՄԲԱԳՐԱԿԱՆ ԽՈՐՀՈՒՐԴ

Գլխավոր խմբագիր

Յու. Շուքուրյան Գիտությունների ազգային ակադեմիա, Հայաստան
Գլխավոր խմբագրի տեղակալ

 Մ. Հարությունյան ՀՀ ԳԱԱ ԻԱՊԻ, Հայաստան
Խմբագրական խորհրդի անդամներ

Ս. Աղայան Նյու Յորքի քաղաքային համալսարան, ԱՄՆ
Հ. Ավետիսյան ՌԳԱ Համակարգային ծրագրավորման ինստիտուտ, Ռուսաստան
Լ. Ասլանյան ՀՀ ԳԱԱ ԻԱՊԻ, Հայաստան
Հ. Ասցատրյան ՀՀ ԳԱԱ ԻԱՊԻ, Հայաստան
Մ. Դայդե Թուլուզի համակարգչային գիտությունների հետազոտական

համալսարան, Ֆրանսիա
Ա. Դեգտյարյով Սանկտ Պետերբուրգի պետական համալսարան, Ռուսաստան
Ե. Զորյան Սինոփսիս, Կանադա
Յու. Հակոբյան Երևանի պետական համալսարան, Հայաստան
Գ. Մարգարով Հայաստանի ազգային պոլիտեխնիկական համալսարան, Հայաստան
Հ. Մելաձե Վրաստանի տեխնիկական համալսարան, Վրաստան
Հ. Շահումյան Դուբլինի համալսարանական քոլեջ, Իռլանդիա
Ս. Շուքուրյան Երևանի պետական համալսարան, Հայաստան
Է. Պողոսյան ՀՀ ԳԱԱ ԻԱՊԻ, Հայաստան
Վ. Սահակյան ՀՀ ԳԱԱ ԻԱՊԻ, Հայաստան
Պատասխանատու քարտուղար

Փ. Հակոբյան ՀՀ ԳԱԱ ԻԱՊԻ, Հայաստան

ISSN 2579-2784 (Print)
ISSN 2738-2788 (Online)
© Հրատարակված է ՀՀ ԳԱԱ Ինֆորմատիկայի և ավտոմատացման պրոբլեմների

ինստիտուտի կողմից, 2023

Математические проблемы компьютерных наук, LIX

Журнал Математические проблемы компьютерных наук издается два раза в год
Институтом проблем информатики и автоматизации НАН РА. Он охватывает
современные направления теоретической и прикладной математики, информатики и
вычислительной техники.

 Он включен в список допустимых журналов Высшей квалификационной комиссии.

 Печатается на основании решения N 25-05/1 заседания
Редакционного совета от 25 мая 2023г.

РЕДАКЦИОННЫЙ СОВЕТ
Главный редактор
Ю. Шукурян Национальная академия наук, Армения
Зам. главного редактора
М. Арутюнян Институт проблем информатики и автоматизации, Армения
Члены редакционного совета
А. Аветисян Институт системного программирования РАН, Россия
С. Агаян Городской университет Нью-Йорка, США
Л. Асланян Институт проблем информатики и автоматизации, Армения
Г. Асцатрян Институт проблем информатики и автоматизации, Армения
Ю. Акопян Ереванский государственный университет, Армения
М. Дайде Тулузский научно-исследовательский институт компьютерных наук,

Франция
А. Дегтярев Санкт-Петербургский государственный университет, Россия
Е. Зорян Синопсис, Канада
Г. Маргаров Национальный политехнический университет Армении, Армения
Г. Меладзе Грузинский технический университет, Грузия
Э. Погосян Институт проблем информатики и автоматизации, Армения
В. Саакян Институт проблем информатики и автоматизации, Армения
А. Саруханян Институт проблем информатики и автоматизации, Армения
А. Шаумян Дублинский университетский колледж, Ирландия
С. Шукурян Ереванский государственный университет, Армения
Ответственный секретарь
П. Акопян Институт проблем информатики и автоматизации, Армения

ISSN 2579-2784 (Print)
ISSN 2738-2788 (Online)
© Опубликовано Институтом проблем информатики и автоматизации НАН РА, 2023

Mathematical Problems of Computer Science, LIX

The periodical Mathematical Problems of Computer Science is published twice per year by
the Institute for Informatics and Automation Problems of NAS RA. It covers modern
directions of theoretical and applied mathematics, informatics and computer science.

 It is included in the list of acceptable journals of the Higher Qualification Committee.

Printed on the basis of decision N 25-05/1 of the session of the
Editorial Council dated May 25, 2023.

EDITORIAL COUNCIL
Editor–in–Chief
Yu. Shoukourian National Academy of Sciences, Armenia
Deputy Editor
M. Haroutunian Institute for Informatics and Automation Problems, Armenia
Members of Editorial Council
S. Agaian City University of New York, USA
A. Avetisyan Institute for System Programming of the RAS, Russia
L. Aslanyan Institute for Informatics and Automation Problems, Armenia
H. Astsatryan Institute for Informatics and Automation Problems, Armenia
M. Dayde Institute for research in Computer Science from Toulouse, France
A. Degtyarev St. Petersburg University, Russia
Yu. Hakopian Yerevan State University, Armenia
G. Margarov National Polytechnic University of Armenia, Armenia
H. Meladze Georgian Technical University, Georgia
E. Pogossian Institute for Informatics and Automation Problems, Armenia
V. Sahakyan Institute for Informatics and Automation Problems, Armenia
A. Shahumyan University College Dublin, Ireland
S. Shoukourian Yerevan State University, Armenia
E. Zoryan Synopsys, Canada
Responsible Secretary
P. Hakobyan Institute for Informatics and Automation Problems, Armenia

ISSN 2579-2784 (Print)
ISSN 2738-2788 (Online)
© Published by the Institute for Informatics and Automation Problems of NAS RA, 2023

CONTENTS

Zh. Nikoghosyan
A Note on Large Cycles in Graphs Around Conjectures of Bondy and Jung

7

L. Aslanyan, I. Arsenyan, V. Karakhanyan and H. Sahakyan
RDNF Oriented Analytics to Random Boolean Functions

16

H. Tamazyan
The Relationship Between the Proof Complexities of Linear Proofs in Quantified
Sequent Calculus and Substitution Frege Systems

27

A. Lalayan
Data Compression-Aware Performance Analysis of Dask and Spark for Earth
Observation Data Processing

35

M. Buniatyan, S. Grigoryan and E. Danielyan
Expert Knowledge-Based RGT Solvers for Software Testing

45

D. Karamyan, G. Kirakosyanand S. Harutyunyan
Making Speaker Diarization System Noise Tolerant

57

T. Jamgharyan
Research of Model Increasing Reliability Intrusion Detection Systems

69

Mathematical Problems of Computer Science 59, 7–15, 2023.

doi:10.51408/1963-0097

UDC 519.1

A Note on Large Cycles in Graphs

Around Conjectures of Bondy and Jung

Zhora G. Nikoghosyan

Institute for Informatics and Automation Problems of NAS RA, Yerevan, Armenia

e-mail: zhora@iiap.sci.am

Abstract

New sufficient conditions are derived for generalized cycles (including Hamilton and
dominating cycles as special cases) in an arbitrary k-connected (k = 1, 2, ...) graph,
which prove the truth of Bondy’s (1980) famous conjecture for some variants signif-
icantly improving the result expected by the given hypothesis. Similarly, new lower
bounds for the circumference (the length of a longest cycle) are established for the
reverse hypothesis proposed by Jung (2001) combined inspiring new improved versions
of the original conjectures of Bondy and Jung.
Keywords: Hamilton cycle, Dominating cycle, Longest cycle, Large cycle.
Article info: Received 27 January 2021; sent for review 14 February 2022; received
in revised form 11 January 2023; accepted 7 March 2023.

1. Introduction

We consider only finite undirected graphs without loops or multiple edges. The set of vertices
of a graph G is denoted by V (G); the set of edges by E(G). For a subset S of V (G), we
denote by G−S the maximum subgraph of G with the vertex set V (G)−S. For a subgraph
H of G, we use G−H, short for G−V (H). A good reference for any undefined terms is [3].

Let α and δ be the independence number and the minimum degree of a graph G, respec-
tively. We define σk by the minimum degree sum of any k independent vertices if α ≥ k; if
α < k, we set σk = +∞. In particular, we have σ1 = δ.

A simple cycle (or just a cycle) Q of order t (the number of vertices) is a sequence
v1v2...vtv1 of distinct vertices v1, ..., vt with vivi+1 ∈ E(G) for each i ∈ {1, ..., t}, where
vt+1 = v1. When t = 1, the cycle v1 coincides with the vertex v1. So, by this standard
definition, all vertices and edges in a graph can be considered as cycles of orders 1 and 2,
respectively. Such an extension of the cycle definition allows to avoid unnecessary repetition
”let G be a graph of order n ≥ 3” in a large number of results. Further, a simple path (or
just a path) of order t is a sequence v1v2...vt of distinct vertices v1, ..., vt with vivi+1 ∈ E(G)
for each i ∈ {1, ..., t− 1}.

A graph G is Hamiltonian if G contains a Hamilton cycle, i.e., a cycle of order |V (G)|.

7

8 A Note on Large Cycles in Graphs Around Conjectures of Bondy and Jung

Now let Q be an arbitrary cycle in G. We say that Q is a dominating cycle in G if
V (G−Q) is an independent set of vertices.

The first type of generalized cycles, including Hamilton and dominating cycles as special
cases, was introduced by Bondy [4]. For a positive integer λ, Q is said to be a Dλ-cycle if
|H| ≤ λ − 1 for every component H of G − Q. Alternatively, Q is a Dλ-cycle of G if and
only if every connected subgraph of order λ of G has at least one vertex with Q in common.
Thus, a Dλ-cycle dominates all connected subgraphs of order λ. By this definition, Q is a
Hamilton cycle if and only if Q is a D1-cycle. Analogously, Q is a dominating cycle if and
only if Q is a D2-cycle.

We now present another two types of more interesting generalized cycles that form the
main topic of this paper. For a positive integer λ, the cycle Q is called a PDλ-cycle (PD
- Path Dominating) if each path of order at least λ in G has at least one vertex with Q in
common. Similarly, we call the cycle Q a CDλ-cycle (CD - Cycle Dominating; introduced
in [13]) if each cycle of order at least λ has at least one vertex with Q in common. In fact,
a PDλ-cycle dominates all paths of order λ in G; and a CDλ-cycle dominates all cycles of
order λ in G. In terms of PDλ and CDλ-cycles, Q is a Hamilton cycle if and only if either
Q is a PD1-cycle or a CD1-cycle. Further, Q is a dominating cycle if and only if either Q is
a PD2-cycle or a CD2-cycle.

Throughout the paper, we consider a graph G on n vertices with minimum degree δ and
connectivity κ. Further, let C be a longest cycle in G with c = |C|, and let p and c denote
the orders of a longest path and a longest cycle in G−C, respectively. In particular, C is a
Hamilton cycle if and only if p ≤ 0 or c ≤ 0. Similarly, C is a dominating cycle if and only
if p ≤ 1 or c ≤ 1.

In 1980, Bondy [4] conjectured a common generalization of some well-known degree-sum
conditions for PDλ-cycles (called (σ, p)-version) including Hamilton cycles (PD1-cycles) and
dominating cycles (PD2-cycles) as special cases.

Conjecture 1. (Bondy [4],1980): (σ, p)-version.
Let C be a longest cycle in a λ-connected (1 ≤ λ ≤ δ) graph G of order n. If σλ+1 ≥
n+ λ(λ− 1), then p ≤ λ− 1.

Parts of Conjecture 1 were proved for λ = 1, 2, 3.

(a) κ ≥ 1, σ2 ≥ n =⇒ p ≤ 0 (Ore[15], 1960),
(b) κ ≥ 2, σ3 ≥ n+ 2 =⇒ p ≤ 1 (Bondy[4], 1980),
(c) κ ≥ 3, σ4 ≥ n+ 6 =⇒ p ≤ 2 (Zou[17], 1987).

For the general case, Conjecture 1 is still open.
The long cycles analogue (the so called reverse version) of Bondy’s conjecture (Conjecture

1) can be formulated as follows.

Conjecture 2. (reverse, σ, p)-version.
Let C be a longest cycle in a λ-connected (1 ≤ λ ≤ δ) graph G. If p ≥ λ − 1, then
c ≥ σλ − λ(λ− 2).

Parts of Conjecture 2 were proved for λ = 1, 2, 3, 4.

(d) κ ≥ 1, p ≥ 0 =⇒ c ≥ σ1 + 1 (Dirac[6], 1952),

Zh. Nikoghosyan 9

(e) κ ≥ 2, p ≥ 1 =⇒ c ≥ σ2 (Bondy[2], 1971;Bermond[1], 1976;Linial[11], 1976),
(f) κ ≥ 3, p ≥ 2 =⇒ c ≥ σ3 − 3 (Fraisse, Jung[8], 1989),
(g) κ ≥ 4, p ≥ 3 =⇒ c ≥ σ4 − 8 (Chiba, Tsugaki, Y amashita[5], 2014).

Note that the initial motivations of Conjecture 1 and Conjecture 2 come from their
minimal degree versions - the most popular and much studied versions, which also remain
unsolved.

Conjecture 3. (Bondy [4],1980): (δ, p)-version.
Let C be a longest cycle in a λ-connected (1 ≤ λ ≤ δ) graph G of order n. If δ ≥ n+2

λ+1
+λ−2,

then p ≤ λ− 1.

Conjecture 4. (Jung [10], 2001): (reverse, δ, p)-version.
Let C be a longest cycle in a λ-connected (1 ≤ λ ≤ δ) graph G. If p ≥ λ − 1, then
c ≥ λ(δ − λ+ 2).

Parts of Conjecture 3 were proved for λ = 1, 2, 3.

(h) κ ≥ 1, δ ≥ n
2

=⇒ p ≤ 0 (Dirac[6], 1952),
(i) κ ≥ 2, δ ≥ n+2

3
=⇒ p ≤ 1 (Nash−Williams[12], 1971),

(j) κ ≥ 3, δ ≥ n+6
4

=⇒ p ≤ 2 (Fan[7], 1987).

Parts of Conjecture 4 were proved for λ = 1, 2, 3, 4.

(k) κ ≥ 1, p ≥ 0 =⇒ c ≥ δ + 1 (Dirac[6], 1952),
(l) κ ≥ 2, p ≥ 1 =⇒ c ≥ 2δ (Dirac[6], 1952),
(m) κ ≥ 3, p ≥ 2 =⇒ c ≥ 3δ − 3 (V oss, Zuluaga[16], 1977),
(n) κ ≥ 4, p ≥ 3 =⇒ c ≥ 4δ − 8 (Jung[9], 1990).

Note that CDλ-cycles are more suitable for research than PDλ-cycles since cycles in
G − C are more symmetrical than paths in view of the connections between G − C and
CDλ-cycles. This is the main reason why some minimum degree versions of Conjectures 1
and 2 have been solved just for CDλ-cycles.

According to the above arguments, it is natural to consider the exact analogues of Bondy’s
generalized conjecture (Conjecture 1) and its reverse version (Conjecture 2) for CDλ-cycles,
which we call (σ, c) and (reverse, σ, c)-versions, respectively.

Conjecture 5. (σ, c)-version.
Let C be a longest cycle in a λ-connected (1 ≤ λ ≤ δ) graph G of order n. If σλ+1 ≥
n+ λ(λ− 1), then c ≤ λ− 1.

Conjecture 6. (reverse, σ, c)-version.
Let C be a longest cycle in a λ-connected (1 ≤ λ ≤ δ) graph. If c ≥ λ − 1, then c ≥
σλ − λ(λ− 2).

In 2009, the author proved [14] the validity of minimum degree versions of Conjectures
5 and 6.

10 A Note on Large Cycles in Graphs Around Conjectures of Bondy and Jung

Theorem 1. ([14], 2009): (δ, c)-version.
Let C be a longest cycle in a λ-connected (1 ≤ λ ≤ δ graph G of order n. If δ ≥ n+2

λ+1
+λ− 2,

then c ≤ λ− 1.

Theorem 2. ([14], 2009): (reverse, δ, c)-version.
Let C be a longest cycle in a λ-connected (1 ≤ λ ≤ δ) graph. If c ≥ λ−1, then c ≥ λ(δ−λ+2).

Actually, in [14], a significantly stronger result than Theorem 1 was proved showing that
the conclusion c ≤ λ− 1 in Theorem 1 can be strengthened to c ≤ min{λ− 1, δ− λ}, called
c-improvement.

Theorem 3. ([14], 2009): (δ, c)-version, c-improvement.
Let C be a longest cycle in a λ-connected (1 ≤ λ ≤ δ) graph G of order n. If δ ≥ n+2

λ+1
+λ−2,

then c ≤ min{λ− 1, δ − λ}.
Analogously, the condition c ≥ λ − 1 in Theorem 2 was weakened [14] to c ≥ min{λ −

1, δ − λ+ 1}.
Theorem 4. ([14], 2009): (reverse, δ, c)-version, c-improvement.
Let C be a longest cycle in a λ-connected (1 ≤ λ ≤ δ) graph G. If c ≥ min{λ− 1, δ−λ+1},
then c ≥ λ(δ − λ+ 2).

In this paper, we present new analogous further improvements of Theorems 1, 2, 3, 4
inspiring new conjectures in forms of improvements of the initial generalized conjectures of
Bondy and Jung.

2. Results

First, we prove that the connectivity condition κ ≥ λ in Theorem 1 can be weakened to
κ ≥ min{λ, δ − λ+ 1}.
Theorem 5. (δ, c)-version, κ-improvement.
Let C be a longest cycle in a graph G of order n and λ a positive integer with 1 ≤ λ ≤ δ. If
κ ≥ min{λ, δ − λ+ 1} and δ ≥ n+2

λ+1
+ λ− 2, then c ≤ λ− 1.

Analogously, we prove that the connectivity condition κ ≥ λ in Theorem 2 can be
weakened to κ ≥ min{λ, δ − λ+ 2}.
Theorem 6. (reverse, δ, c)-version, κ-improvement.
Let C be a longest cycle in a graph G and λ a positive integer with 1 ≤ λ ≤ δ. If κ ≥
min{λ, δ − λ+ 2} and c ≥ λ− 1, then c ≥ λ(δ − λ+ 2).

Next, we prove that the conclusion c ≤ λ − 1 in Theorem 5 can be strengthened to
c ≤ min{λ− 1, δ − λ}.
Theorem 7. (δ, c)-version, (c, κ)-improvement.
Let C be a longest cycle in a graph G of order n and λ a positive integer with 1 ≤ λ ≤ δ. If
κ ≥ min{λ, δ − λ+ 1} and δ ≥ n+2

λ+1
+ λ− 2, then c ≤ min{λ− 1, δ − λ}.

Finally, we prove that the condition c ≥ λ − 1 in Theorem 6 can be weakened to c ≥
min{λ− 1, δ − λ+ 1}.
Theorem 8. (reverse, δ, c)-version, (c, κ)-improvement.
Let C be a longest cycle in a graph G and λ a positive integer with 1 ≤ λ ≤ δ. If κ ≥
min{λ, δ − λ+ 2} and c ≥ min{λ− 1, δ − λ+ 1}, then c ≥ λ(δ − λ+ 2).

Zh. Nikoghosyan 11

3. Generalized Improvements of Conjectures of Bondy and Jung

Motivated by Theorems 5, 6, 7, 8 (minimum degree versions) with Conjectures 1 and 2, in this
section we propose their exact analogs in terms of degree sums as generalized improvements
of Bondy and Jung Conjectures.

Conjecture 7. (σ, c)-version, (c, κ)-improvement.
Let C be a longest cycle in a graph G of order n and λ a positive integer. If κ ≥ min{λ, δ−
λ+ 1} and σλ+1 ≥ n+ λ(λ− 1), then c ≤ min{λ− 1, δ − λ}.

Conjecture 8. (reverse, σ, c)-version, (c, κ)-improvement.
Let C be a longest cycle in a graph G and λ a positive integer. If κ ≥ min{λ, δ− λ+2} and
c ≥ min{λ− 1, δ − λ+ 1}, then c ≥ σλ − λ(λ− 2).

Conjecture 9. (σ, p)-version, (p, κ)-improvement.
Let C be a longest cycle in a graph G of order n and λ a positive integer. If κ ≥ min{λ, δ−
λ+ 1} and σλ+1 ≥ n+ λ(λ− 1), then p ≤ min{λ− 1, δ − λ}.

Conjecture 10. (reverse, σ, p)-version, (p, κ)-improvement.
Let C be a longest cycle in a graph G and λ a positive integer. If κ ≥ min{λ, δ− λ+2} and
p ≥ min{λ− 1, δ − λ+ 1}, then c ≥ σλ − λ(λ− 2).

4. Proofs

Proof of Theorem 7. We shall prove that c ≤ min{λ− 1, δ − λ} under the conditions

κ ≥ min{λ, δ − λ+ 1}, δ ≥ n+ 2

λ+ 1
+ λ− 2

for each 1 ≤ λ ≤ δ. If min{λ, δ − λ + 1} = λ, that is λ ≤ ⌊ δ+1
2
⌋, then we shall prove that

c ≤ λ− 1 under the conditions

κ ≥ λ, δ ≥ n+ 2

λ+ 1
+ λ− 2.

But the latter follows from Theorem 1 for all λ = 1, 2, ..., ⌊ δ+1
2
⌋ immediately.

Now let min{λ, δ − λ + 1} = δ − λ + 1, that is λ ≥ ⌊ δ+2
2
⌋. To conclude the proof, it

remains to show that

κ ≥ δ − λ+ 1, δ ≥ n+ 2

λ+ 1
+ λ− 2 ⇒ c ≤ δ − λ

(
λ = δ, δ − 1, ...,

⌊
δ + 2

2

⌋)
. (1)

Put δ − λ+ 1 = µ. Acording to this notation, (1) is equivalent to

κ ≥ µ, δ ≥ n+ 2

δ − µ+ 2
+ δ − µ− 1 ⇒ c ≤ µ− 1

(
µ = 1, 2, ...,

⌊
δ + 1

2

⌋)
. (2)

In (2), the inequality

δ ≥ n+ 2

δ − µ+ 2
+ δ − µ− 1

12 A Note on Large Cycles in Graphs Around Conjectures of Bondy and Jung

is equivalent to

δ ≥ n+ 2

µ+ 1
+ µ− 2,

implying that (2) is equivalent to

κ ≥ µ, δ ≥ n+ 2

µ+ 1
+ µ− 2 ⇒ c ≤ µ− 1

(
µ = 1, 2, ...,

⌊
δ + 1

2

⌋)
. (3)

Observing that (3) follows from Theorem 1 immediately, we obtain

(1) ≡ (2) ≡ (3) ⇐ ”Theorem 1”.

Theorem 7 is proved.

Proof of Theorem 5. Let G be a graph with

κ ≥ min{λ, δ − λ+ 1}, δ ≥ n+ 2

λ+ 1
+ λ− 2

for each 1 ≤ λ ≤ δ. We shall prove that c ≤ λ−1. Observing that min{λ−1, δ−λ} ≤ λ−1,
we can weaken the conclusion c ≤ min{λ − 1, δ − λ} in Theorem 7 to c ≤ λ − 1 and the
result follows immediatly.

Proof of Theorem 8. Let G be a graph with

κ ≥ min{λ, δ − λ+ 2}, c ≥ min{λ− 1, δ − λ+ 1}

for each 1 ≤ λ ≤ δ. We shall prove that c ≥ λ(δ − λ + 2). If λ = 1, then the result follows
from the fact that each graph has a cycle of length at least δ + 1 [6]. Let λ ≥ 2. Further, if
min{λ, δ−λ+2} = λ, then we are done by Theorem 2. Now let min{λ, δ−λ+2} = δ−λ+2,
that is λ ≥ ⌊ δ+3

2
⌋. Then it remains to prove that

κ ≥ δ − λ+ 2, c ≥ δ − λ+ 1 ⇒ c ≥ λ(δ − λ+ 2)

(
λ = δ, δ − 1, ...,

⌊
δ + 3

2

⌋)
. (4)

Put δ − λ+ 2 = µ. By this notation, the statement (4) is equivalent to

κ ≥ µ c ≥ µ− 1 ⇒ c ≥ µ(δ − µ+ 2)

(
µ = 2, 3, ...,

⌊
δ + 2

2

⌋)
, (5)

which follows from Theorem 2 immediately. So, (4) ≡ (5) ⇐ ”Theorem 2”. Theorem 8 is
proved.

Proof of Theorem 6. Let G be a graph with

κ ≥ min{λ, δ − λ+ 2}, c ≥ λ− 1

for each 1 ≤ λ ≤ δ. We shall prove that c ≥ λ(δ−λ+2). Observing that min{λ−1, δ−λ+1} ≤
λ− 1, we can strengthen the condition c ≥ min{λ− 1, δ− λ+1} in Theorem 8 to c ≥ λ− 1
and the result follows immediately. Theorem 6 is proved. .

Zh. Nikoghosyan 13

5. Conclusion

In 2009 [14], a minimum degree sufficient condition for large cycles in graphs is established
showing that the famous conjecture of Bondy principally is improvable. In the same paper,
a lower bound for the length of a longest cycle (the circumference) is derived showing that
the conjecture of Jung (reverse version of Bondys conjecture) principally is improvable as
well. In this note, two new analogous sufficient conditions for large cycles and two new lower
bounds for the circumference are derived inspiring four new improved versions of Bondys
and Jungs conjectures.

References

[1] J.C. Bermond, “On Hamiltonian walks”, Congressus Numerantium, vol.15, pp. 41-50,
1976.

[2] J.A. Bondy, “Large cycles in graphs”, Discrete Mathematics, vol. 1, pp. 121-131, 1971.

[3] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, Macmillan, London
and Elsevier, New York, 1976.

[4] J.A. Bondy, Longest paths and cycles in graphs of high degree, Research Report CORR
80-16, Department of Combinatorics and Optimization, Faculty of Mathematics, Uni-
versity of Waterloo, Ontario, Canada, 14 pages, 1980.

[5] S. Chiba, M. Tsugaki and T. Yamashita, “Degree sum conditions for the circumference
of 4-connected graphs”, Discrete Math., vol. 333, pp. 66-83, 2014.

[6] G.A. Dirac, “Some theorems on abstract graphs”, Proc. London Math. Soc., vol. 2, pp.
69-81, 1952.

[7] G. Fan, Extremal theorems on paths and cycles in graphs and weighted graphs, PhD
thesis, University of Waterloo, 1987.

[8] P. Fraisse and H.A. Jung, “Longest cycles and independent sets in k-connected graphs”,
Recent Studies in Graph Theory, Vischwa Internat. Publ., Gulbarga, India, pp. 114-139,
1989.

[9] H.A. Jung and H.A. Jung, “Longest cycles in graphs with moderate connectivity”, Top-
ics in Combinatorics and Graph Theory, Essays in Honour of Gerhard Ringel, Physica-
Verlag, Heidelberg, pp. 765778, 1990.

[10] H.A. Jung, “Degree bounds for long paths and cycles in k-connected graphs”, Com-
putational Discrete Mathematics, Lecture Notes in Comput. Sci., Springer, Berlin, vol.
2122, pp. 56-60, 2001.

[11] N. Linial, “A lower bound on the circumference of a graph”, Discrete Math., vol. 15,
pp. 297-300, 1976.

[12] C.St.J.A. Nash-Williams, “Edge-disjoint hamiltonian cycles in graphs with vertices of
large valency”, Studies in Pure Mathematics, Academic Press, San Diego, London, pp.
157-183, 1971.

[13] Zh. G. Nikoghosyan, “Cycle-Extensions and long cycles in graphs”, Transactions of the
Institute for Informatics and Automation Problems (IIAP) of NAS of RA, Mathematical
Problems of Computer Science, vol. 21, pp. 121-128, 2000.

1 4 A Note on Large Cycles in Graphs Around Conjectures of Bondy and Jung

[1 4] Zh .G. N iko g h o s ya n , \ D ir a c -t yp e g e n e r a liz a t io n s c o n c e r n in g la r g e c yc le s in g r a p h s " , D is-
crete M athematics, vo l. 3 0 9 , p p . 1 9 2 5 -1 9 3 0 , 2 0 0 9 .

[1 5] O. Or e , \ A n o t e o n H a m ilt o n ia n c ir c u it s " , Amer. M ath. M onthly, vo l. 6 7 , p . 5 5 , 1 9 6 0 .

[1 6] H .-J. V o s s a n d C. Zu lu a g a , \ Ma xim a le g e r a d e u n d u n g e r a d e K r e is e in Gr a p h e n " , I,
W is s . Z. Te c h n . H o c h s c h u le Ilm e n a u , vo l. 4 , p p . 5 7 -7 0 , 1 9 7 7 .

[1 7] Y . Zo u , \ A g e n e r a liz a t io n o f a t h e o r e m o f Ju n g " , J . Nanjing Normal Univ. Nat. Sci.,
vo l. 2 , p p . 8 -1 1 , 1 9 8 7 .

²ÏÝ³ñÏ ·ñ³ýÝ»ñáõÙ Ù»Í óÇÏÉ»ñÇ Ù³ëÇÝ ´áÝ¹ÇÇ ¨ ÚáõÝ·Ç
í³ñÏ³ÍÝ»ñÇ ßáõñç

Äáñ³ ¶. ÜÇÏáÕáëÛ³Ý

ÐÐ ¶²² ÆÝýáñÙ³ïÇÏ³ÛÇ ¨ ³íïáÙ³ï³óÙ³Ý åñáµÉ»ÙÝ»ñÇ ÇÝëïÇïáõï, ºñ¨³Ý, Ð³Û³ëï³Ý

e-mail: zhora@iiap.sci.am

²Ù÷á÷áõÙ

êï³óí»É »Ý Ýáñ µ³í³ñ³ñ å³ÛÙ³ÝÝ»ñ ·ñ³ýÇ ÁÝ¹Ñ³Ýñ³óí³Í óÇÏÉ»ñÇ Ñ³Ù³ñ
(ÁÝ¹·ñÏ»Éáí Ð³ÙÇÉÃáÝÛ³Ý ¨ ¹áÙÇÝ³Ýï óÇÏÉ»ñÁ áñå»ë Ù³ëÝ³íáñ ¹»åù»ñ) Ï³Ù³Û³Ï³Ý
k-Ï³å³Ïóí³Í (k = 1 ; 2 ; :::) ·ñ³ýáõÙ, áñáÝù ³å³óáõóáõÙ »Ý ´áÝ¹ÇÇ (1980) Ñ³ÛïÝÇ
í³ñÏ³ÍÇ ×ßÙ³ñï³óÇáõÃÛáõÝÁ áñáß ï³ñµ»ñ³ÏÝ»ñÇ ¹»åùáõÙ, ÇÝãÇ ßÝáñÑÇí ½·³ÉÇáñ»Ý
É³í³óíáõÙ ¿ ïíÛ³É í³ñÏ³Íáí ³ÏÝÏ³ÉíáÕ ³ñ¹ÛáõÝùÁ: Ð³Ù³ÝÙ³Ýáñ»Ý, ³Ù»Ý³»ñÏ³ñ
óÇÏÉÇ »ñÏ³ñáõÃÛ³Ý Ñ³Ù³ñ ëï³óí»É »Ý Ýáñ ëïáñÇÝ ·Ý³Ñ³ï³Ï³ÝÝ»ñ Ñ³Ï³¹³ñÓ
í³ñÏ³ÍÇ Ñ³Ù³ñ, áñÝ ³é³ç ¿ ù³ß»É ÚáõÝ·Á 2001-ÇÝ: êï³óí³Í ³ñ¹ÛáõÝùÝ»ñÁ µ³í³ñ³ñ
ÑÇÙù»ñ »Ý ï³ÉÇë ³é³ç ù³ß»Éáõ Ýáñ É³í³óí³Í ï³ñµ»ñ³ÏÝ»ñ ´áÝ¹ÇÇ ¨ ÚáõÝ·Ç
Ý³ËÝ³Ï³Ý í³ñÏ³ÍÝ»ñÇ ÷áË³ñ»Ý:

Çàìåòêà î áîëüøèõ öèêëàõ â ãðàôàõ âîêðóã
ãèïîòåç Áîíäè è Þíãà

Æîðà Ã. Íèêîãîñÿí

Èíñòèòóò ïðîáëåì èíôîðìàòèêè è àâòîìàòèçàöèè ÍÀÍ ÐÀ, Åðåâàí, Àðìåíèÿ
e-mail: zhora@iiap.sci.am

Àííîòàöèÿ

Ïîëó÷åíû íîâûå äîñòàòî÷íûå óñëîâèÿ äëÿ îáîáùåííûõ öèêëîâ (âêëþ÷àÿ
ãàìèëüòîíîâûå è äîìèíàíòíûå öèêëû êàê ÷àñòíûå ñëó÷àè) â ïðîèçâîëüíîì k-

´³Ý³ÉÇ µ³é»ñ` Ð³ÙÇÉÃáÝÇ óÇÏÉ, ¹áÙÇÝ³Ýï óÇÏÉ, ³Ù»Ý³»ñÏ³ñ óÇÏÉ, Ù»Í óÇÏÉ:

Zh. Nikoghosyan 1 5

ñâÿçíîì ãðàôå (k = 1 ; 2 ; :::) , äîêàçûâàþùèå ñïðàâåäëèâîñòü èçâåñòíîé ãèïîòåçû
Áîíäè (1980) äëÿ íåêîòîðûõ âàðèàíòîâ, çíà÷èòåëüíî óëó÷øèâ îæèäàåìûé ïî
äàííîé ãèïîòåçå ðåçóëüòàò. Àíàëîãè÷íî, ïîëó÷åíû íîâûå íèæíèå îöåíêè äëÿ
äëèíû äëèííåéøåãî öèêëà ãðàôà äëÿ îáðàòíîé ãèïîòåçû, ïðåäëîæåííîé Þíãîì
(2001). Ïîëó÷åííûå ðåçóëüòàòû â ñî÷åòàíèè äàþò îñíîâàíèÿ âûäâèæåíèÿ íîâûõ
óëó÷øåííûõ âàðèàíòîâ äëÿ èñõîäíûõ ãèïîòåç Áîíäè è Þíãà.

Êëþ÷åâûå ñëîâà: Ãàìèëüòîíîâ öèêë, äîìèíàíòíûé öèêë, äëèííåéøèé öèêë,
áîëüøîé öèêë.

Mathematical Problems of Computer Science 59, 16–26, 2023.

doi: 10.51408/1963-0098

UDC 519.714

RDNF Oriented Analytics to Random Boolean

Functions

Levon H. Aslanyan, Irina A. Arsenyan, Vilik M. Karakhanyan and Hasmik A. Sahakyan

Institute for Informatics and Automation Problems of NAS RA,Yerevan, Armenia

e-mail: kavilik@gmail.com

Abstract

Dominant areas of computer science and computation systems are intensively linked
to the hypercube-related studies and interpretations. This article presents some trans-
formations and analytics for some example algorithms and Boolean domain problems.
Our focus is on the methodology of complexity evaluation and integration of several
types of postulations concerning special hypercube structures. Our primary goal is
to demonstrate the usual formulas and analytics in this area, giving the necessary set
of common formulas often used for complexity estimations and approximations. The
basic example under considered is the Boolean minimization problem, in terms of the
average complexity of the so-called reduced disjunctive normal form (also referred to
as complete, prime irredundant, or Blake canonical form). In fact, combinatorial coun-
terparts of the disjunctive normal form complexities are investigated in terms of sets of
their maximal intervals. The results obtained compose the basis of logical separation
classification algorithmic technology of pattern recognition. In fact, these considera-
tions are not only general tools of minimization investigations of Boolean functions, but
they also prove useful structures, models, and analytics for constraint logic program-
ming, machine learning, decision policy optimization and other domains of computer
science.
Keywords: Boolean function, Hypercube, Complexity, Asymptotic, Reduced disjunc-
tive normal form.
Article info: Received 14 February 2023; sent for review 10 March 2023; accepted 11
April 2023.

1. Hypercube and Related Structures

The metric theory of Boolean functions (BF) [1], [2] arose in the 70’s, in parallel with the
emergence of broader design and implementation ideas for mechanical and electronic com-
putation devices. It was then that it turned out that the system of binary representation of
numbers is the most optimal, both from the point of view of the algorithmic implementation
of arithmetic calculations and also from the point of view of developing physical carriers
of performing these calculations [3]. BF – functions with only binary variables, and also

16

L. Aslanyan, I. Arsenyan, V. Karakhanyan and H. Sahakyan 17

with values in the domain {0, 1}, although simple among the other similar mathematical
concepts, they are quite complex in solving problems associated with their transformations
and optimization. The metric theory of Boolean functions provides the necessary knowledge
for coding, transforming and implementing binary functions. Although the way to minimal
BF representations are and remains difficult, a rather complete picture of the main forms
of function representation of functions has been obtained, and the basic role here takes the
concept of disjunctive normal forms. Successive steps of several transformations of functions
are found to achieve minimal forms as a chain from the table or formula representation to
the reduced d.n.f., then to the deadlock forms and finally – the minimal structures. The ac-
companying structures and bottlenecks of achieving acceptable optimization are investigated
intensively [1], [4]–[7]. Here we will not cover the whole theory but will pay attention to one
fundamental construction, – to the concept of reduced disjunctive normal forms (r.d.n.f.) of
Boolean functions. R.d.n.f. is the collection of all minimal conjunctions and geometrically
- the system of all maximum intervals/sub-cubes of functions. These forms are a universal
concept, and they also arise in problems such as circuit design from set of functional ele-
ments (logical part of chip design), in the theory of pattern recognition (logic separation
algorithm, and generation of logical regularities) [8]–[11], in biological models of heredity
and mutations (phylogeny, parsimony) [12, 13], etc. Turning to the complexity characteriza-
tion of structures associated with the reduced disjunctive normal form, where two types are
usually considered: the largest and most typical characteristics, we will focus on the second
component. In a concise survey of the domain, the initial studies of [5], [14], and [15], should
be mentioned, that give the formulas of average numbers of maximal intervals in Boolean
functions. [16], [17] extended these results to the case of partially defined Boolean functions.
An alternative track of papers in these topics includes the articles [18], [19], [20]. Current
research on the topics of BF and complexities might be demonstrated through the papers
[21]–[26]. Methodologically, in studies in the area of BF, it should be taken into account that
the function determination domain, as well as the number of functions itself, are finite, de-
pending on the number of the variables – the dimensionality. So, considering the parameter
π(f) over the functions, we get the split of these functions into finite classes by the values
of this parameter. These are the rates and intensity of the accepted values of the parameter
π(f). In some cases, it is convenient to refer to these valuations as probabilistic distributions,
which is not obligatorily but is convenient in some contexts. In this concern, there appears
a link to the model of Random Boolean functions and the combinatorial theories initiated
by A. Renyi and P. Erdos [27], [28].

1.1 Concepts and Definitions in the Binary Domain

Elementary conjunction, Direction. Let α̃ and β̃ – be arbitrary vertices of the n-
dimensional unite cube. And let ji, i = 1, 2, · · · , r be all coordinates, those where αji = βji .
Consider the formula

K(x1, x2, · · · , xn) =
r∧

i=1

x
σji
ji ,

with σji = αji , i = 1, 2, · · · , r. We say that K is an elementary conjunction stretched on
the pair of vertices α̃ and β̃ of the n-dimensional unit cube En. The number of literals in K
is the rank of K. The geometrical counterpart of K is a sub-cube defined as follows. Assign
0 values to all but j1, j2, · · · , jr coordinates and denote this vertex by v0. Similarly, assign

18 RDNF Oriented Analytics to Random Boolean Functions

these coordinates by the value 1, obtaining the vertex v1. These are the minimal and maximal
vertices that belong to K, and they determine a unique sub-cube of all truth vertices of K.
n− r, the number of variable coordinates of K is the size of its sub-cube.

Let λ = {j1, j2, · · · , jr} be a collection of r indices drawn up of variables x1, x2, · · · , xn,
and let λ̄ be the complementary to the λ set of indices. Conjunctions of the form

∧r
i=1 x

σji
ji

and the corresponding intervals will be called conjunctions and intervals of the direction
λ. For a fixed r there are Cr

n different directions, and each of them is determined by the
appropriate selection of an r subset {j1, j2, · · · , jr} of the set {1, 2, ..., n}. The individual
interval in the direction {j1, j2, · · · , jr} appears in result of assigning the values σ1, σ2, · · · , σr

to the variables xj1 , xj2 , · · · , xjr .

Fig. 1. Geometry of hypercube.

This also means that
there are 2n−r conjunc-
tions and intervals in one
of the r-directions. The
collection λ̄ of indices de-
fines another set of direc-
tions.

Let F be an arbitrary
logical formula and M ⊆
Bn. We say that F ab-
sorbs or covers M if on
each tuple α̃ ∈ M the for-
mula F accepts the unite
(true) value.

Let α̃ ∈ En be an ar-
bitrary vertex. Call the
value | α̃ |= ∑n

i=1 αi

the module or the weight
of α̃. The set of all ver-
tices β̃ ∈ En, with
ρ(α̃, β̃) =| α̃ ⊕ β̃ |= k,
call the k–the layer of En

in relation to the vertex α̃
(⊕ – mentions mod2 sum-
mation).

Intervals NK1 and NK2 ,

K1(x1, x2, · · · , xn) =
r∧

i=1

x
σ1
ji

ji and K2(x1, x2, · · · , xn) =
r∧

i=1

x
σ2
ji

ji

of the same size and the same direction we call neighbors if ρ(σ̃1, σ̃2) = 1, where ρ – be the
Hamming distance, ρ(σ̃1, σ̃2) =

∑r
i=1 | σ1

ji
− σ2

ji
| . Let then ji0 is the number of that unique

coordinate for which σ1
ji0

̸= σ2
ji0
. Then we say that the conjunctions K1 and K2 (or the pair

of neighbor intervals corresponding to them) joined by the coordinate xji0
, and, as a result,

L. Aslanyan, I. Arsenyan, V. Karakhanyan and H. Sahakyan 19

a new conjunction (interval) appears:

r∧
i ̸=i0,i=1

x
σji
ji .

Partition the variable set x1, x2, · · · , xn in an arbitrary manner into two nonempty
groups: xi1 , xi2 , · · · , xk as the first group, and xik+1

, xik+2
, · · · , xin as the second. Then,

the n-dimensional unit cube En may be represented as the Cartesian multiplication
Bk×Bn−k of two sub-cubes: Bk and Bn−k generated correspondingly by the sets of variables
xi1 , xi2 , · · · , xik and xik+1

, xik+2
, · · · , xin . Let us enumerate the vertices of Bn−k by the layers

relative to the vertex 0̃ of Bn−k. Enumeration among the vertices of a particular layer is
arbitrary, but the first group that is enumerated by low numbers is layer zero, then the
first layer, and so on. Additional ordering among layer vertices may use lexicographic order,
binary value based order, etc.

Consider an arbitrary k-dimensional sub-cube Bk of En, the first k-dimensional inter-
val Bk

1 in the direction of Bk. List the neighbor intervals to the considered one, Bk
1 , -

Bk
2 , B

k
3 , · · · , Bk

n−k+1. Let f be an arbitrary (partially defined) Boolean function that satisfies
the following conditions:

α) Bk
1 doesn’t contain zero value vertices of f : (∀α̃ ∈ Bk

1 , f(α̃) ̸= 0),

β) Each of the neighbor with Bk
1 interval contains at least one ‘unit’ value vertex f :

(∀j, j = 2, 3, · · · , n− k + 1 ∃α̃ ∈ Bk
j , f(α̃) = 1),

γ) Bk
1 contains at least one ‘unit’ vertex of f : (∃α̃ ∈ Bk

1 , f(α̃) = 1).

In conditions α), β), γ), we say that Bk
1 is a maximal interval of the function f. d.n.f.,

composed of all elementary conjunctions, corresponding to maximal intervals of function f
is named the reduced disjunctive normal form of f. The number of disjunctive members of
this formula is considered as its complexity. Denoting by rk(f) the number of all maximal
k–intervals of the function f we get the formula of complexity of the reduced disjunctive
normal form of f :

n∑
k=0

rk(f).

2. On the Maximum Number of k-Dimensional Maximal Intervals of RBF

Consider the class P2(n) of all Boolean functions of n variables x1, x2, · · · , xn. Let
p, 0 < p < 1 be a fixed number, and Fp – the probability distribution on P2(n), generated
in the following way. The function f ∈ P2(n) is induced as a result of a randomized
experiment, where the values of the function on vertices of En are derived randomly. The
value 1 appears with a probability p and the 0 value – with a complementary probability
1−p. The vertices of En take part in this experiment independently of each other, and the
probabilistic distribution Fp over the set of Boolean functions is generated in this way. The
probability of an individual Boolean function f under the distribution Fp depends on the
balance between the 0 and 1 values of the function f (the volumes of the setsN{ and En−N{).
For f ∈ P2(n), this probability is equal to p|N{|(1− p)2

n−|N{|. When p = 1/2 this probability
is simply 1/22

n
and the corresponding distribution becomes the uniform distribution over

20 RDNF Oriented Analytics to Random Boolean Functions

the P2(n). We introduce the notation rk(f) for the number of k-dimensional maximal
intervals of the function f ∈ P2(n). And let rk(n, p) be the average value of the number of
k-dimensional maximal intervals of functions f ∈ P2(n) under the distribution Fp. It is
easy to make sure, that

rk(n, p) =
∑

f∈P2(n)

Fp(f) ∗ rk(f) (1)

The number rk(n, p) in the expression (1) is given by its definition as a sum over all functions
of f ∈ P2(n), counting all their k-dimensional maximal intervals and taking into account the
probabilities of f in the distribution Fp.

Further evidence of these constructions is provided by the following scheme:

Fig. 2. This figure presents the bipartite graph of functions and k-dimensional maximal intervals.
Upper line functions are placed in order of the number of their ”true” values, from 0 to 2k. Different
functions include different numbers of k-dimensional maximal intervals and have different proba-
bilities under the distribution Fp. Instead, each interval presented in the bottom line is connected
to the same number of functions. This is because the sizes of intervals is the same. The order
of intervals is by groups of intervals, that belong to the same direction. Numeration inside the
functions with the same number of ”ones” and inside the groups of intervals of the same direction
is arbitrary.

Following [5], we change the order of counting in 1, first considering all k-dimensional
intervals in En. We relay two events to these intervals: the one, about their maximality, and
then the second, about the set of functions that accept the first event about maximality. In
this regard, it is also convenient to split the En in parts: the current k-dimensional interval K
and its all n−k neighboring k-dimensional intervals K1,K2, · · · ,Kn−k. This part, the current
interval and its neighbors, covers an area E1 of 2k(n− k+1) vertices of En. And the second
part that we consider, consists of the complementary area E2 to E1 up to En. The probability
of maximality of K for the function f becomes the product of probability of maximality of
K together with the conditional probability of f when K is given to be maximal. The first
probability equals p2

k
(1 − p2

k
)n−k. The first and second parts consist of events, and their

sums of probabilities are equal to 1 as a probabilistic distribution. Now, when we sum up
the mentioned conditional probabilities with all f, we get the probability 1, and the final
probability of maximality of K, under the conditions of Fp, becomes p2

k
(1 − p2

k
)n−k. It

reminds us to take this probability for all k-dimensional intervals, obtaining the following
equivalent form for (1),

L. Aslanyan, I. Arsenyan, V. Karakhanyan and H. Sahakyan 21

rk(n, p) = Ck
n2

n−kp2
k

(1− p2
k

)
n−k

. (2)

Theorem 1. rk(n, p) is a concave function of the parameter k in the interval [0, n].

It is important to know the behavior of the function rk(n, p defined on the interval [1, n].
Initially, it is useful to calculate the values of the function at the boundary points of the
domain of definition: k = 0, 1, ..., n− 1, n. We give these values both for the arbitrary p and
the value 1/2.

Table 1: Values of rk(n, p) on boundary points, such as k = 0, 1, ..., n− 1, n.

Boundary point values of rk(n, p)
Dimension k of
maximal interval

rk(n, p) rk(n, 1/2)

k = 0 2np(1− p)n 1/2

k = 1 n2n−1p2(1− p2)n−1 (n/4)(3/2)n−1

...

k = n− 1 n2n−1p2
n−1

(1− p2
n−1

) n2n−1(1− 1/22
n−1

)/22
n−1

)
k = n p2

n
1/22

n

As we can see, both the left and right boundary point values of the interval (0, n) are
small, but there is a noticeable increase from left to right at the left end, and a decrease
from left to right at the right end. To get a complete picture of the behavior, consider a
number of special intermediate point values of the function at:

k1 = log
1

−logp
, k0 = log

logn

−logp
, and k1 = log

n

−logp
.

The technical element of choosing of these values is in simple evaluation of sub-formula
Ek = 22

k
, which is an important functional part of the 1. Substituting k1, k0, and k2 into

Ek we get:
Ek1 = 1/2, Ek0 = 1/n, Ek2 = 1/2n. (3)

Let us start the proof of postulations 1-3. For this, conduct a preliminary analysis of the
expression (2) for rk(n, p). Consider an arbitrary integer value function k(n) that obeys
the restriction 0 ≤ k(n) ≤ n, and substitute it into the expression 2. We are interested in
the behaviour of the received function rk(n)(n, p) depending on the parameter k(n) as
n → ∞.

First let’s make sure that with the increase of k the expression rk(n, p) increases mono-
tonically by the k ≤ [k0], and then it decreases, when]k0[≤ k. By doing this we compose
the relation

Rk =
rk+1(n, p)

rk(n, p)
=

(n− k)p2
k
(1 + p2

k
)n−k

2(k + 1)(1− p2k+1)
. (4)

This expression can be considered for an arbitrary (not only for the integer) assignment
to the parameter k. We will follow by checking if this function is concave in the interval
0 < k < n for large n. The direct way of this is to derive the expression of the fraction

22 RDNF Oriented Analytics to Random Boolean Functions

Rk and treat it for a possible constant/zero value of it. In such consideration, the most
important role takes the part Ak = (n − k)p2

k
of the base expression 4. Substituting k0

into Ak we obtain that (n − k0)p
2k0 = (n − k0)p

(logn
−logp

) = (n − k0)2
logp(−logn

logp
) = n−k0

n
, which

is converging to 1 as n → ∞. With the help of formulas in Section 3. we see that the part
Bk = (1 + p2

k
)n−k of (4) is limited at the point k0: (6) gives (1 + p2

k0)n → e as n → ∞, so
that (1 + p2

k0)n−k0 also tends to e. Compose the fraction Bk+1/Bk in the following form:

Bk+1/Bk =

(
1 + p2

k
p2

k
)n−k−1

(
1 + p2k

)n−k =

(
1+p2

k
p2

k

1+p2k

)n−k

1 + p2kp2k
(5)

Fig. 3. Differential of growing rk(n, p).

Note that the fraction 1+p2
k
p2

k

1+p2k

is less than 1, so its n − k de-
gree is also less than 1. And
the denominator of (5) is greater
than 1 so that, finally, the ex-
pression (5) is less than 1 for
all k, which means a monotonic
decrease of the expression Rk in
(5). In general, as k in-
creases, all the factors of (4), other
than Bk, decrease monotonically
and, besides this, as n → ∞ ,
this expression tends to zero at
the point k0 and grows in-
finitely when k = k0 − 1. Fi-
nally, we receive that with in-
creasing k, for the beginning,
ik(n, p) increases, achieving its
maximal value at the point [k0]
or]k0[, and, then, it de-
creases.

3. On the Dependency of Number of k-Dimensional Maximal Intervals on
k

Consider the parameter k2 = log n
−logp

. Since 0 < p < 1, we have k2 = logn+ c, where c
represents an absolute constant determined by the fixed value of p. We intend to obtain an
asymptotic formula for ik(n, p) by the n → ∞ for the values of k of the form k2 + const.

We make use of the following expressions Ck
n ∼ nk

k!
, (1− p2

k
) ∼ 1, and n! ∼ nne−n

√
2πn

as n → ∞, which are based on the formulas

1. If 0 ≤ x ≤ 1 and 0 ≤ y, then

exp(x(1− x

2
)y) ≤ (1 + x)y ≤ exp(xy). (6)

L. Aslanyan, I. Arsenyan, V. Karakhanyan and H. Sahakyan 23

2. If 0 ≤ x ≤ 1 and 0 ≤ y, then

(1− x)y ≤ exp(−xy); and (7)

exp(−x(1− x)y) ≤ (1− x)y, when additionally 0 ≤ x ≤ 1/2.

3. If x and y be natural numbers, and x ≤ y, then

(1− x

y
)
x−1
2 ≤

x−1∏
i=1

(1− i

y
) ≤ (1− x

2y
)x−1. (8)

and are valid for the mentioned values of the parameter k, and for this reason

ik(n, p) ∼
nkek2n−kp2

k

kk
√
2πk

= ĩk(n, p). (9)

Theorem 2. The probability, that functions of the class P2(n) under the distribution Fp

have maximal intervals of sizes k, k < [k1] or k > [k2], where k1 = log 1
−logp

and
k2 = log n

−logp
tends to zero with n → ∞.

On the right side of (9) we have expression, that depends on the continuous argument
k, and which is equivalent to the expression ik(n, p) for the integer values of the parameter
k, of the form k2 + const. In the mentioned area, ĩk(n, p) decreases monotonically with
the increase of k, ĩk2(n, p) tends to infinity, and ĩk2+1(n, p) tends to zero, when n → ∞,
so that ik(n, p) → 0, for values k >]k2[and ik(n, p) → ∞ for values k0 ≤ k ≤ [k2], by
n → ∞. Let us also denote, that we do not insist that i]k2[(n, p) as n → ∞ converges to
any appropriate value.

In what follows, we will use the first Chebyshev inequality (1). The first inequality lets
formulate an extension of a postulation from [29] for the case of the probability distribution
Fp. Actually, if to consider the expression ik(f), as a parameter of π(f) then for the
values k >]k2[ik(n, p) → 0 by n → ∞, and taking into the force the first inequality for
the arbitrary ϵ(n) ≥ 0 P (ik(f) ≥ ϵ(n)) → 0 when n → ∞.
A similar situation takes place in the region of small values of the parameter k. For the
value k = k1 and p = 1/2 by the (3) p2

k1 = 1/2 and rk1(n, p) → ∞ as n → ∞. For p > 1/2,
already for the value k1 − 1, we observe that rk1−1(n, p) → 0 as n → ∞. This is just because
2n−k1+1

1−p2
k1−1 is a decreasing exponent, which together with Ck

n tends to 0.

4. Conclusion

This article has two goals: first, it considers the set of formulas needed to analyze the com-
plexity of structures associated with a multidimensional unit cube, providing the necessary
transformations and approximations for these formulas. Further, the paper considers a typ-
ical study for this field using these formulas. The problem under consideration estimates
the complexity of the reduced disjunctive normal form of Boolean functions on average, or,
what is the same, for almost the entire class of functions.

24 RDNF Oriented Analytics to Random Boolean Functions

References

[1] Yu. I. Zhuravlev, “Set-Theoretical methods of algebra of logic, Problemi Kibernetiki,
vol. 8, pp. 544, 1962.

[2] O. Lupanov and S. Yablonsky, Discrete Mathematics and Mathematical Problems of
Cybernetics, Moscow, Nauka, 1974.

[3] A. I. Kitov and N. A. Krinitsky, Electronic Computers, Moscow: USSR Academy of
Sciences, 1958.

[4] Yu. L. Vasiliev, “Difficulties of minimization of Boolean functions based on universal
approaches”, Soviet Math. Dokl., vol. 171, no. 1, pp. 1316, 1966.

[5] V. Glagolev, “Some estimates of disjunctive normal forms in the algebra of logic, Prob-
lems of Cybernetics, Nauka, Moscow, vol. 19 pp. 7594, 1967.

[6] A. A. Sapozhenko, “Mathematical properties of almost all functions of algeΘbra of
logic”, Discrete analysis, vol. 10, pp. 91119, 1967.

[7] O. B. Lupanov, “Ob odnom metode sinteza skhem, In: Izv. VUZ (Radiofizika), vol. 1,
no.1, pp. 120140, 1958.

[8] L. H. Aslanyan, “On a recognition method, based on partitioning of classes by the
disjunctive normal forms”, Kibernetika, vol. 5 pp. 103110, 1975.

[9] L. H. Aslanyan, “Recognition algorithm with logical separators”, Collection of Works
on Mathematical Cybernetics, Computer Center, AS USSR, Moscow, pp. 116131, 1976.

[10] L. Aslanyan and J. Castellanos, “Logic based Pattern Recognition - Ontology content
(1)”, Inf. Tech. and Applicat. (IJ ITA), vol. 1, pp. 206210, 2007.

[11] L. Aslanyan and V. Ryazanov, “Logic based Pattern Recognition - Ontology content
(2)”, Inf. Theories and Applicat, vol. 15, no. 4, pp. 314318, 2008.

[12] L. Aslanyan, H.Sahakyan, H.-D. Gronau and P. Wagner, Constraint satisfaction prob-
lems on specific subsets of the n-dimensional unit cube”, Proc. IEEE 10th Int. Comp.
Sci. and Infor. Technol. (CSIT), Yerevan, Armenia, pp. 4752, 2015.

[13] L. Aslanyan and H. Sahakyan, “The splitting technique in monotone recognition”, Dis-
crete Applied Mathematics, vol. 216, pp. 502512, 2017.

[14] G. Putzolu and F. Mileto,“Average values of quantaties appearing in Boolean function
minimization”, IEEE EC-13, vol. 2, pp. 8792, 1964.

[15] G. Putzolu and F. Mileto, “Average values of quantaties appearing in multiple output
Boolean minimization”, IEEE EC-14, vol. 4, pp. 542552, 1965.

[16] L. H. Aslanyan, “On complexity of reduced disjunctive normal form of partial Boolean
functions. I.”, Proceedings, Natural Sciences, Yerevan State University, vol. 1, pp. 1118,
1974.

L. Aslanyan, I. Arsenyan, V. Karakhanyan and H. Sahakyan 25

[17] L. H. Aslanyan, “On complexity of reduced disjunctive normal form of partial Boolean
functions. II”, Proceedings, Natural Sciences, Yerevan State University, vol. 3, pp. 1623,
1974.

[18] M. Skoviera. “Average values of quantities appearing in multiple output Boolean mini-
mization”, Computers & Artificial Intelligence, vol. 5, pp. 321334, 1986.

[19] E. Toman, “An upper bound for the average length of a dizjunktive normal form of a
random Boolean function”, Computers & Artificial Intelligence, vol. 2, pp. 1317, 1983.

[20] K. Weber, “Prime Implicants of Random Boolean Functions”, Journal of Information
Processes and Cybernetics, vol. 19, pp. 449458, 1983.

[21] D. Gardy, “Random Boolean expressions”, Computational Logic and Applications, vol.
5, pp. 136, 2005.

[22] J. Boyar, R. Peralta and D. Pochuev, “On the multiplicative complexity of Boolean
functions over the basis (and,mod2,1)”, Theoretical Computer Science, vol. 235, no. 1,
pp. 43–57, 2000.

[23] X. Gong and J. Socolar, “Quantifying the complexity of random Boolean networks”,
In: arXiv:1202.1540v3 [nlin.CG] 26 May 2012.

[24] P. Hrubes”, On the complexity of computing a random Boolean funtion over the reals”,
Electronic Colloquium on Computational Complexity Report, no. 36, pp. 111, 2000.

[25] G. Sosa-Gomez, O. Paez-Osuna, O. Rojas, P. Lui del Angel Rodriguez, H. Kanarek
and E. J. Madarro-Capo, ”Con-struction of Boolean Functions from Hermitian Codes”,
Mathematics, MDPI 10.899, pp. 116, 2022.

[26] Chaubal Siddhesh Prashant, Complexity Measures of Boolean Functions and their Ap-
plications, Faculty of the Graduate School of The University of Texas at Austin 2020.

[27] P. Erdos, “Graph theory and probability”, Canad. J. Math, vol. 11, pp. 3438, 1959.

[28] J. Spencer and P. Erdos, Probabilistic Methods in Combinatorics, Moscow: Mir, 1963.

[29] L. H. Aslanyan, “On implementation of reduced disjunctive normal form in the problem
of extension of partial Boolean functions”, Junior Researcher, Natural Sciences, Yerevan
State University, vol. 20, no. 2, pp. 6575, 1974.

2 6 RDNF Oriented Analytics to Random Boolean Functions

ä³ï³Ñ³Ï³Ý µáõÉÛ³Ý ýáõÝÏóÇ³Ý»ñÇ Î¸ÜÒ
ÏáÕÙÝáñáßí³Í í»ñÉáõÍáõÃÛáõÝ

È¨áÝ Ð. ²ëÉ³ÝÛ³Ý, ÆñÇÝ³ ². ²ñë»ÝÛ³Ý, ìÇÉÇÏ Ø. Î³ñ³Ë³ÝÛ³Ý,
Ð³ëÙÇÏ ². ê³Ñ³ÏÛ³Ý

ÐÐ ¶²² ÆÝýáñÙ³ïÇÏ³ÛÇ ¨ ³íïáÙ³ï³óÙ³Ý åñáµÉ»ÙÝ»ñÇ ÇÝëïÇïáõï, ºñ¨³Ý, Ð³Û³ëï³Ý

e-mail: kavilik@gmail.com

²Ù÷á÷áõÙ

Ëåâîí À. Àñëàíÿí, Èðèíà À. Àðñåíÿí, Âèëèê Ì. Êàðàõàíÿí, Àñìèê À. Ñààêÿí

Èíñòèòóò ïðîáëåì èíôîðìàòèêè è àâòîìàòèçàöèè ÍÀÍ ÐÀ, Åðåâàí, Àðìåíèÿ
e-mail: kavilik@gmail.com

Àííîòàöèÿ

Äàííàÿ ñòàòüÿ ïðåñëåäóåò äâå öåëè: âî-ïåðâûõ, â íåé ðàññìàòðèâàåòñÿ
íàáîð ôîðìóë, íåîáõîäèìûõ äëÿ àíàëèçà ñëîæíîñòè ñòðóêòóð, ñâÿçàííûõ ñ
ìíîãîìåðíûì åäèíè÷íûì êóáîì, ïðåäîñòàâëÿÿ íåîáõîäèìûå ïðåîáðàçîâàíèÿ
è àïïðîêñèìàöèè äëÿ ýòèõ ôîðìóë. Äàëåå, â ñòàòüå ðàññìàòðèâàåòñÿ
òèïè÷íîå èññëåäîâàíèå äëÿ äàííîé îáëàñòè ñ èñïîëüçîâàíèåì ýòèõ ôîðìóë.
Ðàññìàòðèâàåìàÿ ïðîáëåìà îöåíèâàåò ñëîæíîñòü ñîêðàùåííîé äèçúþíêòèâíîé
íîðìàëüíîé ôîðìû áóëåâûõ ôóíêöèé â ñðåäíåì, èëè, ÷òî òî æå ñàìîå, ïî÷òè äëÿ
âñåãî êëàññà ôóíêöèé.

²Ûë Ñá¹í³ÍÝ áõÝÇ »ñÏáõ Ýå³ï³Ï, Ý³Ë ³ÛÝ ùÝÝ³ñÏáõÙ ¿ µ³Ý³Ó¨»ñÇ ÙÇ ß³ñù,
áñáÝù ³ÝÑñ³Å»ßï »Ý µ³½Ù³ã³÷ ÙÇ³íáñ Ëáñ³Ý³ñ¹Ç Ñ»ï Ï³åí³Í Ï³éáõóí³ÍùÝ»ñÇ
µ³ñ¹áõÃÛáõÝÁ í»ñÉáõÍ»Éáõ Ñ³Ù³ñ` ³å³Ñáí»Éáí ³ÝÑñ³Å»ßï ÷áË³Ï»ñåáõÙÝ»ñ ¨
Ùáï³ñÏáõÙÝ»ñ ³Ûë µ³Ý³Ó¨»ñÇ Ñ³Ù³ñ: ²í»ÉÇÝ, Ñá¹í³ÍÁ ùÝÝ³ñÏáõÙ ¿ ³Ûë áÉáñïÇ
Ñ³Ù³ñ áñáß µÝáñáß áõëáõÙÝ³ëÇñáõÃÛáõÝ` û·ï³·áñÍ»Éáí ³Ûë µ³Ý³Ó¨»ñÁ: øÝÝ³ñÏíáÕ
ÁÝÃ³ó³Ï³ñ·Á ·Ý³Ñ³ïáõÙ ¿ µáõÉÛ³Ý ýáõÝÏóÇ³Ý»ñÇ Ïñ×³ïí³Í ¹Ç½ÛáõÝÏïÇí ÝáñÙ³É
Ó¨Ç µ³ñ¹áõÃÛáõÝÁ ÙÇçÇÝáõÙ Ï³Ù, áñ ÝáõÛÝÝ ¿, ¹³ëÇ ·ñ»Ã» µáÉáñ ýáõÝÏóÇ³Ý»ñÇ Ñ³Ù³ñ:

Êëþ÷åâûå ñëîâà: áóëåâà ôóíêöèÿ, ìíîãîìåðíûé åäèíè÷íûé êóá, ñëîæíîñòü,
àñèìïòîòèêà, ñîêðàùåííàÿ äèçúþíêòèâíàÿ íîðìàëüíàÿ ôîðìà.

Àíàëèòèêà îðèåíòèðîâàííàÿ íà ÑÄÍÔ ñëó÷àéíûõ
áóëåâûõ ôóíêöèé

´³Ý³ÉÇ µ³é»ñ` ´áõÉÛ³Ý ýáõÝÏóÇ³, µ³½Ù³ã³÷ ÙÇ³íáñ Ëáñ³Ý³ñ¹, µ³ñ¹áõÃÛáõÝ,
³ëÇÙåïáïÇÏ³, Ïñ×³ïí³Í ¹Ç½ÛáõÝÏïÇí ÝáñÙ³É Ó¨:

Mathematical Problems of Computer Science 59, 27–34, 2023.

doi: 10.51408/1963-0099

UDC 510.64

The Relationship Between the Proof Complexities of

Linear Proofs in Quantified Sequent Calculus and

Substitution Frege Systems

Hakob A. Tamazyan

Yerevan State University, Yerevan, Armenia

e-mail: hakob.tamazyan@ysu.am

Abstract

It has formerly been proved that there is an exponential speed-up in the number of
lines of the quantified propositional sequent calculus over substitution Frege systems
when considering proofs as trees. This paper shows that a linear proof of any quantifier-
free tautology in quantified propositional sequent calculus can be transformed into a
linear proof of the same tautology in a substitution Frege systems with no more than
polynomially increasing proof lines and size.
Keywords: Sequent systems, Frege systems, Proof size, Number of proof lines, Ex-
ponential speed-up.
Article info: Received 23 March 2023; sent for review 2 April 2023; accepted 19 May
2023.

1. Introduction

The existence of a propositional proof system that has proofs of polynomial size for all
tautologies is equivalent to the equation NP = co-NP [1]. This observation has gained
attention in recent years, leading to the examination of new proof systems. Through the
discovery of new systems, the computational power of existing ones is gaining a greater
understanding. A hierarchy of proof systems has been established based on two complexity
measures (size and lines), and the relationships between these systems are being explored.
Alessandra Carbone in [2] compared the number of derivation lines in the form of a tree
in some propositional calculus systems and revealed a distinctive property of the quantified
propositional sequent calculus (QPK system). Namely, for some sequences of formulas,
the QPK system has an exponential speed-up by lines with respect to the substitution
sequent calculus (SPK system) and substitution Frege systems (SF systems) when proofs
are considered as trees. It was shown in [3] that the lines of linear proofs of the same formulae
families in all three systems are the same by order. Later, in [4], the same result was achieved
if one considers the sizes of linear proofs of the same formulae families for comparison.

27

28 The Relationship Between the Proof Complexities of Linear Proofs in QPK and Substitution SF

In this paper, the relationship between the proof complexities of linear proofs inQPK and
SF has been investigated for all quantifier-free tautologies: it turns out that QPK system
has no significant advantage over SF when only linear proofs are considered. Specifically,
after the transformation of linear QPK-proof of a quantifier-free tautology into a linear SF -
proof of the same tautology by some algorithm, both complexities (the number of lines and
sizes) of linear proofs in SF can increase polynomially at most.

2. Preliminaries

First and foremost, lets define several proof systems according to [1, 5, 6].
The Frege system F uses a denumerable set of propositional variables, a finite, complete

set of propositional connectives. It has a finite set of inference rules defined by a figure of
the form A1A2...Am

B
(the rules of inference with zero hypotheses are the schemes of axioms).

F must be sound and complete, i.e., for each rule of inference A1A2...Am

B
every truth-value

assignment, satisfying A1A2...Am, also satisfies B, and F must prove every tautology.
The Substitution Frege system SF is defined by adding to F the substitution rule

A(p)

A(B)

where simultaneous substitution of the formula B is allowed for the variable p.
The LK Sequent calculus was introduced by Gentzen [7] for first-order logic. Each line

in LK-proof is a sequent: a sequent is written in the form:

A1, . . . , An → B1, . . . , Bm

where A1, . . . , An and B1, . . . , Bm are formulas. We denote these sequences of formulas by
capital Greek letters Γ,∆, etc. As a quantifier symbol in LK, we will include only the
universal quantification ∀. The existential quantification symbol ∃ will be added by the
following definition:

(∃x)A(x) ≡ ¬(∀x)¬A(x).
The inference rules of the sequent calculus LK are as follows:

• Initial sequents are sequents of the following form:

A → A

where A is any formula.

• Structural rules:

Weakening : left
Γ → ∆

A,Γ → ∆
Weakening : right

Γ → ∆

Γ → ∆, A

Exchange : left
Γ1, A,B,Γ2 → ∆

Γ1, B,A,Γ2 → ∆
Exchange : right

Γ → ∆1, A,B,∆2

Γ → ∆1, B,A,∆2

Contraction : left
Γ1, A,A,Γ2 → ∆

Γ1, A,Γ2 → ∆
Contraction : right

Γ → ∆1, A,A,∆2

Γ → ∆1, A,∆2

H. Tamazyan 29

• Logical rules:

¬ : left
Γ → ∆, A

¬A,Γ → ∆
¬ : right

A,Γ → ∆

Γ → ∆,¬A

∧ : left
A,B,Γ → ∆

A ∧B,Γ → ∆
∧ : right

Γ → ∆, A Γ → ∆, B

Γ → ∆, A ∧B

∨ : left
A,Γ → ∆ B,Γ → ∆

A ∨B,Γ → ∆
∨ : right

Γ → ∆, A,B

Γ → ∆, A ∨B

⊃: left
Γ → ∆, A B,Γ → ∆

A ⊃ B,Γ → ∆
⊃: right

A,Γ → ∆, B

Γ → ∆, A ⊃ B

• The cut rule:

Γ → ∆, A A,Γ → ∆

Γ → ∆

Let us denote by PK the sequent calculus LK, where the rules are restricted to propo-
sitional logic.

The substitution system SPK is defined as the propositional sequent calculus PK with
an additional substitution rule:

SB
p

Γ → ∆, A(p)

Γ → ∆, A(B)
,

where simultaneous substitution of the formula B is allowed for the variable p, and p does
not appear in Γ,∆.

The quantifier system QPK is defined as the propositional sequent calculus PK, where
new quantification rules are added:

∀ : left
A(B),Γ → ∆

(∀q)A(q),Γ → ∆
∀ : right

Γ → ∆, A(p)

Γ → ∆, (∀q)A(q)
where B is any formula such that no free variable occurrence in B becomes bounded in
A(B), and with the restriction that the atom p does not occur freely in the lower sequents
of ∀ : right.

Notice that the the following two inferences can be derived in QPK system using the
definition of the quantifier ∃:

∃ : left
A(p),Γ → ∆

(∃q)A(q),Γ → ∆

A(p),Γ → ∆

Γ → ∆,¬A(p)
Γ → ∆, (∀q)(q)

¬(∀q)¬A(q),Γ → ∆

∃ : right
Γ → ∆, A(B)

Γ → ∆, (∃q)A(q)

Γ → ∆, A(B)

¬A(B),Γ → ∆

(∀q)(q),Γ → ∆

Γ → ∆,¬(∀q)¬A(q)

30 The Relationship Between the Proof Complexities of Linear Proofs in QPK and Substitution SF

3. Main Results

For a given linear proof in QPK with n number of lines and proof size s, one can always
find a linear proof in SPK of the same tautology having O(n2) lines and O(s5) proof size.

First of all, notice that for any linear proof in SPK, there exists a linear proof in QPK
of the same tautology with the same number of lines. The sequent (∀p)A(p),Γ → ∆, A(B)
is provable for all A,B, and the sequent Γ → ∆, (∀p)A(p) is derivable from ∆ → ∆, A(p).
Hence, after combining them through a cut rule, one derives Γ → ∆, A(B). Here we examine
the relationship between these systems in the opposite scenario.

Lemma. For n,m ≥ 0 and p not appeared in Γ,∆, the following inference

Γ, A1(p), . . . , An(p) → ∆, An+1(p), . . . , An+m(p)

Γ, A1(B), . . . , An(B) → ∆, An+1(B), . . . , An+m(B)

can be achieved in SPK system with O(n+m) lines using the substitution rule only once.

Proof. First, let’s prove these additional inferences:

1.
Γ → ∆,¬A
A,Γ → ∆

Γ → ∆,¬A A → A
Γ → ∆,¬A ¬A,A →

A,Γ → ∆

2.
Γ → ∆, A ∨B

Γ → ∆, A,B

Γ → ∆, A ∨B A → A B → B
Γ → ∆, A ∨B A → A,B B → B

Γ → ∆, A ∨B A → A,B B → A,B
Γ → ∆, A ∨B A ∨B → A,B

Γ → ∆, A,B

3.
Γ, A ∧B → ∆

Γ, A,B → ∆

Γ, A ∧B → ∆ A → A B → B
Γ, A ∧B → ∆ A,B → A B → B

Γ, A ∧B → ∆ A,B → A A,B → B
Γ, A ∧B → ∆ A,B → A ∧B

Γ, A,B → ∆

H. Tamazyan 31

The final proof will look like this:

Γ, A1(p), . . . , An(p) → ∆, An+1(p), . . . , An+m(p)

Γ, A1(p) ∧ A2(p), . . . , An(p) → ∆, An+1(p), . . . , An+m(p)....
Γ, A1(p) ∧ . . . ∧ An(p) → ∆, An+1(p), . . . , An+m(p)....

Γ, A1(p) ∧ . . . ∧ An(p) → ∆, An+1(p) ∨ . . . ∨ An+m(p)

Γ → ∆, An+1(p) ∨ . . . ∨ An+m(p),¬(A1(p) ∧ . . . ∧ An(p))

Γ → ∆, An+1(p) ∨ . . . ∨ An+m(p) ∨ ¬(A1(p) ∧ . . . ∧ An(p))

Γ → ∆, An+1(B) ∨ . . . ∨ An+m(B) ∨ ¬(A1(B) ∧ . . . ∧ An(B))

Γ → ∆, An+1(B) ∨ . . . ∨ An+m(B),¬(A1(B) ∧ . . . ∧ AnB)

Γ, A1(B) ∧ . . . ∧ An(B) → ∆, An+1(B) ∨ . . . ∨ An+m(B)
....

Γ, A1(B), . . . , An(B) → ∆, An+1(B), . . . , An+m(B)

Note that in this proof the substitution rule is applied only once.

Theorem 1. For a given linear proof in QPK of some quantifier-free tautology with n
number of lines, there exists a linear proof in SPK of the same tautology having O(n2)
number of lines.

Proof. Suppose P is a given linear proof in QPK. Since P is the proof of a quantifier-
free tautology, if a formula with a quantifier appears in the proof, then it must disappear at
some point in the next lines. These formulas can appear either by quantification rules or by
weakening rules, and the cut rule is the only inference rule capable of removing a formula
from the sequent. Notice that if we apply the cut rule to two sequents and some formula
A with a quantifier is removed, then it is impossible that both of these sequents got this
quantifier by the ∀ : left rule.

First of all, we will remove all applications of the ∀ : left rule in the proof of P . Let
(∀q)A(q) be some formula or subformula in the proof. Suppose it appeared by ∀ : right
rule that infers Γ → ∆, (∀q)A(q) from Γ → ∆, A(p). Since p does not occur free in sequent
Γ → ∆, (∀q)A(q), instead of the ∀ : right rule, we can apply the substitution rule to
Γ → ∆, A(p) and substitute p with some new variable k that did not appear throughout the
proof. If (∀q)A(q) appeared by weakening rules, we will replace it with the formula A(k),
where k is again some new variable that did not appear throughout the proof. According
to the previously mentioned claim, the formula (∀q)A(q) should have been removed at some
point via the cut rule. Therefore, just before the application of cut rule, we will substitute
the variable k with the corresponding matching formula to be able to apply the cut rule
successfully. This substitution is allowed since k does not appear in the remaining formulas
of the sequent.

This removal of formulas with quantifiers from the proof can have the following effects.
Firstly, since these formulas have been replaced with different ones, the contraction rule

can not be applied to these replacements anymore, as they can differ from each other.
Therefore, instead of applying the contraction rule to them, in the next lines we will apply
the same inference rules to both of them. As these formulas should disappear in one of the
next lines by the cut rule, we will apply the cut-elimination rule twice so that both of them

32 The Relationship Between the Proof Complexities of Linear Proofs in QPK and Substitution SF

will be removed. There are O(n) applications of the contraction rule, then after this change,
the number of lines will become O(n2). However, according to the lemma, the number of
applications of the substitution rule will not change and will remain O(n).

Secondly, the ∀ : left rule that transformed some sequent A(B),Γ → ∆ into
(∀q)A(q),Γ → ∆, will not be applied to the proof, and the formula B will appear in the next
lines. Hence, there might be an application of the substitution rule in these next lines that
substitutes some variable x into some formula C so that x also appears in the formula B.
This means that besides the formula C, there can also be other formulas with the variable
x in the sequent. Therefore, to fix this, we will apply the substitution to these formulas too.
Considering that the number of applications of the ∀ : left rule was O(n) and removing
each application of the contraction rule adds just one formula to the sequent, the number
of such formulas in the sequent will be O(n). Therefore, according to the lemma, each such
substitution will require O(n) additional lines. Since there are O(n) applications of the sub-
stitution rule, this change will add O(n2) number of lines to our proof. This will conclude
the transformation process, and the transformed SPK proof will have O(n2) lines.

Theorem 2. For a given linear proof in QPK of some quantifier-free tautology with a proof
size s, there exists a linear proof in SPK of the same tautology having O(s5) proof size.

Proof. Suppose P is a given linear proof in QPK with n number of lines and proof size
s. Let P ′ be the transformed SPK proof according to the process described above. To
calculate its size, let’s dive into the transformation process step by step.

We replaced each application of the ∀ : right rule with a substitution rule to substitute
one variable with another. The formulas with quantifiers that appeared by weakening rules
have been replaced by formulas with the same size. Afterwards, we added a substitution
before the application of the cut rule to match the corresponding formula. All these steps
change the number of proof lines and the proof size linearly. Let’s denote them by n′, s′,
respectively.

Moreover, we removed all applications of the ∀ : left rule. Therefore, if some application
of the ∀ : left rule transformed the sequent A(B),Γ → ∆ into (∀q)A(q),Γ → ∆, then after
the removal, the formula B will appear in the next lines. This will increase the proof size
by at most n′ · |A(B)|, where |A(B)| is the size of the formula A(B). Removing the ith
application of the ∀ : left rule increases the proof size by at most n′ · |Ai(Bi)|, then removing
all of them will add no more than∑

i

n′ · |Ai(Bi)| = n′ ·
∑
i

|Ai(Bi)| ≤ n′ · s′ ≤ s′2

to the proof size. As s′ is O(s), after this step, the proof size will be O(s2) and the number
of lines will remain O(n).

Removing applications of the contraction rule has the following two effects on the proof
size.

First of all, it will keep the eliminated formula in a sequent, so it will appear in the next
lines. The added proof size can be calculated completely like the previous method. Since
the number of applications of the contraction rule is O(n) and the proof size is O(s2), this
change will make the proof size O(s3). The number of lines will remain O(n).

The second effect of removing applications of the contraction rule will be applying the
same inference rules to both formulas. Since the proof size is O(s3), then applying the same

H. Tamazyan 33

inference rule to the previously eliminated formula can increase the proof size by O(s3). The
number of applications of the contraction rule is O(n), and since n ≤ s, the overall proof
size will become O(s4).

Finally, the removal of the ∀ : left rule causes some substitution steps to also substitute
the same variable in several other formulas of the same sequent. Notice that all these
substitution steps were ∀ : right rule replacements that substitute one variable with another,
as otherwise we won’t face such a problem. Each such substitution that simultaneously
substitutes the same variable in these sequent formulas required O(n) lines. If the ith such
substitution is applied to the sequent Si, then this change will overall add no more than∑

i

c · n · |Si| = c · n ·
∑
i

|Si| ≤ c · s ·
∑
i

|Si|

to the proof size, where |Si| is the size of the sequent Si and c is some constant.
∑

i |Si| is
smaller than the current proof size, therefore the transformed SPK proof will have O(s5)
size.

Corollary. Since the system SPK is polynomially equivalent to the system SF, there is a
transformation of a linear proof of any quantifier-free tautology in QPK into a linear proof
in the system SF that increases the proof lines and size at most polynomially.

4. Conclusion

This work described an algorithm according to which any QPK linear proof can be trans-
formed into a SF linear proof by increasing its lines and size to at most a polynomial extent.
The obtained results show that the QPK system does not have a substantial advantage over
the system SF in terms of linear proofs.

References

[1] S. A. Cook and A. R. Reckhow, “The relative efficiency of propositional proof systems”,
Symbolic Logic, vol. 44, pp. 36–50, 1979.

[2] A. Carbone, “Quantified propositional logic and the number of lines of tree-like proofs”,
Studia Logica, vol. 64, pp. 315–321, 2000.

[3] H. A. Tamazyan and A. A. Chubaryan, “On proof complexities relations in some
systems of propositional calculus, Mathematical Problems of Computer Science, vol.
54, pp. 138–146, 2020.

[4] L. A. Apinyan and A. A Chubaryan, “On sizes of linear and tree-like proofs for any
formulae families in some systems of propositional calculus”, Mathematical Problems
of Computer Science, vol. 57, pp. 47–55, 2022.

[5] P. Pudlák, The Lengths of Proofs, in S. Buss (ed.), Handbook of Proof Theory, Elsevier,
vol. 137, pp. 547-637, 1998.

[6] J. Kraj́ıc̆ek, Proof Complexity, Encyclopedia of Mathematics and Its Applications,
Cambridge University Press, vol. 170, 2019.

[7] G. Gentzen, “Die Widerspruchsfreiheit der reinen Zahlentheorie”, Mathematische An-
nalen, vol. 112, pp. 493–565, 1936.

3 4 The Relationship Between the Proof Complexities of Linear Proofs in QPK and Substitution SF

¶Í³ÛÇÝ ³ñï³ÍáõÙÝ»ñÇ µ³ñ¹áõÃÛáõÝÝ»ñÇ Ï³åÁ Í³í³ÉÇãÝ»ñáí
ë»Ïí»ÝóÇ³É Ñ³Ù³Ï³ñ·áõÙ ¨ ï»Õ³¹ñÙ³Ý

Ï³ÝáÝáí üñ»·»Ç Ñ³Ù³Ï³ñ·»ñáõÙ

Ð³Ïáµ ². Â³Ù³½Û³Ý

ºñ¨³ÝÇ å»ï³Ï³Ý Ñ³Ù³Éë³ñ³Ý, ºñ¨³Ý, Ð³Û³ëï³Ý

e-mail: hakob.tamazyan@ysu.am

²Ù÷á÷áõÙ

Ñâÿçü ìåæäó ñëîæíîñòÿìè äîêàçàòåëüñòâ ëèíåéíûõ
âûâîäîâ â ñèñòåìå ñåêâåíöèàëüíîãî èñ÷èñëåíèÿ ñ

êâàíòîðàìè è ñèñòåìàõ Ôðåãå ñ ïðàâèëîì ïîäñòàíîâêè
Àêîá À. Òàìàçÿí

Åðåâàíñêèé ãîñóäàðñòâåííûé óíèâåðñèòåò, Åðåâàí, Àðìåíèÿ
e-mail: hakob.tamazyan@ysu.am

Àííîòàöèÿ

Ðàíåå áûëî äîêàçàíî, ÷òî ñóùåñòâóåò ýêñïîíåíöèàëüíîå óñêîðåíèå êîëè÷åñòâà
øàãîâ â ñèñòåìå ñåêâåíöèàëüíîãî èñ÷èñëåíèÿ âûñêàçûâàíèé ñ êâàíòîðàìè ïî
ñðàâíåíèþ ñ ñèñòåìàìè Ôðåãå ñ ïðàâèëîì ïîäñòàíîâêè, êîãäà ìû ðàññìàòðèâàåì
âûâîäû â âèäå äåðåâüåâ. Ýòà ñòàòüÿ ïîêàçûâàåò, ÷òî ëèíåéíûé âûâîä ëþáîé
áåñêâàíòîðíîé òàâòîëîãèè â ñèñòåìå ñåêâåíöèàëüíîãî èñ÷èñëåíèÿ âûñêàçûâàíèé
ñ êâàíòîðàìè ìîæíî ïðåâðàòèòü â ëèíåéíûé âûâîä òîé æå òàâòîëîãèè â ñèñòåìàõ
Ôðåãå ñ ïðàâèëîì ïîäñòàíîâêè ñ íå áîëåå ÷åì ïîëèíîìèàëüíî âîçðàñòàþùèì
êîëè÷åñòâîì øàãîâ è äëèíîé âûâîäà.

Êëþ÷åâûå ñëîâà: ñåêâåíöèàëüíûå ñèñòåìû, ñèñòåìû Ôðåãå, äëèíà âûâîäà,
êîëè÷åñòâî øàãîâ âûâîäà, ýêñïîíåíöèàëüíîå óñêîðåíèå.

Ü³ËÏÇÝáõÙ ³å³óáõóí»É ¿, áñ Í³í³ÉÇãÝ»ñáí ë»Ïí»ÝóÇ³É Ñ³Ù³Ï³ñ·áõÙ ³éÏ³
¿ ù³ÛÉ»ñÇ ù³Ý³ÏÇ ¿ùëåáÝ»ÝóÇ³É ³ñ³·³óáõÙ ï»Õ³¹ñÙ³Ý Ï³ÝáÝáí üñ»·»Ç
Ñ³Ù³Ï³ñ·»ñÇ ÝÏ³ïÙ³Ùµ, »ñµ ¹Çï³ñÏáõÙ »Ýù Í³é³ÛÇÝ ³ñï³ÍáõÙÝ»ñÁ: ²Ûë Ñá¹í³ÍÁ
óáõÛó ¿ ï³ÉÇë, áñ ³é³Ýó Í³í³ÉÇãÝ»ñÇ, ó³ÝÏ³ó³Í ÝáõÛÝ³µ³ÝáõÃÛ³Ý ·Í³ÛÇÝ
³ñï³ÍáõÙÁ Í³í³ÉÇãÝ»ñáí ë»Ïí»ÝóÇ³É Ñ³Ù³Ï³ñ·áõÙ ÑÝ³ñ³íáñ ¿ í»ñ³Í»É ÝáõÛÝ
ÝáõÛÝ³µ³ÝáõÃÛ³Ý ·Í³ÛÇÝ ³ñï³ÍÙ³Ý ï»Õ³¹ñÙ³Ý Ï³ÝáÝáí üñ»·»Ç Ñ³Ù³Ï³ñ·»ñáõÙ`
áõÝ»Ý³Éáí ³ñï³ÍÙ³Ý ù³ÛÉ»ñÇ ù³Ý³ÏÇ ¨ »ñÏ³ñáõÃÛ³Ý ³é³í»É³·áõÛÝ µ³½Ù³Ý¹³Ù³ÛÇÝ
³×:

´³Ý³ÉÇ µ³é»ñ` ë»Ïí»ÝóÇ³É Ñ³Ù³Ï³ñ·»ñ, üñ»·»Ç Ñ³Ù³Ï³ñ·»ñ, ³ñï³ÍÙ³Ý
»ñÏ³ñáõÃÛáõÝ, ³ñï³ÍÙ³Ý ù³ÛÉ»ñÇ ù³Ý³Ï, ¿ùëåáÝ»ÝóÇ³É ³ñ³·³óáõÙ:

Mathematical Problems of Computer Science 59, 35–44, 2023.

doi: 10.51408/1963-0100

UDC 004.75

Data Compression-Aware Performance Analysis of

Dask and Spark for Earth Observation Data Processing

Arthur G. Lalayan

Institute for Informatics and Automation Problems of NAS RA, Yerevan, Armenia
National Polytechnic University of Armenia, Yerevan, Armenia

e-mail: arthurlalayan97@gmail.com

Abstract

High-performance computing is a good choice for handling Big Earth Observation
data, allowing the processing of the data in a distributed and performance-efficient way
using in-memory computing frameworks. The data compression technique reduces the
amount of storage and network transfer time and improves processing performance.
The article aims to investigate the effectiveness of widely used distributed data pro-
cessing frameworks in conjunction with lossless data compression techniques, to find
the optimal compression method and processing framework for specific earth obser-
vation workflows. Normalized Difference Vegetation Index has been evaluated for the
territory of Armenia, obtaining data from the Sentinel satellite and considering the
supported compression methods to compare the performance of in-memory Dask and
Spark frameworks. Experiments show that the Zstandard compression method and
the Dask framework are the best choices for such workflows.
Keywords: Earth observation, HPC, Spark, Dask, Distributed computing, Data com-
pression.
Article info: Received 29 January 2022; sent for review 7 February 2023; received in
revised form 15 March 2023; accepted 17 April 2023.
Acknowledgement: The research was supported by the Science Committee of the
Republic of Armenia and the University of Geneva Leading House by the projects enti-
tled Self-organized Swarm of UAVs Smart Cloud Platform Equipped with Multi-agent
Algorithms and Systems (Nr. 21AG-1B052), Remote sensing data processing methods
using neural networks and deep learning to predict changes in weather phenomena (Nr.
21SC- BRFFR-1B009), and ADC4SD: Armenian Data Cube for Sustainable Develop-
ment.

1. Background and Motivation

Earth Observation (EO) satellite data are necessary for environmental monitoring and gath-
ering vital information about various Earth layers [1]. Specifically, EO data are widely used

35

36 Data Compression-Aware Performance Analysis of Dask and Spark for Earth Obser. Data Processing

to monitor the atmosphere including air pollution [2] and temperature [3], the oceans con-
sidering sea pollution and ocean acidity [4], and ground, such as deforestation [5] and forest
fire [6], as well as to detect climatic changes [7].

To facilitate work with EO data, Australian researchers [8] have provided an open-source
Open Data Cube (ODC) [9], which is deployed and widely used by several communities
from different countries, including Armenia [10]. Nevertheless, the ODC communities still
encounter the Big EO data processing challenge requiring high-performance computational
(HPC) resources. For instance, the Sentinel-2 satellite [11] provides approximately 200-300
GB, 3 TB, and 36 TB of daily, monthly, and annual data for the territory of Armenia.
Handling this amount of data is a complex task. Therefore, HPC is the right choice to
improve data processing performance using distributed computing techniques. Thus, the Big
EO data processing obstacle is coping with using open-source Apache Spark [12] and Dask
[13] frameworks, which can process data in parallel by dividing them into chunks, processing
them in a distributed way using computational clusters, and aggregating the result. Both
frameworks have master-slave architecture, where slave nodes are worker nodes executing
functions in parallel, and the master node is the driver or scheduler to manage them. Spark
ecosystem supports many projects in data streaming, SQL analytics, and machine learning.
Spark is a multi-language engine that processes and analyzes data, while Dask is a Python
library. Therefore, Spark has its ecosystem APIs and memory models, while Dask uses
them from the Python ecosystem. However, these frameworks have some differences and
limitations in finding an optimal solution for EO data processing workflows.

Besides using HPC, the format of EO satellite images also has a crucial influence on
performance. The data compression techniques can reduce storage usage and the number
of I/O operations, improving processing performance. Recent studies [14, 15] show that
compression methods combined with HPC can significantly enhance the performance of Big
data workflows. One of the optimal satellite image formats is Cloud Optimized GeoTIFF
(COG) [16], which provides essential advantages compared to traditional formats, such as
NetCDF [17]. COG format provides an HTTP range request to extract a part of the data.
Hence, when extracting EO data using COG, there is no need to download the entire image
and then extract the area of interest as in the NetCDF format. Besides the mentioned
benefit, both COG and NetCDF formats support data compression methods.

Several studies [18, 19, 20] evaluate and compare the performance of the frameworks for
particular cases, such as data-intensive neuroimaging pipelines [18], different applications
of molecular dynamics [20], and scientific image analytics [19]. Nevertheless, they did not
consider performance-tuning techniques, such as data compression.

The main objective of the article is to investigate the efficacy of widely used distributed
data processing frameworks, such as Dask and Spark, in combination with lossless data
compression methods, to enhance the performance of EO data processing. The methodology
involved evaluating the approach on the Armenian hybrid research computing platform, and
the results obtained from the evaluation could be used by EO communities to make informed
decisions about improving their data processing performance.

2. Methodology

A test-bed platform for EO data processing has been deployed to execute EO data pro-
cessing functions and compare the performances in Spark and Dask. The platform is a
container-based solution within the Kubernetes system, enabling evaluating and comparing

A. Lalayan 37

the environments’ performance. It relies on the computational resources of the Armenian
hybrid research computing platform [21]. Fig. 1 shows the architecture of the experimental
platform.

Fig. 1. Test-bed platform based on Spark and Dask.

As the figure shows, each node scheduler/driver or worker/executor corresponds to a
pod in Kubernetes with some fixed computational resources. It is possible to configure the
computational resource characteristics of nodes with Kubernetes API. The Jupyter Notebook
[22] corresponds to the FrontEnd of the Spark and Dask cluster BackEnd. It connects to
Dask and Spark of master nodes, configures environments by providing the number of worker
nodes and computational resources for each node, requests to process EO data using Dask
and Spark clusters, and visualizes the output. Dask and Spark clusters fetch data from
repositories of either local Armenian DataCube [23] or global EO data providers. Armenian
DataCube [10] provides data from Landsat 5, 7, 8 [24], and Sentinel-2 satellites, and one of
the global EO data providers is Sentinel-2 Cloud-Optimized GeoTIFFs [25].

The functionality evaluation of the Dask and Spark frameworks is quite interesting.
Dask is a flexible Python library, which makes it easy to migrate and execute the old-
written Python code in a distributed manner. Moreover, Python is widely used in EO data
workflows, and various useful libraries provide vital tools to make the work with EO data
easier. However, working with EO data in Spark is a little tricky because the execution
of the old-written codes in the Spark environment is impossible, as it supports APIs of its
ecosystem, therefore, the code adjustment is inevitable. The GeoPySpark library [26] makes
working with EO data somewhat easier in Spark. So the data processing function can be
easily parallelized only in Dask, considering the limitations and complexity of using Spark.

As EO data processing applications, the Normalized Difference Vegetation Index (NDVI)
[27] was evaluated during the experiments, which provides information for monitoring the
health of the vegetation. The formula of the index is presented in (1).

NDV I =
NIR−RED

NIR +RED
, (1)

where RED is the red band, and NIR is the near-infrared band. All bands and the calcula-
tion result are matrices or images and the NDVI index is calculated from Sentinel-2 satellite
images.

38 Data Compression-Aware Performance Analysis of Dask and Spark for Earth Obser. Data Processing

Several experiments were conducted with different parameters to evaluate the perfor-
mances of Dask and Spark using the developed experimental platform. Table 1 presents all
parameters and their values.

Table 1: Experimental parameters and their values.

Parameter name Possible values

Environment Dask and Spark

Input Data sizes 16, 32, 64 GBs

Number of workers 4, 8, 16, 32

Applications NDVI

Compression methods None, Deflate, LZW, Packbits, and Zstandard

3. Experimental Results

Data compression techniques reduce the actual size of data, resulting in savings in stor-
age space, providing faster network transmission times, and improving the performance of
processing. EO data repositories, which provide satellite images in COG format, such as
Sentinel-2 COGs, by default, use Deflate compression method to reduce the downloading
time of satellite images and save some storage space. Besides the Deflate method, several
compression methods, either lossy or lossless, could be applied with COGs. The accuracy
of the satellite image is essential, as the spatial resolution of the Sentinel-2 image is 10m
[10], which corresponds to the surface area measured on the ground represented by each
pixel. Therefore, the compression methods used for optimization should be lossless to en-
sure accurate results. The COG format supports several lossless compression methods, such
as Deflate [28], LZW [29], Packbits [30], and Zstandard [31].

EO band tiles come in three different sizes (light, medium, and heavy) by which the
compression factor is estimated to understand the average compression ratio of the method.
The light band tiles (coastal, water vapor, etc.) usually have up to 5-10 MB size, medium
50-70 MB (Short-wave infrared (SWIR), vegetation red edge, etc.), and heavy 200-250 MB
(RED, NIR, etc.). They consider all types of possible lossless compression methods. The
compression ratio is calculated for each method by dividing the compressed data size by the
original uncompressed data size. The compression ratios for various compression methods
are presented in Fig. 2.

The figure shows that the best compression factor is provided by the Zstandard method,
whereas the worst one is provided by the Packbits method. Zstandard codec compresses
the band image more than the Deflate does, which is by default used by the Sentinel-2
COGs repository. Therefore, using Zstandard instead of Deflate will lead to more storage
savings, and less network transfer time and I/O operations. The storage reduction, in this
case, is 34 % compared with the uncompressed data and 16 % compared with Deflate. The
compression ratio of the Packbits method for the heavy tiles is close to 1, which means that
the method is useless for data size reduction since the actual size and compressed data size
will be the same. Besides the storage saving, further data processing is also essential, as

A. Lalayan 39

Fig. 2. Compression ratio of Deflate, LZW, Packbits, and Zstandard methods for light, medium,
and heavy tiles.

high compression needs more CPU time to decompress into memory before processing. The
majority of the time spent in computing NDVI is devoted to transferring satellite images
over the network and loading them into memory, rather than performing calculations using
the CPU. The comparison of the performances of Dask and Spark, considering different sizes
of input data, compression methods, and 32 worker nodes is shown in Fig. 3.

The execution time of the COG tile compressed with the Packbits method and without
compression is almost the same, as Packbits provides weak compression; thus, it uses lit-
tle CPU time for decompression. The worst performance for both environments from the
possible compression methods is Deflate, whereas the best one is Zstandard. Hence, the
best compression method for satellite images in COG format is Zstandard, as it provides
the highest compression ratio and optimal memory loading time. The performance im-
provement when using Zstandard compared to uncompressed mode is achieved by reducing
network transfer time. Zstandard provides on average 2.15 and 1.82 times faster execu-
tion time compared with the uncompressed mode, approximately 4.72 and 3.99 times faster
than the default selected Deflate method provided by global satellite image repositories cor-
respondingly for Dask and Spark environments. Performance evaluation using Dask and
Spark is quite interesting. For the default used Deflate compression method provided by EO
repositories, Spark and Dask show similar execution times; however, Spark is a bit faster.
The LZW compression method for the Dask environment is better than Deflate but worse
than without compressing or compressing with Zstandard. Also, Spark does not support
the compression method. With uncompressed data, Dask is faster than Spark for 16 GB
input, whereas, in cases of 32 GB and 64 GB, Spark is faster. Performance in Dask using
the Zstandard compression method is an optimal choice.

40 Data Compression-Aware Performance Analysis of Dask and Spark for Earth Obser. Data Processing

Fig. 3. Comparison of Dask and Spark considering 16, 32, 64 GBs of input data and compression
methods.

4. Discussion

The study showed that various data compression methods could reduce storage require-
ments and network transfer time at different scales. Moreover, compressed data processing
using multiple techniques in distributed environments such as Spark and Dask exhibited
other execution times, with some compression methods outperforming uncompressed data
processing time. The study aims to determine the optimal data compression method that
balances performance and storage savings in the chosen distributed processing environments.
The evaluation shows that the Dask and Zstandard combination is the best choice for the
environment and compression method for EO satellite images. It provides the highest com-
pression factor and performance compared to other supported compression methods.

The Armenian DataCube was initially set up with a 2-terabyte storage capacity, which is
limited. To manage this, only the essential bands for specific EO applications that researchers
are interested in during a particular period are downloaded and stored. If the storage capacity
is exceeded, the options are to scale vertically or add external storage. The Zstandard
compression technique was used in experiments to conserve 34 % of storage. This allows
more data to be stored in the allocated DataCube space.

The Zstandard compression method combined with the Dask environment offers benefits
such as improved data storage efficiency and EO data processing time. However, additional
steps are required to achieve these benefits, such as converting analysis-ready data from the
DataCube to Cloud Optimized GeoTIFF format and compressing them using the Zstandard
method. Although this may increase the total execution time of downloading and prepro-
cessing, it provides such benefits as enhanced processing time and storage savings. Moreover,
this efficient method of storing compressed data can be applied to other types of EO data
repositories and DataCubes.

A. Lalayan 41

In conclusion, data compression methods can effectively reduce the amount of EO data
stored and improve processing performance. Zstandard exhibits the best performance and
storage efficiency for EO data among the available compression methods. Additionally, the
implementation of the Dask environment speeds up distributed processing.

5. Conclusion

The study evaluates the performance of EO data processing in Dask and Spark, considering
compression methods. Experimental results show that Dask and Spark provide similar data
processing performances. The mixture of the Dask and Zstandard compression methods
is optimal, as the compression method provides the best compression factor of all possible
lossless compression methods. It reduces the amount of used storage by 16 % and speeds up
execution times by 4.72x and 3.99x in Dask and Spark, correspondingly compared with the
Deflate method, which is used by default from the EO data repositories. In further work, it
is planned to store the data in Armenian DataCube compressed with the Zstandard method
and use the Dask environment for data processing.

References

[1] O. R. Young, M. Onoda. “Satellite Earth Observations in Environmental Problem-
Solving”, In book: Satellite Earth Observations and Their Impact on Society and Pol-
icy, pp. 3-27, 2017.

[2] D. A. Chu, Y. J. Kaufman, “Global monitoring of air pollution over land from the Earth
Observing System-Terra Moderate Resolution Imaging Spectroradiometer (MODIS)”,
Journal of Geophysical Research Atmospheres, vol. 108, no. 21, November 2003.

[3] R.S. dos Santos, “Estimating spatio-temporal air temperature in London (UK) us-
ing machine learning and earth observation satellite data”, International Journal of
Applied Earth Observation and Geoinformation, vol. 88, June 2020.

[4] T. Krishnamurti and A. Chakraborty, “Impact of Arabian Sea pollution on the Bay of
Bengal winter monsoon rains”, Journal of Geophysical Research, vol. 114, March 2009.

[5] R. DeFries and F. Achard, “Earth observations for estimating greenhouse gas emissions
from deforestation in developing countries”, Environmental Science & Policy, vol. 10,
no. 4, pp. 385–394, June 2007.

[6] Y. J. Kaufman and C. Ichoku, “Fire and smoke observed from the Earth Observing
System MODIS instrument–products, validation, and operational use”, International
Journal of Remote Sensing, vol. 24, no. 8, pp. 1765–1781, November 2010.

[7] H. D. Guo and L. Zhang, “Earth observation big data for climate change research”,
Advances in Climate Change Research, vol. 6, no. 2, pp. 108–117, June 2015.

[8] A. Lewis, S. Oliver and L. Lymburner, “The Australian Geoscience Data Cube Foun-
dations and lessons learned”, Remote Sensing of Environment, vol. 202, pp. 276–292,
2017.

[9] Open data cube, [Online]. Available: https://www.opendatacube.org/

[10] S. Asmaryan and V. Muradyan, “Paving the Way towards an Armenian Data Cube”,
Data, vol. 4, no. 1, 2019.

42 Data Compression-Aware Performance Analysis of Dask and Spark for Earth Obser. Data Processing

[11] M. Drusch and U. D. Bello, “Sentinel-2: ESA’s Optical High-Resolution Mission for
GMES Operational Services”, Remote Sensing of Environment, vol. 120, pp. 25–36,
May 2012.

[12] M. Xiangrui, “Mllib: Machine learning in apache spark”, The Journal of Machine
Learning Research, vol. 17, no. 1, pp. 1235–1241, 2016.

[13] R. Matthew, “Dask: Parallel computation with blocked algorithms and task schedul-
ing”, Proceedings of the 14th python in science conference, vol. 130, 2015.

[14] H. Astsatryan and A. Kocharyan, “Performance Optimization System for Hadoop and
Spark Frameworks”, Cybernetics and Information Technologies, vol. 20, no. 6, pp.
5–17, 2020.

[15] H. Astsatryan and A. Lalayan, “Performance-efficient Recommendation and Prediction
Service for Big Data frameworks focusing on Data Compression and In-memory Data
Storage Indicators”, Scalable Computing: Practice and Experience, vol. 22, no. 4, pp.
401–412, 2021.

[16] Cloud Optimized GeoTIFF, [Online]. Available: https://www.cogeo.org/

[17] J. Li, “Parallel netCDF: A High-Performance Scientific I/O Interface”, Proceedings of
the 2003 ACM/IEEE Conference on Supercomputing, 2003.

[18] D. Mathieu and H. Sasson, “A Performance Comparison of Dask and Apache Spark
for Data-Intensive Neuroimaging Pipelines”, 2019 IEEE/ACM Workflows in Support
of Large-Scale Science (WORKS), pp. 40–49, 2019.

[19] P. Mehta and S. Dorkenwald, “Comparative evaluation of big-data systems on scientific
image analytics workloads”, Proceedings of the VLDB Endowment, vol. 10, no. 11, pp.
1226-1237, 2017.

[20] I. Paraskevakos and A. Luckow, “Task-parallel Analysis of Molecular Dynamics Tra-
jectories”, ICPP 2018: Proceedings of the 47th International Conference on Parallel
Processing, no. 49, pp. 1-10, 2018.

[21] Y. Shoukourian and V. Sahakyan, “E-Infrastructures in Armenia: Virtual research
environments”, Ninth International Conference on Computer Science and Information
Technologies Revised Selected Papers, pp. 1-7, 2013.

[22] B. M. Randles and I. V. Pasquetto, “Using the Jupyter Notebook as a Tool for Open
Science: An Empirical Study”, 2017 ACM/IEEE Joint Conference on Digital Libraries
(JCDL), pp. 1-2, 2017.

[23] Armenian DataCube, [Online]. Available: http://datacube.sci.am/

[24] M. A. Wulder and T. R. Loveland, “Current status of Landsat program, science, and
applications”, Remote Sensing of Environment, vol. 225, pp. 127-147, 2019.

[25] Sentinel-2 Cloud-Optimized GeoTIFFs, [Online]. Available:
https://registry.opendata.aws/sentinel-2-l2a-cogs

[26] G. Jifu and C. Huang, “A Scalable Computing Resources System for Remote Sensing
Big Data Processing Using GeoPySpark Based on Spark on K8s”, Remote Sensing,
vol. 14, no. 3, 2022.

A. Lalayan 4 3

[2 7] N . P e t t o r e lli, J. O. V ik, \ U s in g t h e s a t e llit e -d e r ive d N D V I t o a s s e s s e c o lo g ic a l r e s p o n s e s
t o e n vir o n m e n t a l c h a n g e " , Trends in E cology & E volution, vo l. 2 0 , n o . 9 , p p . 5 0 3 { 5 1 0 ,
2 0 0 5 .

[2 8] S . Os wa l, A . S in g h , \ D e ° a t e c o m p r e s s io n a lg o r it h m " , International J ournal of E ngi-
neering R esearch and General Science, vo l. 4 , n o . 1 , 2 0 1 6 .

[2 9] M. J. K n ie s e r , F. G. W o l®, \ A t e c h n iqu e fo r h ig h r a t io L ZW c o m p r e s s io n [lo g ic t e s t
ve c t o r c o m p r e s s io n " , Automation and Test in E urope Conference and E xhibition, p p .
1 1 6 { 1 2 1 , 2 0 0 3 .

[3 0] G. Fe n g , C. A . B o u m a n , \ E ± c ie n t d o c u m e n t r e n d e r in g wit h e n h a n c e d r u n le n g t h
e n c o d in g " , Color Imaging XI: P rocessing, Hardcopy, and Applications, Ja n u a r y 2 0 0 6 .

[3 1] Y . Co lle t , M. K u c h e r a wy, \ Zs t a n d a r d Co m p r e s s io n a n d t h e 'a p p lic a t io n / z s t d ' Me d ia
Typ e " , R F C E ditor, USA, Fe b r u a r y 2 0 2 1 .

²ñÃáõñ ¶. È³É³Û³Ý

ÐÐ ¶²² ÆÝýáñÙ³ïÇÏ³ÛÇ ¨ ³íïáÙ³ï³óÙ³Ý åñáµÉ»ÙÝ»ñÇ ÇÝëïÇïáõï, ºñ¨³Ý, Ð³Û³ëï³Ý

Ð³Û³ëï³ÝÇ ³½·³ÛÇÝ åáÉÇï»ËÝÇÏ³Ï³Ý Ñ³Ù³Éë³ñ³Ý, ºñ¨³Ý, Ð³Û³ëï³Ý

e-mail: arthurlalayan97@gmail.com

²Ù÷á÷áõÙ

´³ñÓñ Ï³ï³ñáÕ³Ï³Ý Ñ³ßí³ñÏÁ É³í ÁÝïñáõÃÛáõÝ ¿ »ñÏñÇ ¹Çï³ñÏÙ³Ý Ù»Í
ïíÛ³ÉÝ»ñÇ Ùß³ÏÙ³Ý Ñ³Ù³ñ, ÇÝãÁ ÃáõÛÉ ¿ ï³ÉÇë ïíÛ³ÉÝ»ñÇ Ùß³ÏáõÙÁ µ³ßËí³Í ¨ µ³ñÓñ
³ñ¹ÛáõÝ³í»ïáõÃÛ³Ùµ` û·ï³·áñÍ»Éáí ÑÇßáÕáõÃÛ³Ý Ù»ç Ñ³ßíáÕ³Ï³Ý Ñ³ñÃ³ÏÝ»ñ:
îíÛ³ÉÝ»ñÇ ë»ÕÙÙ³Ý ï»ËÝáÉá·Ç³Ý Ýí³½»óÝáõÙ ¿ å³Ñ³ÝçíáÕ å³Ñ»ëï³íáñÙ³Ý
Í³í³ÉÁ ¨ ó³ÝóÇ ÷áË³ÝóÙ³Ý Å³Ù³Ý³ÏÁ, ÇÝãå»ë Ý³¨ µ³ñ»É³íáõÙ ¿ ïíÛ³ÉÝ»ñÇ
Ùß³ÏÙ³Ý Å³Ù³Ý³ÏÁ: Ðá¹í³ÍÇ Ýå³ï³ÏÝ ¿ áõëáõÙÝ³ëÇñ»É É³ÛÝáñ»Ý û·ï³·áñÍíáÕ
ïíÛ³ÉÝ»ñÇ Ùß³ÏÙ³Ý ßñç³Ý³ÏÝ»ñÇ ³ñ¹ÛáõÝ³í»ïáõÃÛáõÝÁ` ïíÛ³ÉÝ»ñÇ ³ÝÏáñáõëï
ë»ÕÙÙ³Ý ï»ËÝÇÏ³ÛÇ Ñ»ï Ñ³Ù³ï»Õ, ºñÏñÇ ¹Çï³ñÏÙ³Ý Ñ³ïáõÏ ³ßË³ï³Ýù³ÛÇÝ
Ñáëù»ñÇ Ñ³Ù³ñ ë»ÕÙÙ³Ý ûåïÇÙ³É Ù»Ãá¹ ¨ Ùß³ÏÙ³Ý ßñç³Ý³Ï ·ïÝ»Éáõ Ñ³Ù³ñ:
´áõë³Ï³ÝáõÃÛ³Ý ÝáñÙ³É³óí³Í ï³ñµ»ñáõÃÛ³Ý ÇÝ¹»ùëÁ ·Ý³Ñ³ïí»É ¿ Ð³Û³ëï³ÝÇ
ï³ñ³ÍùÇ Ñ³Ù³ñ` û·ï³·áñÍ»Éáí Sentinel ³ñµ³ÝÛ³ÏÇ ïíÛ³ÉÝ»ñÁ ¨ Ñ³ßíÇ ³éÝ»Éáí
ë»ÕÙÙ³Ý ³ç³ÏóíáÕ Ù»Ãá¹Ý»ñÁ ÑÇßáÕáõÃÛ³Ý Ù»ç Dask ¨ Spark ßñç³Ý³ÏÝ»ñÇ
³ßË³ï³ÝùÇ Ñ³Ù»Ù³ïÙ³Ý Ñ³Ù³ñ: öáñÓ»ñÁ óáõÛó »Ý ï³ÉÇë, áñ Zstandard ë»ÕÙÙ³Ý
Ù»Ãá¹Á ¨ Dask ÙÇç³í³ÛñÁ É³í³·áõÛÝ ÁÝïñáõÃÛáõÝÝ »Ý ÝÙ³Ý ³ßË³ï³Ýù³ÛÇÝ Ñáëù»ñÇ
Ñ³Ù³ñ:

Dask-Ç ¨ Spark-Ç Ï³ï³ñáÕ³Ï³ÝÇ í»ñÉáõÍáõÃÛáõÝ` Ñ³ßíÇ ³éÝ»Éáí
ïíÛ³ÉÝ»ñÇ ë»ÕÙáõÙÁ ºñÏñÇ ¹Çï³ñÏÙ³Ý

ïíÛ³ÉÝ»ñÇ Ùß³ÏÙ³Ý Ñ³Ù³ñ

´³Ý³ÉÇ µ³é»ñ` ºñÏñÇ ¹Çï³ñÏáõÙ, HPC, Spark, Dask, µ³ßËí³Í Ñ³ßí³ñÏ,
ïíÛ³ÉÝ»ñÇë»ÕÙáõÙ:

4 4 Data Compression-Aware Performance Analysis of Dask and Spark for Earth Observation Data Processing

Àíàëèç ïðîèçâîäèòåëüíîñòè Dask è Spark äëÿ îáðàáîòêè
äàííûõ íàáëþäåíèÿ Çåìëè ñ ó÷åòîì ñæàòèÿ äàííûõ

Àðòóð Ã. Ëàëàÿí

Èíñòèòóò ïðîáëåì èíôîðìàòèêè è àâòîìàòèçàöèè ÍÀÍ ÐÀ, Åðåâàí, Àðìåíèÿ
Íàöèîíàëüíûé ïîëèòåõíè÷åñêèé óíèâåðñèòåò Àðìåíèè, Åðåâàí, Àðìåíèÿ

e-mail: arthurlalayan97@gmail.com

Àííîòàöèÿ

Âûñîêîïðîèçâîäèòåëüíûå âû÷èñëåíèÿ ÿâëÿþòñÿ õîðîøèì âûáîðîì äëÿ
îáðàáîòêè áîëüøèõ äàííûõ íàáëþäåíèÿ Çåìëè, ïîçâîëÿÿ îáðàáàòûâàòü äàííûå
ðàñïðåäåëåííûì è âûñîêîïðîèçâîäèòåëüíûì ñïîñîáîì ñ èñïîëüçîâàíèåì
âû÷èñëèòåëüíûõ ïëàòôîðì â ïàìÿòè. Òåõíîëîãèÿ ñæàòèÿ äàííûõ ñîêðàùàåò
îáúåì õðàíèëèùà è âðåìÿ ïåðåäà÷è ïî ñåòè è ïîâûøàåò ïðîèçâîäèòåëüíîñòü
îáðàáîòêè. Öåëüþ ñòàòüè ÿâëÿåòñÿ èññëåäîâàíèå ýôôåêòèâíîñòè øèðîêî
èñïîëüçóåìûõ ñèñòåì ðàñïðåäåëåííîé îáðàáîòêè äàííûõ â ñî÷åòàíèè ñ
ìåòîäàìè ñæàòèÿ äàííûõ áåç ïîòåðü, ÷òîáû íàéòè îïòèìàëüíûé ìåòîä
ñæàòèÿ è ñòðóêòóðó îáðàáîòêè äëÿ êîíêðåòíûõ ðàáî÷èõ ïðîöåññîâ íàáëþäåíèÿ
Çåìëè. Íîðìàëèçîâàííûé ðàçíîñòíûé èíäåêñ ðàñòèòåëüíîñòè áûë îöåíåí
äëÿ òåððèòîðèè Àðìåíèè ñ èñïîëüçîâàíèåì äàííûõ ñî ñïóòíèêà Sentinel è ñ
ó÷åòîì ïîääåðæèâàåìûõ ìåòîäîâ ñæàòèÿ äëÿ ñðàâíåíèÿ ïðîèçâîäèòåëüíîñòè
ôðåéìâîðêîâ Dask è Spark â ïàìÿòè. Ýêñïåðèìåíòû ïîêàçûâàþò, ÷òî ìåòîä
ñæàòèÿ Zstandard è ôðåéìâîðê Dask ÿâëÿþòñÿ íàèëó÷øèì âûáîðîì äëÿ òàêèõ
ðàáî÷èõ ïðîöåññîâ.

Êëþ÷åâûå ñëîâà: Íàáëþäåíèå Çåìëè, HPC, Spark, Dask, ðàñïðåäåëåííûå
âû÷èñëåíèÿ, ñæàòèå äàííûõ.

Mathematical Problems of Computer Science 59, 45–56, 2023.

doi: 10.51408/1963-0101

UDC 004.891.3

Expert Knowledge-Based RGT Solvers for Software

Testing

Mane P. Buniatyan1, Sedrak V. Grigoryan2 and Emma H. Danielyan3

1Synopsys Armenia, Yerevan, Armenia
2Institute for Informatics and Automation Problems of NAS RA,Yerevan, Armenia

3EPAM Systems Inc., Yerevan, Armenia

e-mail: buniatyanmane@gmail.com, addressforsd@gmail.com, emma danielyan@yahoo.com

Abstract

Program testing is a way of assessing the quality of software and reducing the risk
of software failure in operation [1]. Quality issues can cause as financial loss as well as
harm to human lives (e.g., when the bug is in medical instruments, cars, etc.). So, it
is very hard to underestimate the importance of testing.

There are multiple testing techniques, which are split into 3 major categories.
One of them includes experience-based techniques. Test cases and scenarios used in
experience-based testing are derived from the tester’s knowledge and intuition, as well
as their experience with similar applications and technologies. These techniques can
be helpful in identifying tests that are not identified easily by other more system-
atic techniques. Depending on the tester’s approach and experience, experience-based
techniques may achieve widely varying degrees of coverage and effectiveness [1].

We propose a method for automation of experience-based testing via a class of
combinatorial problems (RGT class). A Solver is developed for the class. It acquires
expert knowledge and elaborates effective strategies for RGT problems [2]. The pro-
posed method generates test cases dynamically based on the response of the program.
The adequacy of the method is being experimented for ”blender” open-source appli-
cation, which has Python API allowing to experiment with testing and analyze test
results.
Keywords: RGT class, RGT Solver, Software testing, Expert systems.
Article info: Received 25 September 2022; sent for review 11 October 2022; accepted
07 February 2023.
Acknowledgement: The authors express their deep gratitude to Dr. Edward Pogos-
sian for his contribution and constructive comments to the work.

1. Introduction

Software Testing is an approach to assess the quality of software and to reduce the risk of
its failure in operation [1].

45

46 Expert Knowledge-Based RGT Solvers for Software Testing

In [1], testing techniques are divided into 3 groups: black-box, white-box and experience-
based techniques. In the case of the last one, test cases are based on the testers’ knowledge
and intuition, on experience with similar applications and technologies. These techniques are
efficient in identifying tests that are not identified easily by other more systematic techniques
as well as when there is a limited testing time or incomplete specifications [1].

According to the World Quality Report 2021-2022 [3], one of the current trends in quality
assurance and software testing is test automation. Test automation has the following benefits
[1]:

• saves time by reducing repetitive manual work

• provides greater consistency and repeatability

• allows to evaluate the situation more objectively based on static measures, coverage
reports, etc.

• provides more accurate information about the current state of testing based on gathered
statistics, test progress, defect rates and performance.

There is a way to automate test case generation, known as the model-based testing
(MBT). MBT is a technique for generating a test suite from requirements [4]. Instead of
individual tests creation, testers create models that allow generating test cases automatically.
These methods can be used in regression testing and are especially useful when the system
changes frequently. In this case, the test suite can be regenerated easily by adjusting the
model instead of readjusting each test case separately.

MBT has three important components [4]:

• a model (requirement, information, workflow, architectural, behavioral, configuration,
deployment, performance, risk, environment, and usage models [5])

• a test-generation algorithm

• tools generating a supporting infrastructure (including the expected output).

MBT tools are meant to generate test suites by manipulating either with input data or
behavior without handling both simultaneously. Generated test cases do not provide ways
to test the system dynamically (the choice of modules to testing depends on the previous
test results).

Software Testing can be considered as a combinatorial problem between a tester and states
of a program. Hence, testing can be also considered as a representative of Reproducible Game
Tree (RGT) class problems. RGT is a class of combinatorial problems, for which the space
of solutions is a reproducible game tree. These problems meet the following requirements
[6]:

• there are interacting actors (players, competitors, etc.) performing identified types of
actions in specified moments of time and specified types of situations

• there are identified benefits for each actor

• there are descriptions of situations in which actors act in and are transformed after
actions.

M. Buniatyan, S. Grigoryan and E. Danielyan 47

For such problems with a given arbitrary situation x and an actor A, who is going to act
in x, we can generate a corresponding game tree GT(x, A) comprising all the games started
from x. Games represent all possible sequences of legal actions for players and situations
that they can create from the given initial, or the root situation x. In our consideration, the
games are finite and end with one of the goal situations of the problem [6].

Assuming that A plays according to a deterministic program, a strategy, the GT(x, A)
represents, in fact, all possible performance trees of the strategies from x. In that sense, the
GT(x, A) determines the space of all possible solutions from the situation x. With the given
criterion K to evaluate the quality of strategies, we can define the best strategy S*(x, A)
and the corresponding best action of A from x [6].

RGT class includes important problems like computer networks intrusion protection, op-
timal management and marketing strategy elaboration in competitive environments, testing
of programs, defense of military units from various types of attacks, communication prob-
lems, certain types of teaching, chess and chess-like games [2].

One of the advantages of RGT class is that these problems are reducible to the standard
kernel problems K. K- methodology multiplies the achievements for particular problems
of this class. Distributed development of this methodology is possible. K-methodology en-
hances the effectiveness of RGT Solvers providing answers to urgent RGT questions including
the following ones [2]:

• measurement of the effectiveness of Solvers

• analysis and typification of combating knowledge

• construction of knowledge-based Solvers

• regular acquisition of RGT expert knowledge and enhancing the effectiveness of Solvers.

The validity of K-methodology was proved for certain RGT problems including Chess,
Network Intrusion Protection, Navy Defense from Attacks, Management, Marketing etc. [2].

RGT Solver is a software that acquires expert knowledge and elaborates effective strate-
gies for RGT problems [2]. It is a universal tool for solving RGT-class problems.

Strategy searching and game tree. As already mentioned, the space of solutions for
RGT problems is a reproducible game tree, and with the given criteria, we can evaluate and
choose the best possible actions in given situations for the given actor.

As the combinatorial complexity of the mentioned problems is huge, we need to reduce
the game tree. Otherwise, the computer’s computational resources (memory and storage)
will not be enough to solve them. C. Shannon suggested reducing the tree by building it
until the resources are expired. It is not an effective way because we waste our resources to
compute steps that will not improve the current situation. Another approach, suggested by
M. Botvinnik, is to consider only those steps that have potential benefit in the current case,
i.e., we should not examine the steps that have no meaning. We can evaluate the possible
usefulness of an action with the knowledge (without reviewing the opponent’s answers) and
choose the most profitable one. Then, by checking the opponent’s potential actions, we can
build the game tree and choose the best move in a given situation [7].

The Solver builds the game tree, evaluates situations with the knowledge, then chooses
the best action using the minimax algorithm.

48 Expert Knowledge-Based RGT Solvers for Software Testing

The purpose of this paper: Testing of programs can be considered as an RGT prob-
lem, and RGT Solver can be used for experience-based testing as an expert system when the
corresponding knowledge is available.

In this work, we aim to provide a definition of testing problems as RGT problems, a way of
formulating knowledge, and an approach for proper assessment of tested programs, which also
covers the drawbacks of model-based testing approaches (in particular, combining different
behaviors and input data, running both functional and non-functional tests at the same
time, and generating tests dynamically). Thus, the following open questions are addressed:

1. What kind of knowledge are we going to use, who are the actors as well as what are
their possible actions?

2. How to evaluate each situation, what kind of goals each actor has, etc.?

Overall, this leads to proposing a model for representing an experience-based testing as
an RGT problem.

2. Reduction of Program Testing to RGT Class

In RGT problems, it is essential to define the situations, the actors, the actions, and benefits
for each of them. Let’s define these terms for program testing.

The actors in software testing are the system under test (i.e., the program) and the
tester. Note, that unlike some other problems in the RGT class (e.g., like chess), where the
opponent tries to make counteraction, in testing the program just responds to the tester’s
actions.

The actions are any valid elementary operations that can be performed with the program.
While building the ”game” tree, the Solver dynamically combines these actions, creates test
cases and executes them depending on the response of the program. Note, that not all
combinations of the elementary operations are meaningful from the perspective of the user
(e.g., actions that have no effect or are not connected with each other). That is why we need
to find a way to control these combinations. The actions of the program are actually only
responses to the tester’s actions.

The situations are the current states of the program. We can estimate the current
situations with [0;1] numbers, where 0 means that no bugs are found, 1- that the program
is in a critical state and is not usable. The numbers in-between 0 and 1 are intermediate
values, and situations with values closer to 1 are worse than situations with values closer
to 0. We suggest the following criteria for evaluating the current state of programs (these
criteria can be expanded later):

• Existence of bugs (difference between expected and observed results): different bugs
have different importance; when the main functionalities of the program do not work
as expected, the program becomes useless (e.g., if the user is not able to log into a
social network, save the result of the accomplished job, do a transfer in the banking
system, etc.).

• Performance degradation: we all would like to have fast, high performing programs,
but unfortunately it is not always possible. Performance degradation in a part of the
program that is used frequently will cause to slowdown the work, but if it is in a part

M. Buniatyan, S. Grigoryan and E. Danielyan 49

that can be done without human interaction and/or is performing rarely, then it can
be acceptable.

• Security: this is essential for some programs (e.g., banking system, strategic informa-
tion storing, transfers, etc.).

• Crashes and hangovers: this is always bad, and in some cases, they can even cause to
a fatal problem, like losing the whole work performed. In most situations, this is not
acceptable.

We need to take into account the number of problems, as well as their severity and
importance, the sequence of actions causing the problem (i.e., how frequently the problem
occurs in ”real life”). A bug in a very important functionality is worse than a crash that
users might not even encounter, but, on the other hand, having lots of ”minor” issues in
the program is also not acceptable. When one of the main functionalities does not meet the
requirements mentioned above, the program is in a critical state, and it cannot be delivered
to customers. The importance of each functionality is considered as a multiplier for the
appropriate criterion.

The current state of the program can be measured with the following evaluation function:

st = mc ∗ c+mb ∗ b+mp ∗ p+ms ∗ s, (1)

where mc,mb,mp,ms ∈ [0; 1], c, b, p, s = {0 | 1}. C, b, p and s are Boolean variables,
that show the existence of crashes/hangovers, bugs, performance degradations or security
problems respectively (1 if the mentioned problems occurred, otherwise - 0). Mc, mb, mp
and ms are multipliers for the occurred problems (they show the importance of the broken
functionality). Any occurred problem is counted only once, so if, for example, a crash occurs,
even if it relates to a security problem or it is a bug (obviously, it is not an expected result)
we will consider c = 1, b = 0, s = 0 and p = 0. If the current state of the program is bigger
than 1, we consider it as 1.

3. RGT Expert Knowledge Formatting for Testing

Error guessing, exploratory testing and checklist-based testing are representatives of
experience-based techniques [1].

Considering the characteristics of each of these techniques, we propose the following usage
of the Solver: by reviewing issues occurred before, the usage of the program and its main
functionalities, we create checklists. In the Solver, checklists are represented as plans, and
the checklists’ actions as goals. Based on the coverage reports, the source files responsible
for each action can be defined. These connections help to prioritize the created checklists.
The user can also define priorities depending on the module he/she is most interested in.

Checklists lead to the creation of a game tree. Each branch in the tree is a test case.
It is important to mention that actions in the checklists are general, i.e., many elementary
actions can correspond to one action in the checklist. It allows you to combine multiple
actions and build a tree. Checklists define if it still needs to proceed to the next steps or not
in case of a defect occurrences in the current step.

Multipliers in formula (1) are also given as knowledge for the Solver. They show the
importance of user action. Note, that multipliers should be defined for both elementary

50 Expert Knowledge-Based RGT Solvers for Software Testing

and checklist actions. The same elementary action in different situations can have different
importance, e.g., if the user tries to save a text file it is more important to save the text
than the style. We multiply both multipliers to get one for the action. Imagine that in the
example below, mb = 0.8 for the elementary action “save” and for the following checklists
of actions ”open the program, add text, save”, “open an existing text file, change the style,
save”. Let’s say we have mb = 1 for the “save” in the checklist1 and mb = 0.6 for the
“save” in the checklist2. In this case, if the program is not able to save the text, we will
have mb=1*0.8=0.8 and for the second case: mb=0.6*0.8 = 0.48. Thus, the first case will
be considered worse than the second one.

In the case of performance degradation, we need to multiply mp with the coefficient
showing how many times the performance was slowed down or how much longer it takes to
perform the same action. E.g., if the performance is 2x slower than expected, we need to
multiply mp with 2.

The testing continues until a. the given time is expired, b. all/chosen checklists are
checked or c. if the program gets into a critical state.

4. RGT Solver Experiments in Program Testing

We have chosen the Blender program as a system under test. It is an open-source 3D model-
ing program with a Python interface that can be used for testing. In order to understand how
the program testing Solver works and how the knowledge and checklists can be represented,
let’s study an example.

To understand how the knowledge and checklists can be represented, let us review an
example.

The checklist below checks some of the main functionalities of the program:

Fig. 1. Checklist Example.

To keep it simple, we just added a few basic operations, but this list can be enlarged if
needed. The operations in this checklist can be independent, like lines 6 and 7. But if this
was a checklist based on the previous failures or a user story, then all steps would depend on
each other. This checklist could be used if we had limited testing time and could only check
the main operations to make sure that there were no critical issues (like a smoke test). The
first line of the checklist (i.e., the comment) represents the name of the checklist and the
source file which is associated with the checklist (here, as we don’t know the corresponding
source file, we put x.cpp just to show the structure of the checklist. The source file is not

M. Buniatyan, S. Grigoryan and E. Danielyan 51

mandatory). If some multipliers are absent in the checklist, we assign 0 to them (e.g., ms=0
for all actions in checklist below, because they could not lead to security problems). The
variable nextStep is used to determine whether the next step should be performed or not in
case of bug in the current step (e.g., if the user is not able to move the 3D cursor it is still
somewhere in the scene and the user can add objects). In line 3 we open the program. If it
crashes it is a critical state for the program, thus mc=1.

Next to mp there is the expected time the operation should take (mp/5s/). If it takes 25
seconds, we multiply mp by 5. As this operation is not repeatable and happens only once,
when the work starts, its performance is not very important, but yet the user cannot wait
for about 10 minutes to start working. As the performance depends on the users’ computer,
the performance parameters are defined for minimum system requirements of the program.
In the example above, we just used values based on local resources.

In line 4, we need to move the 3D cursor. 3D cursor position defines where the object is
being added. It can also be used as a 3D view orientation to define where to move objects,
to move the pivot point to the 3D cursor, as the rotation point in the spin tool, etc. So, it
is a quite important feature, but in case it does not work users can still find workarounds.
Note that there is no expected time next to mp for this action. It is because this action
should work simultaneously with the click (i.e., should not take noticeable time). Like other
actions in the checklist, this is one of the basic operations, so crash is unacceptable here,
thus mc = 0.9. Note that all the multipliers here are conditional and this is just an example.
In real world example, probably, multipliers should be chosen more thoroughly. nextStep is
1 here, because even if the 3D cursor cannot be moved, we are still able to add an object.
To perform this step using the Python API we do the following:

Fig. 2. Elementary Operation: Move 3D Cursor

This is an elementary operation for moving the 3D cursor. The first line comment shows
the corresponding general operation (in the checklist) and the multiplier. As in this case

52 Expert Knowledge-Based RGT Solvers for Software Testing

only 1 elementary operation corresponds to the checklist operation, its multiplier is 1. Note
that the case is not always the same (the coordinates are randomly generated) and the test
also checks if the operation was performed successfully or not.

In the 5th line of the checklist, we have the ”Add object” operation. Many elementary
operations correspond to this operation (see Fig. 3): there are lots of groups of objects, and
each group itself contains various objects.

Fig. 3. Add Object.

The Python code below is an example of the “Add object” operation. It adds a cube
in the current location of the cursor. As all objects can be used for creating different 3D
models, and their importance is dependent on what exactly the user tries to create m=1 for
all objects. Note that if the object is not added then we cannot perform the next action,
i.e., we cannot change its geometry.

The last command in the checklist is “Change geometry”. First of all, the user should
switch to the edit mode in order to change the object’s geometry, i.e., move the object’s
vertices, edges and faces, and then perform the corresponding operations. For this general
action, there are 3 possible elementary actions (move vertices, edges, faces). All of them are
important while creating a 3D model, but considering the fact that if a user is not able to
move the edge, he/she can choose vertices of the edge and move them together (so that the
edge will be moved), or choose all edges/vertices of a face and move it. The most important
one in those operations is moving vertices, and then edges, then surfaces.

For the given example, the Solver moves the 3D cursor to different positions, adds different
objects, changes their geometry, and makes sure that these operations work as expected for
different objects (i.e., checks that the Python tests are passing). To check how the Solver

M. Buniatyan, S. Grigoryan and E. Danielyan 53

Fig. 4. Elementary Operation: Add Object.

Thus, in this case, the multiplier for each operation will be different:

Fig. 5. Elementary Operation: Change Geometry.

behaves if the operation does not work, we can simply use assertNotEqual function instead
of assertEqual (e.g., instead of “assertEqual(bpy.context.scene.cursor.location.x, x)” we can
write “assertNotEqual(bpy.context.scene.cursor.location.x, x)”). The Solver will combine
different elementary tests together, create test cases and run them.

To run tests, we use the following command:

Fig. 6. Command For Running a Test.

In order to use the Solver for different programs, we use a configuration file, which defines
how to run tests (e.g., paths to test cases, checklists and elementary operations).

54 Expert Knowledge-Based RGT Solvers for Software Testing

5. Conclusion

We propose a new approach for test automation and test results evaluation considering the
testing of programs as a RGT-class problem. In this work:

1. tools defining the types of knowledge for testing the target application are described.
The described knowledge is being integrated into RGT Solver and being used to run
test cases, test scenarios with later evaluation of test results.

2. An approach for evaluating the state of the program during the testing is proposed.

3. The adequacy of the proposed approach is being experimented with the open-source
Blender application.

4. The proposed approach solves drawbacks of the model-based testing approach, namely,
allows to generate test cases dynamically.

The described solution is generic for the RGT Solver and can be used for testing various
applications.

References

[1] K. Olsen and M. Posthuma and S. Ulrich, “ Certified Tester Foundation Level Syllal-
bus”, International Software Testing Qualifications Board, pp. 56–62, 2019.

[2] E. Pogossian, Constructing Models of Being by Cognizing. Yerevan, pp. 150–159, 2020.

[3] World Quality Report, Capgemini, Sogeti, Micro Focus, pp 16–37, 2021

[4] D. Rakhi, J. Ashish, N. Karunanithi, J. Leaton, C. Lott, G. Patton and B. Horowitz,
“Model-based testing in practice”, Proceedings of the 1999 International Conference
on Software Engineering (IEEE Cat. No.99CB37002), Los Angeles, CA, USA, 1999,
pp. 285-294, doi: 10.1145/302405.302640.

[5] I. Schieferdecker and A. Hoffmann, Model-Based Testing, IEEE Software 29.1, pp.
14–18, 2012.

[6] E. Pogossian, V. Vahradyan A. Grigoryan, On competing agents consistent with ex-
pert knowledge, Proceedings of Second International Workshop, AIS-ADM 2007,Au-
tonomous Intelligent Systems: Multi-Agents and Data Mining, St. Petersburg, Russia,
pp. 229–241, 2007.

[7] M. Botvinnik, Computers in Chess: Solving Inexact Search Problems, Springer-Verlag,
New York, 1983.

M. Buniatyan, S. Grigoryan and E. Danielyan 5 5

öáñÓ³·Çï³Ï³Ý ·Çï»ÉÇùÝ»ñÇ íñ³ ÑÇÙÝí³Í RGT SOLVER-Ç
ÏÇñ³éáõÙÁ Íñ³·ñ³ÛÇÝ ³å³ÑáíÙ³Ý Ã»ëï³íáñÙ³Ý ËÝ¹ñáõÙ

Ø³Ý» ä. ´áõÝÇ³ÃÛ³Ý1, ê»¹ñ³Ï ì. ¶ñÇ·áñÛ³Ý 2 ¨ ¾ÙÙ³ Ð. ¸³ÝÇ»ÉÛ³Ý3

1Synopsys Ð³Û³ëï³Ý, ºñ¨³Ý
2ÐÐ ¶²² ÆÝýáñÙ³ïÇÏ³ÛÇ ¨ ³íïáÙ³ï³óÙ³Ý åñáµÉ»ÙÝ»ñÇ ÇÝëïÇïáõï, ºñ¨³Ý, Ð³Û³ëï³Ý

3 EPAM Ð³Û³ëï³Ý, ºñ¨³Ý

e-mail: buniatyanmane@gmail.com, addressforsd@gmail.com, emma danielyan@yahoo.com

²Ù÷á÷áõÙ

Â»ëï³íáñáõÙÁ Íñ³·ñÇ áñ³ÏÁ ·Ý³Ñ³ï»Éáõ ¨ ß³Ñ³·áñÍÙ³Ý Ù»ç Íñ³·ñ³ÛÇÝ
³å³ÑáíÙ³Ý Ó³ËáÕÙ³Ý éÇëÏ»ñÁ Ýí³½»óÝ»Éáõ ÙÇçáó ¿: Ìñ³·ñáõÙ ëË³ÉÝ»ñÇ
³éÏ³ÛáõÃÛáõÝÁ Ï³ñáÕ ¿ µ»ñ»É ÇÝãå»ë ýÇÝ³Ýë³Ï³Ý ÏáñáõëïÝ»ñÇ, ³ÛÝå»ë ¿É Ù³ñ¹Ï³ÛÇÝ
½áÑ»ñÇ (ûñÇÝ³Ï, µÅßÏ³Ï³Ý ë³ñù³íáñáõÙÝ»ñÇ Ï³Ù Ù»ù»Ý³Ý»ñáõÙ ³éÏ³ ëË³ÉÝ»ñÁ):
²ÛëåÇëáí, µ³ñ¹ ¿ Ã»ñ³·Ý³Ñ³ï»É Ã»ëï³íáñÙ³Ý Ï³ñ¨áñáõÃÛáõÝÁ: Â»ëï³íáñÙ³Ý
Ùáï»óáõÙÝ»ñÁ Ï³ñ»ÉÇ ¿ µ³Å³Ý»É 3 ÑÇÙÝ³Ï³Ý ËÙµ»ñÇ, áñáÝóÇó Ù»ÏÁ ÷áñÓÇ íñ³
ÑÇÙÝí³Í (experience-based) Ã»ëï³íáñáõÙÝ ¿: ²Ûë å³ñ³·³ÛáõÙ Ã»ëï»ñÁ ëï»ÕÍíáõÙ
»Ý‘ ÑÇÙÝí»Éáí Ã»ëï³íáñáÕÇ ·Ç»ÉÇùÝ»ñÇ ¨ ÇÝïáõÇóÇ³Ç, ÇÝãå»ë Ý³¨ Ý³ËÏÇÝáõÙ
ÝÙ³Ý³ïÇå Íñ³·ñ»ñÇ Ñ»ï áõÝ»ó³Í ÷áñÓÇ íñ³: öáñÓÇ íñ³ ÑÇÙÝí³Í Ùáï»óáõÙÝ»ñÝ
û·ÝáõÙ »Ý µ³ó³Ñ³Ûï»É ³ÛÝåÇëÇ ëË³ÉÝ»ñ, áñáÝù ß³ï µ³ñ¹ ¿ Ñ³ÛïÝ³µ»ñ»É ³í»ÉÇ
Ñ³Ù³Ï³ñ·í³Í Ùáï»óáõÙÝ»ñáí: ²Ûë ³ßË³ï³ÝùáõÙ Ù»Ýù ³é³ç³ñÏáõÙ »Ýù ÷áñÓÇ
íñ³ ÑÇÙÝí³Í Ã»ëï³íáñÙ³Ý ³íïáÙ³ï³óáõÙ` û·ï³·áñÍ»Éáí ÏáÙµÇÝ³ïáñ ËÝ¹ÇñÝ»ñÇ
RGT ¹³ëÁ: RGT ¹³ëÇ ËÝ¹ÇñÝ»ñÇ ÉáõÍÙ³Ý Ñ³Ù³ñ Ùß³ÏíáõÙ ¿RGT Solver-Áª Íñ³·ñ³ÛÇÝ
÷³Ã»Ã, áñÁ Ïáõï³ÏáõÙ ¿ ÷áñÓ³·Çï³Ï³Ý ·Çï»ÉÇùÝ»ñ ¨ ëï»ÕÍáõÙ ¿ ³ñ¹ÛáõÝ³í»ï
é³½Ù³í³ñáõÃÛáõÝÝ»ñ RGT ¹³ëÇ ËÝ¹ÇñÝ»ñÇ ÉáõÍÙ³Ý Ñ³Ù³ñ: ²é³ç³ñÏáõÙ »Ýù
RGT Solver-Ý û·ï³·áñÍ»É Íñ³·ñ»ñÇ Ã»ëï³íáñÙ³Ý ËÝ¹ñáõÙ: Solver-Á ëï»ÕÍáõÙ ¿
Ã»ëï³ÛÇÝ Çñí³Ç×³ÏÝ»ñ` Ï³Ëí³Í Íñ³·ñÇ ³ñÓ³·³ÝùÇó/å³ï³ëË³ÝÇó ¨ ·Ý³Ñ³ïáõÙ
¿ ¹ñ³Ýù Áëï Ý³Ë³å»ë ë³ÑÙ³Ýí³Í ã³÷³ÝÇßÝ»ñÇ: ²Ûë Ùáï»óÙ³Ý ³¹»Ïí³ïáõÃÛáõÝÁ
÷áñÓ³ñÏíáõÙ ¿ »é³ã³÷ Ùá¹»É³íáñÙ³Ý “Blender” Íñ³·ñÇ ÙÇçáóáí:

´³Ý³ÉÇ µ³é»ñ` RGT ¹³ë, RGT Solver, Íñ³·ñ³ÛÇÝ ³å³ÑáíÙ³Ý Ã»ëï³íáñáõÙ,
÷áñÓ³·Çï³Ï³Ý Ñ³Ù³Ï³ñ·»ñ:

5 6 Expert Knowledge-Based RGT Solvers for Software Testing

RGT SOLVER íà îñíîâå ýêñïåðòíûõ çíàíèé äëÿ
òåñòèðîâàíèÿ ïðîãðàììíîãî îáåñïå÷åíèÿ

Ìàíå Ï. Áóíèàòÿí1, Ñåäðàê Â. Ãðèãîðÿí2 è Åììà Ã. Äàíèåëÿí3

1Synopsys Àðìåíèÿ, Åðåâàí
2Èíñòèòóò ïðîáëåì èíôîðìàòèêè è àâòîìàòèçàöèè ÍÀÍ ÐÀ, Åðåâàí, Àðìåíèÿ

3EPAM Àðìåíèÿ, Åðåâàí
e-mail: buniatyanmane@gmail.com, addressforsd@gmail.com, emma danielyan@yahoo.com

Àííîòàöèÿ

Òåñòèðîâàíèå ïðîãðàìì-ýòî ñïîñîá îöåíêè êà÷åñòâà ïðîãðàììíîãî îáåñïå-
÷åíèÿ è ñíèæåíèÿ ðèñêà îòêàçà ïðîãðàììíîãî îáåñïå÷åíèÿ â ðàáîòå. Î÷åíü
òðóäíî íåäîîöåíèòü âàæíîñòü òåñòèðîâàíèÿ: ïðîáëåìû ñ êà÷åñòâîì ïðîãðàìì
ìîãóò ïðèâåñòè êàê ê ôèíàíñîâûì ïîòåðÿì, òàê è íàíåñòè óùåðá çäîðîâüþ ëþäåé
(íàïðèìåð, êîãäà îøèáêà íàõîäèòñÿ â ìåäèöèíñêèõ ïðèáîðàõ, àâòîìîáèëÿõ è ò.
ä.).

Ìåòîäû òåñòèðîâàíèÿ ìîæíî ïîäðàçäåëèòü íà 3 îñíîâíûå ãðóïïû. Îäíà èç
íèõ - ýòî ìåòîäû, îñíîâàííûå íà îïûòå. Çäåñü òåñòîâûå ïðèìåðû ñîçäàþòñÿ
íà îñíîâå çíàíèé è èíòóèöèè òåñòèðîâùèêà, à òàêæå íà åãî îïûòå ðàáîòû ñ
àíàëîãè÷íûìè ïðèëîæåíèÿìè è òåõíîëîãèÿìè. Ýòè ìåòîäû ìîãóò áûòü ïîëåçíû
ïðè îïðåäåëåíèè òåñòîâ, êîòîðûå íå ëåãêî èäåíòèôèöèðîâàòü äðóãèìè áîëåå
ñèñòåìàòè÷åñêèìè ïîäõîäàìè ê òåñòèðîâàíèþ. Â çàâèñèìîñòè îò ïîäõîäà
è îïûòà òåñòèðîâùèêà, ýòè ìåòîäû ìîãóò îáåñïå÷èâàòü øèðîêóþ ñòåïåíü
ïîêðûòèÿ è ýôôåêòèâíîñòü òåñòèðîâàíèÿ. Â äàííîé ñòàòüå ìû ïðåäëàãàåì
ìåòîä òåñòèðîâàíèÿ íà îñíîâå îïûòà (àâòîìàòèçàöèÿ òåñòèðîâàíèÿ) ÷åðåç êëàññ
êîìáèíàòîðíûõ çàäà÷ (RGT êëàññ). RGT êëàññ âêëþ÷àåò òàêèå âàæíûå çàäà÷è,
êàê çàùèòà îò âòîðæåíèé â êîìïüþòåðíûå ñåòè, ðàçðàáîòêà îïòèìàëüíîé
ñòðàòåãèè óïðàâëåíèÿ è ìàðêåòèíãà â êîíêóðåíòíîé ñðåäå, òåñòèðîâàíèå
ïðîãðàìì, çàùèòà âîèíñêèõ ÷àñòåé îò ðàçëè÷íûõ òèïîâ àòàê, ïðîáëåìû ñî
ñâÿçüþ, îòäåëüíûå âèäû îáó÷åíèÿ, øàõìàòû è øàõìàòîïîäîáíûå èãðû. RGT
Solver - ýòî ïðîãðàììà, êîòîðàÿ íàêàïëèâàåò ýêñïåðòíûå çíàíèÿ è ðàçðàáàòûâàåò
ýôôåêòèâíûå ñòðàòåãèè äëÿ ðåøåíèÿ çàäà÷ êëàññà RGT. Â êà÷åñòâå ýêñïåðòíîé
ñèñòåìû äëÿ òåñòèðîâàíèÿ, îñíîâàííîãî íà îïûòå, ïðåäëàãàåòñÿ èñïîëüçîâàòü
RGT Solver. Solver ãåíåðèðóåò òåñòîâûå ñèòóàöèè íà îñíîâå îòâåòà/ðåàêöèè
ïðîãðàììû è îöåíèâàåò èõ ïî ðÿäó çàðàíåå îïðåäåëåííûõ êðèòåðèåâ.
Àäåêâàòíîñòü ìåòîäà ïîêàçàíà íà ïðèìåðå ïðèëîæåíèÿ ñ îòêðûòûì èñõîäíûì
êîäîì ”Áëåíäåð”.

Êëþ÷åâûå ñëîâà: RGT êëàññ, RGT Solver, òåñòèðîâàíèå ïðîãðàììíîãî
îáåñïå÷åíèÿ, çíàíèÿ, ýêñïåðòíûå ñèñòåìû.

Mathematical Problems of Computer Science 59, 57–68, 2023.

doi: 10.51408/1963-0102

UDC 004.934

Making Speaker Diarization System Noise Tolerant

Davit S. Karamyan1,2, Grigor A. Kirakosyan2,3 and Saten A. Harutyunyan2

1Russian-Armenian University, Yerevan, Armenia
2Krisp.ai, Yerevan

3Institute of Mathematics of NAS RA, Yerevan, Armenia

e-mail: {dkaramyan, gkirakosyan, sharutyunyan }@krisp.ai

Abstract

The goal of speaker diarization is to identify and separate different speakers in a
multi-speaker audio recording. However, noise in the recording can interfere with the
accuracy of these systems. In this paper, we explore methods such as multi-condition
training, consistency regularization, and teacher-student techniques to improve the re-
silience of speaker embedding extractors to noise. We test the effectiveness of these
methods on speaker verification and speaker diarization tasks and demonstrate that
they lead to improved performance in the presence of noise and reverberation. To
test the speaker verification and diarization system under noisy and reverberant con-
ditions, we created augmented versions of the VoxCeleb1 cleaned test and Voxconverse
dev datasets by adding noise and echo with different SNR values. Our results show
that, on average, we can achieve a 19.1% relative improvement in speaker recognition
using the teacher-student method and a 17% relative improvement in speaker diariza-
tion using consistency regularization compared to a multi-condition trained baseline.
Keywords: Speaker recognition, Speaker diarization, Noise robustness, Teacher-
student, Consistency regularization.
Article info: Received 9 January 2023; send to review 30 January 2023, received in
revised form 11 April 2023; accepted 17 April 2023.
Acknowledgement: This research was supported by Krisp.ai.

1. Introduction and Related Work

Speaker recognition (SR) is a broad field of study that addresses two major tasks: speaker
identification and speaker verification. Speaker identification is the task of identifying a
person, whereas speaker verification is the task of determining whether the speaker is who
they claim to be. In this study, we focus on far-field, text-independent speaker recognition,
where the speaker’s identity is determined by the speaking style rather than the content of
the speech. Typically, such speaker recognition systems operate on unconstrained speech
utterances that are converted into a fixed-length vector known as speaker embedding. Many
speech0-processing tasks use speaker embedding such as speaker diarization (SD) [1, 2],
automatic speech recognition (ASR) [3], and speech synthesis [4, 5].

57

58 Making Speaker Diarization System Noise Tolerant

In recent years, deep neural networks have actively been employed for speaker embedding
extractors since d-vector [6] was proposed. Subsequently, the x-vector [7] was widely used
because of the superior performance achieved by employing statistical pooling and time delay
neural network (TDNN). Other architectures such as ResNet-based convolutional neural net-
works and CNNs with cross-convolutional layers [8, 9] were employed for capturing the traits
of speech. In addition, to deal with variable-length inputs, Transformer [10], CNN-LSTM
[11] and a slew of variants of TDNN [12] were applied for DNN-based speaker embedding
extractors. Finally, to reduce the computational complexity and make the models smaller,
[13, 14] employed 1D depth-wise separable convolutions for the speaker recognition task.

Metric learning techniques have been successful in speaker recognition tasks. These
methods aim to create speaker embeddings with small distances between embeddings of
the same speaker and large distances between embeddings of different speakers since unsu-
pervised clustering will be applied to embeddings later in the speaker diarization pipeline.
The triplet loss was proposed in [15] which required a careful selection of a triplet because
the effectiveness of the performance depended on the contrast between negative and query
samples. The prototypical loss was proposed in [16], where many negative samples were
used and the Euclidean distance between the centroid of all negative samples and the query
embedding was maximized. In the generalized end-to-end loss [17], every utterance in the
mini-batch functions as a query as opposed to just one in the prototypical loss. The angular
prototypical (AP) loss [18] used only one utterance from each class as the query like the
prototypical loss, but with a cosine similarity-based metric.

The primary use case for speaker embeddings is speaker diarization. Speaker diarization
is the process of dividing an input audio stream into homogeneous segments according to
the speaker’s identity. A typical speaker diarization system usually consists of several steps:
(1) Speech segmentation, where the input audio is segmented into short sections that are
assumed to have a single speaker, and the non-speech sections are filtered out by Voice
Activity Detection (VAD), (2) Speaker embedding extractor, where speaker embeddings are
extracted from segmented sections, (3) Clustering, where the extracted audio embeddings
are grouped [1] into clusters based on the number of speakers present in the audio recording,
and optionally, (4) Resegmentation step is performed to further refine clustering results.

In real-world environment, noise causes significant degradations to the performance of
speaker diarization systems, and is, hence, a major problem requiring special attention.
The goal of noise-tolerant speaker diarization is to achieve improved performance in noisy
environments. A recent work [19] tackles this problem using the auto-encoder architecture
as a dimensionality reduction module. They extract two low-dimensional codes from speaker
embeddings, representing the speaker identity and irrelevant noise information, then remove
the noise factors. To our knowledge, there hasn’t been a lot of research done in this particular
area. ASR systems also suffer deterioration due to audio noise, and this has been the subject
of extensive research [20, 21, 22], some of which inspired us.

In this paper, we explore several approaches, borrowed from unsupervised domain adapta-
tion, to make the speaker recognition models noise tolerant. In particular, we apply teacher-
student and consistency regularization techniques on speaker recognition and diarization
tasks and compare them with multi-condition training when various noise augmentations
are used.

We were inspired by the significant results of this work for teacher-student [22], where
clean and noisy audios are fed to the teacher and the student, respectively, to enforce sim-
ilarity between the output distributions. Consistency regularization is a commonly-used

D. Karamyan, G. Kirakosyan and S. Harutyunyan 59

technique amongst a variety of tasks in machine learning. This work [20] applies it in a
manner similar to that mentioned previously, only here clean and noisy inputs are both fed
to the student model. In the paragraphs that follow, we’ll discuss in detail how we apply
these concepts to obtain noise-robust speaker recognition and diarization.

2. Improving Noise Robustness of Speaker Diarization System

There are several ways to improve the performance of speaker diarization systems in noisy
and reverberant environments. For instance, work in [1] proposed the sequence of refinement
operations to smooth and denoise data in the similarity space. In this work, we will focus
only on the speaker embedding extraction part, and we are going to use unsupervised domain
adaptation techniques to make the model noise tolerant.

Given a training dataset consisting of pairs (xi, yi) where xi represents an audio signal and
yi represents the speaker id. Our goal is to learn a parametrized function fθ, which should
be able to compress any given audio into a d-dimensional vector, also known as a speaker
embedding. Moreover, if two audio signals are spoken by the same speaker, then the cosine
similarity between their corresponding embeddings should be higher. Conversely, if the
two audios are spoken by different speakers, the cosine similarity between their embeddings
should be lower. The additive angular margin (AAM) loss, as proposed in [23], is a prevalent
method for training speaker embedding extractors. The aim of the AAM loss is to minimize
the angle between speaker embeddings belonging to the same speaker while simultaneously
maximizing the angle between speaker embeddings belonging to different speakers.

2.1 Consistency Regularization

The core idea behind consistency regularization (CR) is to make sure that the network
produces similar embeddings for the augmented versions of the same unlabeled utterance
[20, 24, 25]. It is enforced by an additional regularization term in the loss function:

LCR =
1

N

N∑
i=1

|fθ(A(xi))− fθ(A(xi))|22,

where fθ is an embedding extractor with parameters θ, N represents the total number
of training examples within the dataset. By A(x) we denote a stochastic operation that
augments the audio in such a way that the speaker identity remains the same. So the
difference is most likely non-zero. The final form of loss is a weighted combination of LAAM

and LCR as shown below:

L = (1− α)LAAM + αLCR,

where α is a hyperparameter taking values between 0 and 1.

2.2 Teacher-Student

One critical problem with LCR loss is that it is not stable because of unstable target. To
mitigate unstable target problem, the teacher-student model was proposed in [26], where
two separate models were used: a Student network with θ parameters and a Teacher with

60 Making Speaker Diarization System Noise Tolerant

θ′ parameters. On unlabeled examples, the Teacher network provides the learning target for
the Student network:

LTS =
1

N

N∑
i=1

|fStudent
θ (A(xi))− fTeacher

θ′ (A(xi))|22.

Student is trained as usual. Teacher model is not trained via back-propagation. Instead, its
weights are updated at each iteration using the weights from the Student network. Again,
the final loss is a weighted combination of LAAM and LTS as shown below:

L = (1− α)LAAM + αLTS.

2.3 Knowledge Distillation

If the teacher model is already trained, it is desirable that its weights remain constant. This
training setup is known as ”knowledge distillation”, where the Student model is trained to
mimic a pre-trained, larger model [27].

3. Experiments

3.1 Model Architecture

In all experiments, we will use the SpeakerNet [13] architecture as the backbone model.
SpeakerNet models are made up of 1D Depth-wise separable convolutional layers. On top
of the model, a statistical pooling layer is used to obtain a fixed-length vector. The pro-
posed variation of SpeakerNet (SpeakerNet-M) has fewer parameters (5M) when compared
to SOTA and shows very similar performance on VoxCeleb1 [28] trial files when compared
to SOTA systems. The model provides embeddings of size 256 for a given audio sample.

In teacher-student experiments, both the teacher and the student have the same archi-
tecture.

3.2 Datasets

The VoxCeleb1 [28] and VoxCeleb2 [29] datasets are widely recognized benchmarks in the
field of speaker recognition. These datasets have pre-defined development and test sets,
which allow for an objective and consistent evaluation of speaker recognition models. We
trained our speaker recognition models using only the development part, which consisted of
7205 distinct speakers.

For evaluation of speaker embeddings quality, we use VoxCeleb1 cleaned test trial file.
The test trial file contains a list of audio pairs, and the model’s performance is evaluated
based on its ability to correctly determine whether the two recordings belong to the same
speaker or not. To evaluate speaker diarization, we use the VoxConverse [30] development
set. The dataset statistics are shown in Table 1.

3.3 Metrics

The equal error rate (EER) metric is used to evaluate the speaker verification. This is the
rate used to determine the threshold value for a system when its false acceptance rate and

D. Karamyan, G. Kirakosyan and S. Harutyunyan 61

Table 1: Statistics of datasets used for training SpeakerNet.

Dataset # Speakers Duration (h) # Utterances

VoxCeleb1 1211 340.4 148642
VoxCeleb2 5994 2359.77 1,092,009

false rejection rate are equal. We calculate EER on VoxCeleb1 cleaned test trial file under
original, noisy and echo conditions.

For diarization evaluation purposes, we used diarization error rate (DER). This is the
sum of three error terms: false alarm (FA), missed detection (MS) and speaker confusion
error rate (CER). Similar to the previous works [12, 14], we use collar 0.25 sec and ignore
overlap speech regions for confusion error rate calculation. We test the diarization system
in original, noisy, and echo scenarios, just like we do for speaker verification.

Both EER and DER are calculated using the cosine similarity back-end.

3.4 Experiment Setup

3.4.1 Input Features

Our audio pre-processing procedure is identical to the one described in the SpeakerNet paper
[13]. For each frame window of 20 ms, shifted by 10 ms, 64-dimensional acoustic features
were calculated from the speech recordings. Each utterance fed to the encoder has a size
T × 64, where T is the number of frames in a given audio sample. We crop speech segments
into random chunks from 3 to 8 seconds. With larger chunks, the model converges faster.

3.4.2 Clean Teacher

Our first baseline is a clean teacher trained on VoxCeleb1 and VoxCeleb2 datasets with
additive angular margin loss. We set the AAM loss hyperparameters to s = 30 and m = 0.2,
as it was shown in [13, 14], these values give the best results. To avoid overfitting, we added
SpecAugment [31] to the training pipeline, which randomly masks blocks of frequency and
time channels.

3.4.3 Noisy Teacher

Our second baseline is a noisy teacher trained with the same objective as a clean baseline,
and with the additional augmentation steps described below:

• No Augment : Leave the utterance unchanged

• RIR Augment : Reverberate an input audio using an impulse response from RIRS
dataset [32]

• Noise Augment : Add noise from MUSAN [33] dataset with signal-to-noise (SNR)
values randomly chosen from 0-50DB

• RIR-Noise Augment : Apply noise and echo perturbations to the same audio at the
same time

62 Making Speaker Diarization System Noise Tolerant

• Speed Augment : Speed perturbation with 0.95x and 1.05x speeds

RIR, Noise, and RIR-Noise augmentations all have a probability of 0.25 and are mutually
exclusive. Speed augmentation is applied independently with a probability of 0.1.

3.4.4 Consistency Regularization

We add an extra mean squared loss between embeddings for the augmented and non-
augmented versions of the same utterance to the AAM loss during training.

We set the α hyperparameter in the final loss to 0.1.

3.4.5 Teacher-Student

In order to supervise the student model, we choose our Clean-Teacher baseline as the teacher.
We did not update teacher weights during the training and no perturbations were applied
to the input of the teacher model. The flow chart of teacher-student training is presented in
Fig. 1. During the training procedure, in addition to the AAM loss, the mean squared loss
between the student and teacher-produced embeddings is minimized.

We set the α hyperparameter in the final loss to 0.1.

Fig.1. Flow chart of teacher-student learning for improving noise robustness of SR.

3.4.6 Optimization

All models are trained for 200 epochs with an SGD optimizer, with an initial learning rate
(LR) of 0.08 using a cosine annealing LR scheduler on 4 A100 GPUs.

3.5 Evaluations

3.5.1 Speaker Verification

All the experiment findings are displayed in Table 2. The results of the original SpeakerNet
and the pre-trained checkpoint1 publicly released by Nvidia are also provided for comparison.

1https:

//catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/speakerverification_speakernet

D. Karamyan, G. Kirakosyan and S. Harutyunyan 63

The pre-trained checkpoint was trained solely with noise augmentation using the above-
mentioned datasets. In order to examine the speaker verification system under noisy and
reverberant conditions, we created augmented versions of VoxCeleb1 clean test trials by
injecting noise and echo with different SNR values.

Table 2: Comparison of different speaker verification models under noise and reverb conditions.
The results are reported in equal error rates. The more aggressively noise has been applied, the
lower the SNR values were. A noise level of 0 db indicates that the sound and the noise have the
same energy.

Model Orig 0db 5db 10db Rir

SpeakerNet [13] 2.14 - - - -
SpeakerNet (NVIDIA) 1.92 9.75 5.43 3.61 16.5

Clean Teacher 1.87 12.9 6.94 4.21 16.5
Noisy Teacher 2.6 9.35 5.84 4.23 12.74
Consistency Reg. 1.76 8.05 4.40 3.13 12.26
Teacher-Student 1.73 9.16 4.79 3.26 9.18

Table 2 showcases the effectiveness of the methods applied. We can see that training
the SpeakerNet model with data augmentation (Noisy Teacher) improves the results in the
noisy/reverberant environment with a small deterioration of EER on the original (not per-
turbed) audios. The Teacher-Student method achieves the lowest EER scores in original and
reverberant cases (RIR), whereas the consistency regularization method shows the best re-
sults for noisy audios. Using the teacher-student method, we were able to improve the EER
by an average of 19.1% compared to the multi-condition trained model. With consistency
regularization, we were able to improve the EER by an average of 14.8% compared to the
multi-condition trained model.

3.5.2 Speaker Diarization

We employ our trained SpeakerNet models for speaker diarization task to see which model
has the smallest performance degradation in noisy conditions. We found that the optimal
sliding window size and shift for speech segmentation are 1.5 and 0.5 seconds, respectively. In
addition, diarization experiments are based on oracle VAD to evaluate the VAD-independent
performance. The affinity matrix A is constructed using the cosine similarity between seg-
ment embeddings. We further apply the following sequence of refinement operations to the
affinity matrix A:

• Row-wise Thresholding : For each row, keep top-12 largest elements and set the rest to
0

• Symmetrization: Y = 1
2
(A+ AT)

• Diffusion: Y = AAT

We use the spectral clustering method [34] to obtain speaker labels. To get a full picture,
we present the diarization results for both known (oracle) and unknown numbers of speakers.
In the latter case, we utilize the maximal eigen-gap approach to determine the number of
speakers [1].

64 Making Speaker Diarization System Noise Tolerant

Table 3: Comparison of speaker diarization systems with various speaker embedding extractors
under noise and reverberant conditions. The results are reported in diarization error rate (DER).

Model Known #Speakers Unknown #Speakers

0db 5db 10db Rir Orig Avg 0db 5db 10db Rir Orig Avg

Clean Teacher 12.13 4.48 1.96 2.44 1.26 4.45 15.44 7.59 2.74 4.48 1.78 6.40
Noisy Teacher 9.20 4.49 3.13 3.12 1.57 4.30 13.09 7.94 4.18 4.14 1.95 6.26

Consistency Reg. 9.50 3.46 2.0 2.50 1.45 3.78 13.40 4.90 2.57 3.45 1.67 5.20
Teacher-Student 9.84 3.41 2.11 2.43 1.36 3.83 13.99 6.17 3.09 3.52 1.61 5.67

In order to assess the performance of the speaker diarization system under noisy and
reverberant conditions, we modified the Voxconverse dev dataset by adding noise and echo at
various signal-to-noise ratios. The results, shown in Table 3, indicate that the teacher-student
and consistency regularization methods generally outperform the multi-condition baseline
model for both scenarios involving known and unknown numbers of speakers. In particular,
when the number of speakers is unknown, we observed approximately 17% and 9.5% relative
performance improvements for the consistency regularization and teacher-student methods,
respectively, compared to the multi-condition baseline.

However, it is worth noting that in certain specific scenarios, the baseline models may
outperform the models with the overall best average performance.

4. Conclusions

In this research, we explore ways to increase the accuracy of speaker recognition and speaker
diarization in noisy and reverberant environments, such as multi-condition, teacher-student,
and consistency regularization. The key component of the methods used is the additional
regularization term between embeddings for augmented and non-augmented versions of the
same utterance. Through the use of teacher-student and consistency regularization, we were
able to improve the performance of SpeakerNet on speaker recognition and diarization tasks
in noisy and reverberant situations.

References

[1] Q. Wang, C. Downey, L. Wan, P. Mansfield and I. Moreno, “Speaker diarization with
LSTM”, 2018 IEEE International Conference On Acoustics, Speech And Signal Pro-
cessing (ICASSP). pp. 5239-5243, 2018.

[2] X. Anguera, S. Bozonnet, N. Evans, C. Fredouille, G. Friedland, and O. Vinyals,
“Speaker diarization: A review of recent research”, IEEE Transactions On Audio,
Speech, And Language Processing, vol. 20, pp. 356-370, 2012.

[3] Q. Wang, H. Muckenhirn, K. Wilson, P. Sridhar, Z. Wu, J. Hershey, R. Saurous,
R. Weiss, Y. Jia, and I. Moreno, “Voicefilter: Targeted voice separation by speaker-
conditioned spectrogram masking”, ArXiv Preprint ArXiv:1810.04826, 2018.

[4] Y. Jia, Y. Zhang, R. Weiss, Q. Wang, J. Shen, F. Ren, P. Nguyen, R. Pang, I. Lopez
Moreno, Y. Wu, and Others, “Transfer learning from speaker verification to multi-

D. Karamyan, G. Kirakosyan and S. Harutyunyan 65

speaker text-to-speech synthesis”, Advances in Neural Information Processing Systems,
vol. 31, 2018.

[5] E. Cooper, C. Lai, Y. Yasuda, F. Fang, X. Wang, N. Chen, and J. Yamagishi, “Zero-
shot multi-speaker text-to-speech with state-of-the-art neural speaker embeddings”,
ICASSP 2020-2020 IEEE International Conference On Acoustics, Speech And Signal
Processing (ICASSP), pp. 6184-6188, 2020.

[6] E. Variani, X. Lei, E. McDermott, I. Moreno, and J. Gonzalez-Dominguez, “Deep
neural networks for small footprint text-dependent speaker verification”, 2014 IEEE
International Conference On Acoustics, Speech And Signal Processing (ICASSP), pp.
4052-4056, 2014.

[7] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey and S. Khudanpur, “X-vectors: Ro-
bust dnn embeddings for speaker recognition”, 2018 IEEE International Conference
On Acoustics, Speech And Signal Processing (ICASSP), pp. 5329-5333, 2018.

[8] Y. Yu, L. Fan, and W. Li, “Ensemble additive margin softmax for speaker verification”,
ICASSP 2019-2019 IEEE International Conference On Acoustics, Speech And Signal
Processing (ICASSP), pp. 6046-6050, (2019).

[9] Z. Gao, Y. Song, I. McLoughlin, W. Guo, and L. Dai, “An improved deep embed-
ding learning method for short duration speaker verification”, International Speech
Communication Association, 2018.

[10] P. Safari, M. India, and J. Hernando, “Self-attention encoding and pooling for speaker
recognition”, ArXiv Preprint ArXiv:2008.01077, 2020.

[11] J. Jung, H. Heo, I. Yang, H. Shim, and H. Yu, “A complete end-to-end speaker verifica-
tion system using deep neural networks: From raw signals to verification result”, IEEE
International Conference On Acoustics, Speech and Signal Processing (ICASSP), pp.
5349-5353, 2018.

[12] N. Dawalatabad, M. Ravanelli, F. Grondin, J.Thienpondt, B. Desplanques and
H. Na, “ECAPA-TDNN embeddings for speaker diarization”, ArXiv Preprint
ArXiv:2104.01466, 2021.

[13] N. Koluguri, J. Li, V. Lavrukhin and B. Ginsburg, “SpeakerNet: 1D depth-wise sepa-
rable convolutional network for text-independent speaker recognition and verification”,
ArXiv Preprint ArXiv:2010.12653, 2020.

[14] N. Koluguri, T. Park and B. Ginsburg, “TitaNet: Neural Model for speaker representa-
tion with 1D Depth-wise separable convolutions and global context”, Proceedings of the
IEEE International Conference on Acoustics, Speech And Signal Processing (ICASSP),
pp. 8102-8106, 2022.

[15] F. Schroff, D. Kalenichenko and J. Philbin, “Facenet: A unified embedding for face
recognition and clustering”, Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 815-823, 2015.

[16] J. Snell, K. Swersky and R.Zemel, “Prototypical networks for few-shot learning”, Ad-
vances in Neural Information Processing Systems, vol.30, 2017.

[17] L. Wan, Q. Wang, A. Papir and I. Moreno, “Generalized end-to-end loss for speaker
verification”, Proceedings of the IEEE International Conference on Acoustics, Speech
And Signal Processing (ICASSP), pp. 4879-4883, 2018.

66 Making Speaker Diarization System Noise Tolerant

[18] J. Chung, J. Huh, S. Mun, M. Lee, H. Heo, S. Choe, C. Ham, S. Jung, B. Lee
and I. Han, “In defence of metric learning for speaker recognition”, ArXiv Preprint
ArXiv:2003.11982, 2020.

[19] Y. Kim, H. Heo, J. Jung, Y. Kwon, B. Lee and J. Chung, “Disentangled dimensional-
ity reduction for noise-robust speaker diarization”, ArXiv Preprint ArXiv:2110.03380,
2021.

[20] Y. Hu, N. Hou, C. Chen E. Chng, “Dual-path style learning for end-to-end noise-robust
speech recognition”, ArXiv Preprint ArXiv:2203.14838, 2022.

[21] Q. Zhu, J. Zhang, Z. Zhang, M. Wu, X. Fang and L. Dai, “A noise-robust self-
supervised pre-training model based speech representation learning for automatic
speech recognition”, Proceedings of the IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 3174-3178, 2022.

[22] L. Moner, M. Wu, A. Raju, S. Parthasarathi, K. Kumatani, S. Sundaram, R. Maas,
and B. Hoffmeister, “Improving noise robustness of automatic speech recognition via
parallel data and teacher-student learning”, Proceedings of the IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6475-6479, 2019.

[23] J. Deng, J. Guo, N. Xue and S. Zafeiriou, “Arcface: Additive angular margin loss for
deep face recognition”, Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 4690-4699, 2019.

[24] A. Vanyan and H. Khachatrian, “Deep semi-supervised image classification algorithms:
a survey”, J. Univers. Comput. Sci., vol. 27, pp. 1390-1407, 2021.

[25] S. Laine and T. Aila, “Temporal ensembling for semi-supervised learning”, ArXiv
Preprint ArXiv:1610.02242, 2016.

[26] A. Tarvainen and H. Valpola, “Mean teachers are better role models: Weight-averaged
consistency targets improve semi-supervised deep learning results”, Advances in Neural
Information Processing Systems, vol.30, 2017.

[27] G. Hinton, O. Vinyals and J. Dean, “Distilling the knowledge in a neural network.
ArXiv Preprint ArXiv:1503.02531, 2015.

[28] A. Nagrani, J. Chung and A. Zisserman, “Voxceleb: a large-scale speaker identification
dataset”, ArXiv Preprint ArXiv:1706.08612, 2017.

[29] J. Chung, A. Nagrani and A. Zisserman, “Voxceleb2: Deep speaker recognition”, ArXiv
Preprint ArXiv:1806.05622, 2018.

[30] J. Chung, J. Huh, A. Nagrani, T. Afouras and A. Zisserman, “Spot the conversation:
speaker diarization in the wild”, ArXiv Preprint ArXiv:2007.01216, 2020.

[31] D. Park, W. Chan, Y. Zhang, C. Chiu, B. Zoph, E. Cubuk and Q. Le, “Specaugment: A
simple data augmentation method for automatic speech recognition”, ArXiv Preprint
ArXiv:1904.08779, 2019.

[32] T. Ko, V. Peddinti, D. Povey, M. Seltzer and S. Khudanpur, “A study on data augmen-
tation of reverberant speech for robust speech recognition”, Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.
5220-5224, 2017.

Davit Karamyan, Grigor Kirakosyan and Saten Harutyunyan 6 7

[3 3] D . S n yd e r , G. Ch e n a n d D . P o ve y, \ Mu s a n : A m u s ic , s p e e c h , a n d n o is e c o r p u s " , ArXiv
P reprint ArXiv:1510.08484, 2 0 1 5 .

[3 4] U .V o n L u xb u r g , \ A t u t o r ia l o n s p e c t r a l c lu s t e r in g " , Statistics and Computing, vo l. 1 7 ,
p p . 3 9 5 -4 1 6 , 2 0 0 7 .

²ÕÙÏ³¹ÇÙ³óÏáõÝáõÃÛ³Ý ³å³ÑáíáõÙÁ ËáëÝ³ÏÝ»ñÇ
¹Ç³ñÇ½³óÇ³ÛÇ Ñ³Ù³Ï³ñ·áõÙ

¸³íÇÃ ê. ø³ñ³ÙÛ³Ý1;2, ¶ñÇ·áñ ². ÎÇñ³ÏáëÛ³Ý2;3 ¨ ê³Ã»Ý ². Ð³ñáõÃÛáõÝÛ³Ý2

1Ð³Û-èáõë³Ï³Ý Ñ³Ù³Éë³ñ³Ý, ºñ¨³Ý, Ð³Û³ëï³Ý
2Krisp.ai, ºñ¨³Ý, Ð³Û³ëï³Ý

3ÐÐ ¶²² Ù³Ã»Ù³ïÇÏ³ÛÇ ÇÝëïÇïáõï,ºñ¨³Ý, Ð³Û³ëï³Ý

e -m a il: f d ka r a m ya n , s h a r u t yu n ya n , g kir a ko s ya n g@kr is p .a i

²Ù÷á÷áõÙ

ÊáëÝ³ÏÝ»ñÇ ¹Ç³ñÇ½³óÇ³ÛÇ Ýå³ï³ÏÁ ³áõ¹Çá Ó³ÛÝ³·ñáõÃÛ³Ý Ù»ç ï³ñµ»ñ
ËáëÝ³ÏÝ»ñÇ Ñ³ÛïÝ³µ»ñáõÙÝ áõ ³é³ÝÓÝ³óáõÙÝ ¿: ²ÛÝáõ³Ù»Ý³ÛÝÇí, ýáÝ³ÛÇÝ ³ÕÙáõÏÁ
Ï³ñáÕ ¿ ³½¹»É ³Ûë Ñ³Ù³Ï³ñ·»ñÇ ×ß·ñïáõÃÛ³Ý íñ³: ²Ûë Ñá¹í³ÍáõÙ áõëáõÙÝ³ëÇñí»É
»Ý ³ÛÝåÇëÇ Ù»Ãá¹Ý»ñ, ÇÝãåÇëÇù »Ý` ï³ñµ»ñ ³áõ·Ù»Ýï³óÇ³Ý»ñáí áõëáõóáõÙÁ,
Ï³ÛáõÝáõÃÛ³Ý Ï³ñ·³íáñáõÙÁ (consistency regularization) ¨ áõëáõóÇã-³ß³Ï»ñï Ù»Ãá¹Á‘
ËáëÝ³ÏÝ»ñÇ Ó³ÛÝ³ÛÇÝ Ñ³ïÏ³ÝÇßÝ»ñ ¹áõñë µ»ñáÕ Ùá¹»ÉÇ Ï³ÛáõÝáõÃÛáõÝÁ ³ÕÙáõÏÇ
ÝÏ³ïÙ³Ùµ µ³ñÓñ³óÝ»Éáõ Ñ³Ù³ñ: Üßí³Í Ù»Ãá¹Ý»ñÇ ³ñ¹ÛáõÝ³í»ïáõÃÛáõÝÁ ëïáõ·í»É ¿
ËáëÝ³ÏÝ»ñÇ ÝáõÛÝ³Ï³Ý³óÙ³Ý ¨ ¹Ç³ñÇ½³óÇ³ÛÇ ËÝ¹ÇñÝ»ñáõÙ ¨ óáõÛó ¿ ïñí»É, áñ ¹ñ³Ýù
Ñ³Ý·»óÝáõÙ »Ý Ï³ÛáõÝáõÃÛ³Ý µ³ñ»É³íÙ³ÝÁ` ³ÕÙáõÏÇ ¨ ³ñÓ³·³ÝùÇ ³éÏ³ÛáõÃÛ³Ý
¹»åùáõÙ: ÊáëÝ³ÏÝ»ñÇ ÝáõÛÝ³Ï³Ý³óÙ³Ý ¨ ¹Ç³ñÇ½³óÇ³ÛÇ Ñ³Ù³Ï³ñ·»ñÁ ³ÕÙáõÏÇ ¨
³ñÓ³·³ÝùÇ å³ÛÙ³ÝÝ»ñáõÙ ÷áñÓ³ñÏ»Éáõ Ñ³Ù³ñ ëï»ÕÍí»É »Ý VoxCeleb1 ¨ Voxconverse
dev ïíÛ³ÉÝ»ñÇ Ñ³í³ù³ÍáõÝ»ñÇ ÁÝ¹É³ÛÝí³Í ï³ñµ»ñ³ÏÝ»ñÁ‘ ³í»É³óÝ»Éáí ï³ñµ»ñ
SNR ³ñÅ»ùÝ»ñáí ýáÝ³ÛÇÝ ³ÕÙáõÏ ¨ ³ñÓ³·³Ýù: êï³óí³Í ³ñ¹ÛáõÝùÝ»ñÁ óáõÛó »Ý
ï³ÉÇë, áñ ÙÇçÇÝ Ñ³ßíáí Ï³ñ»ÉÇ ¿ Ñ³ëÝ»É ËáëÝ³ÏÝ»ñÇ ÝáõÛÝ³Ï³Ý³óÙ³Ý ×ß·ñïáõÃÛ³Ý
Ñ³ñ³µ»ñ³Ï³Ý µ³ñ»É³íÙ³ÝÁ` 1 9 ; 1 % -áí‘ û·ï³·áñÍ»Éáí áõëáõóÇã-³ß³Ï»ñï Ù»Ãá¹Á
¨ ËáëÝ³ÏÝ»ñÇ ¹Ç³ñÇ½³óÇ³ÛÇ ×ß·ñïáõÃÛ³Ý Ñ³ñ³µ»ñ³Ï³Ý µ³ñ»É³íÙ³ÝÁ` 1 7 % -
áí` û·ï³·áñÍ»Éáí Ï³ÛáõÝáõÃÛ³Ý Ï³ñ·³íáñÙ³Ý Ù»Ãá¹Á` Ñ³Ù»Ù³ï³Í ï³ñµ»ñ
³áõ·Ù»Ýï³óÇ³Ý»ñáí í³ñÅ»óí³Í Ùá¹»ÉÇ Ñ»ï:

´³Ý³ÉÇ µ³é»ñ` ËáëÝ³ÏÝ»ñÇ ÝáõÛÝ³Ï³Ý³óáõÙ, ËáëÝ³ÏÝ»ñÇ ¹Ç³ñÇ½³óÇ³,
³ÕÙÏ³-¹ÇÙ³óÏáõÝáõÃÛáõÝ, áõëáõóÇã-³ß³Ï»ñï, Ï³ÛáõÝáõÃÛ³Ý Ï³ñ·³íáñáõÙ:

6 8 Making Speaker Diarization System Noise Tolerant

Îáåñïå÷åíèå øóìîóñòîé÷èâîñòè ñèñòåìû
äèàðèçàöèè äèêòîðîâ

Äàâèä Ñ. Êàðàìÿí1;2, Ãðèãîð À. Êèðàêîñÿí2;3 è Ñàòåí À. Àðóòþíÿí2

1Ðîññèéñêî-Àðìÿíñêèé óíèâåðñèòåò, Åðåâàí, Àðìåíèÿ
2Krisp.ai, Åðåâàí, Àðìåíèÿ

3Èíñòèòóò ìàòåìàòèêè ÍÀÍ ÐÀ, Åðåâàí, Àðìåíèÿ
e-mail: fdkaramyan, sharutyunyan, gkirakosyang@krisp.ai

Àííîòàöèÿ

Öåëüþ ñèñòåìû äèàðèçàöèè äèêòîðîâ ÿâëÿåòñÿ èäåíòèôèöèðîâàíèå è
ðàçäåëåíèåðàçíûõ äèêòîðîâ â àóäèîçàïèñè. Îäíàêî øóì â çàïèñè ìîæåò
ïîâëèÿòü íà òî÷íîñòü ýòèõ ñèñòåì. Â ýòîé ñòàòüå ìû èññëåäóåì òàêèå ìåòîäû, êàê
îáó÷åíèå ñ ðàçëè÷íûìè àóãìåíòàöèÿìè, ðåãóëÿðèçàöèÿ ñîãëàñîâàííîñòè (con-
sistency regularization) è ìåòîä ”ó÷èòåëü-ó÷åíèê”, ÷òîáû ïîâûñèòü óñòîé÷èâîñòü
ýêñòðàêòîðîâ ðå÷åâûõ õàðàêòåðèñòèê ê øóìó. Ìû ïðîâåðÿåì ýôôåêòèâíîñòü
ýòèõ ìåòîäîâ â çàäà÷àõ ðàñïîçíàâàíèÿ äèêòîðîâ ïî ãîëîñó è äèàðèçàöèè
äèêòîðîâ è äåìîíñòðèðóåì, ÷òî îíè ïðèâîäÿò ê óëó÷øåíèþ óñòîé÷èâîñòè ïðè
íàëè÷èè øóìà è ðåâåðáåðàöèè. ×òîáû ïðîâåðèòü ñèñòåìó ðàñïîçíàâàíèÿ
è äèàðèçàöèè äèêòîðîâ â óñëîâèÿõ øóìà è ðåâåðáåðàöèè, ìû ñîçäàëè
ðàñøèðåííûå âåðñèè VoxCeleb1 è íàáîðîâ äàííûõ Voxconverse dev, äîáàâèâ
øóì è ýõî ñ ðàçíûìè çíà÷åíèÿìè SNR. Íàøè ðåçóëüòàòû ïîêàçûâàþò, ÷òî
â ñðåäíåì ìû ìîæåì äîáèòüñÿ îòíîñèòåëüíîãî óëó÷øåíèÿ ðàñïîçíàâàíèÿ
äèêòîðîâ íà 1 9 ; 1 % ñ èñïîëüçîâàíèåì ìåòîäà ”ó÷èòåëü-ó÷åíèê” è îòíîñèòåëüíîãî
óëó÷øåíèÿ äèàðèçàöèè äèêòîðîâ íà 1 7 % ñ èñïîëüçîâàíèåì ìåòîäà ðåãóëÿðèçàöèè
ñîãëàñîâàííîñòè ïî ñðàâíåíèþ ñ áàçîâîé ìîäåëüþ, îáó÷åííîé ñ ïîìîùüþ
ðàçëè÷íûõ àóãìåíòàöèé.

Êëþ÷åâûå ñëîâà:ðàñïîçíàâàíèå ïî ãîëîñó, äèàðèçàöèÿ äèêòîðîâ, óñòîé÷èâîñòü
ê øóìó, ó÷èòåëü-ó÷åíèê, ðåãóëÿðèçàöèÿ ñîãëàñîâàííîñòè.

69

Mathematical Problems of Computer Science 59, 69–81, 2023.

doi: 10.51408/1963-0103

 UDC 004.725, 004.852

Research of Model Increasing Reliability Intrusion
Detection Systems

Timur V. Jamgharyan

National Polytechnic University of Armenia, Yrevan, Armenia

e-mail: t.jamgharyan@yandex.ru

Abstract

The paper presents the results of the using, a recurrent neural network to detect

malicious software as part of the Snort intrusion detection system.The research was

conducted on datasets generated on the basis of athena, dyre, engrat, grum,

mimikatz, surtr malware exploiting vulnerability CVE-2022-20685 in the Snort

intrusion detection system. Processing of input traffic data was carried out before the

frag-3 and modbus preprocessors. The method of k nearest neighbors was used as a

mathematical apparatus. The simulation of the developed software at different

iterations.

All research results are available at https://github.com/T-JN

Keywords: Machine learning, Dataset, Malware, Preprocessor, Metasploit, k nearest

neighbors method, Intrusion detection system.

Article info: Received 8 January 2023; send to review 7 February 2023; accepted 7
March 2023.

1. Introduction

The intrusion detection systems (IDS) include many different software components designed to

detect various types of traffic with an embedded malicious component. Detection is carried out

according to a set of rules that are configured based on the threat model and security policies.

The security architecture of the Network Infrastructure (NI) is built taking into account possible

attacks according to various models։ triad CIA (Confindentiality, Integrity, Availability, CIA),

Parker's hexad [1]. Network IDS, unlike host IDS, detect attacks directed at the network segment

and contain a set of complementary rules and security scripts that can neutralize an attack on the

network. Unlike host-based IDS, network-based IDS require more computing resources due to

the fact that a larger set of rules and detectors is activated during their operation [2]. When using

host IDS in the Infrastructure for a fleet of computing systems running Linux OS, can disable

https://github.com/T-JN

 Research of Model Increasing Reliability Intrusion Detection Systems

70

the rules for Windows (or another OS), but hardly possible for a network IDS, since different

operating systems are used in the Infrastructure. Modern IDS are able to detect various types of

attacks at different levels of the OSI (Open System Interconnection, OSI) model: bad traffic,

system scanning, the use of known exploits to attack over various protocols, various backdoors,

various known malware [3]. A significant limitation of systems for analyzing network traffic and

the state of NI is the algorithmic and functional determinism inherent in them.

An important issue of Infrastructure security is the reliability of the processed data of the IDS

itself (data reliability – is, the property of the processed data not to have hidden errors [4]). The

processing of data streams in the IDS itself is determined by the functioning algorithms, data

presentation formats, and the formalization of signature classifiers. Protecting the IDS signature

database (both remote and local) is also one of the most important tasks. If the signatures

database has been attacked for availability, then when a new vulnerability appears, the IDS will

not receive the necessary signature and the Infrastructure perimeter will become vulnerable [5].

The development of M2M (Machine-to-Machine, M2M) and ML (Machine learning, ML)

technologies has increased the capabilities of both attack and defense tools. Various researchers

are conducting research on increasing (improving) various parameters of IDS with ML [6, 7, 8].

One of the parameters that improves when using ML modules as part of a standard IDS is its

variability. Unlike deterministic IDS, IDS with ML are capable of forming a multi-criteria

sample on the basis of which the detector operation scheme is formed within the given

constraints. But IDS with ML have certain limitations when integrating them into the NI

architecture. In particular, ML IDS are very sensitive to various implementations of «noise

attacks» («noise attack» is a variant of an availability attack in which a large number of random

and meaningless fragmented packets are sent to the attacked system, some of which contain

malware [9]). A dangerous consequence of a «noise attack» on a ML network IDS is that

attackers «attack» it for a long time with streams of datasets that cause false positives, «teach»

the ML IDS discriminator to be immune to this type of traffic (creating a cyclic chain of

operations: false positive--true negative--false negative--true positive, which overload both the

IDS itself and the SIEM system (Security information and event management, SIEM).

Various manufacturers combine IDS modules into different classes, which allows you to

quickly reconfigure the IDS itself for specific tasks. In particular, for Snort open source IDS,

there are many different types of preprocessors (frag-3, stream, performance monitor, SMTP,

POP, IMAP, SSH, DNS, DCE/RPC, SIP preprocessors, reputation preprocessor, modbus

preprocessor) each of which is functionally is responsible for handling the given protocol and/or

data type.
 IDS preprocessor is a software module that receives data from the network traffic decoding module

and outputs them to the input of intrusion detection modules.

As stated in the article «Attacks on Machine Learning Systems» [10], the most vulnerable

part of the ML IDS is the traditional IDS component (the deterministic part of the IDS). ML

systems, like any other, will be hacked using vulnerabilities in these traditional components. The

use of ML at the preprocessor level is due to the fact that when developing an IDS with ML, it is

not enough to create a functioning model that can detect a threat not described in a set of rules

(signatures) or generate new ones based on «known» signatures, but it is also necessary to

protect the IDS itself from probable infection with malware that can compromise the reliability

of the results issued by IDS․The choice of using a neural network at the preprocessor level is

also due to the fact that the IDS, which has a neural network in its component composition after

the preprocessor, is able to protect the NI, since malware not detected by standard datasets

(described in the signature/rule database) will be detected with varying probability neural

network. But with a «noise attack», the target is the IDS itself, which, when taken out of the

reliable functioning mode, will no longer detect malware. Undescribed at the preprocessor level,

T. Jamgharyan

71

malicious data embedded in IDS can be detected using performance preprocessors that evaluate

various kinds of statistics. But the problem is that, having determined the type of network IDS,

attackers can design an attack taking into account the work of preprocessors, and malware

embedded in the IDS itself will not go beyond the allowable statistical deviations. A lot of

research has been devoted to the task of applying machine learning as part of IDS, but only a

small part of them explores the use of machine learning at the preprocessor level. This limitation,

in particular, is due to the fact that the «response» of the neural network is probabilistic in nature

and it is necessary to introduce clear boundaries for the neural network itself. Otherwise, the

neural network will be an event generator, which will be classified as an attack by the IDS

detection modules. Thus, there is a recursion to the problem of stability and integrity of both the

IDS and the NI as a whole [11]. This research explores the potential of a recurrent neural

network (RNN) to detect malware at the preprocessor level. The choice in the research of RNN

from the entire set of neural networks is determined by the fact that RNN form a directed

sequence between elements, which allows processing a series of events in time (this

characteristic allows granular processing of fragmented datasets). The relevance of the work lies

in the ever-increasing role of IDS with ML in the NI security architecture and the increasing

security requirements of the IDS itself. The use of a neural network at the preprocessor level will

increase the reliability of malware detection results without affecting the main IDS signature

database, which will reduce the attack surface for the IDS itself. The novelty of the research lies

in the application of the k nearest neighbors (k Nearest Neighbors, kNN) method to detect

malware in IDS before preprocessors.

 The k nearest neighbors method is a metric algorithm for classifying objects.

Malicious software athena, dyre, engrat, grum, mimikatz, surtr obtained from publicly available

sources was used as calibration data [12--15]. The choice of the kNN method is determined by

the fact that it is necessary to minimize the value of the preprocessor error, and for this it is

necessary to carry out a preliminary grouping and classification of unknown input datasets in

normalized traffic.
 Traffic normalization - modification of packets of protocols of the transport, and network levels for

their subsequent processing by IDS detection modules.

2. Formulation and Description the Problem

It is necessary to detect a malicious dataset in normalized traffic.

The mathematical model construction was carried out on the basis of the formulas obtained in

the sources [16,17]. There are network traffic 𝑋 inputs that contain malware fragments (1).

 𝑋𝑚 = {(𝑥1, 𝑦1), … , (𝑥𝑚 , 𝑦𝑚)}, (1)

where,

𝑥𝑚- network traffic datasets that do not contain malicious components,

𝑦𝑚- network traffic datasets containing malicious components,

𝑚- number of the analyzed packet of the input dataset.

On the set of input traffic data sets, the distance function 𝑥𝜌(𝑦, 𝑦′) is given. The greater the

value of the distance function, the less similar the entities are 𝑦, 𝑦′, where 𝑦′- the minimum size

of a malware dataset that can be uniquely identified and classified with respect to 𝑦. For any

entity 𝜐 in the data package, arrange the objects 𝑥𝑖 in ascending order (2).

 𝜌(𝜐, 𝑥1;𝜐) ≤ 𝜌(𝜐, 𝑥2;𝜐) ≤ ⋯ ≤ 𝜌(𝜐, 𝑥𝑚;𝜐), (2)

 Research of Model Increasing Reliability Intrusion Detection Systems

72

where 𝑥𝑖;𝜐 the set of network traffic data that is the 𝑖-th neighbor of the entity 𝜐. Similarly for the

𝑖 -th neighbor of the entity 𝜐 in the dataset 𝑦𝑖;𝜐. Using the formula (3 from the source [17], we

determine the malicious kNN components for the traffic arriving in the NI.

 𝛼(𝜐) = arg max
𝑦∈𝑌

∑[𝑦(𝑥𝑖;𝜐) = 𝑦]

𝑚

𝑖=1

𝜔(𝑖, 𝜐), (3)

where, 𝜔(𝑖, 𝜐)- a given weight function that evaluates the degree of importance of the 𝑖-th

neighbor for the classification of the entity 𝜐. By changing the 𝜔(𝑖, 𝜐) value, you can get

different versions of the k nearest neighbors method (4).

 𝜔(𝑖, 𝜐) = [𝑖 ≤ 𝑘]. (4)

When 𝜔(𝑖, 𝜐) = [𝑖 = 1] malware is detected only in the given single value 𝜔. That is, the

RNN is only able to detect the malware datasets it was trained on. A graphical representation of

a RNN is shown in Fig. 1.

Fig. 1. Recurrent neural network.

Attackers can load malware into the IDS itself not in a single package, but in fragments

(using the built-in frag-3 preprocessor as an internal attack tool), then the research task of

grouping and classifying malware fragments arises. Standard IDS do not cope with this task very

effectively, but ML IDS, in the presence of a training set, are able to solve this problem. The

disadvantage of ML IDS is that they can produce unreliable results if the preprocessor

responsible for a particular type of traffic/protocol is «damaged» as a result of a «noise attack».

A particular danger lies in the fact that any traffic entering the IDS preprocessors (both ML and

deterministic) is not checked for malicious components, since the task of the preprocessor is to

«reformat» traffic for processing by detectors.

3. Task Statement

It is necessary to develop and programmatically implement an algorithm and, based on it,

software that integrates a RNN capable of solving the problem of grouping and classification

with the IDS preprocessor.

T. Jamgharyan

73

4. Boundary Conditions

1. The smallest fragment of the malware file (𝜉) that can be classified 𝜉 = 20𝑏𝑦𝑡𝑒 (detection

was carried out using context-piecewise hashing (Context Triggered Piecewise Hashing,

CTPH), which is discussed in detail in [18].

2. The delay in the processed module should not cause a «signal race». Traffic from the output

of the preprocessor module to the input of the detection modules must be sent synchronously.

As part of this condition, an additional restriction has been introduced - only UDP (User

Datagram Protocol, UDP) traffic is processed.

3. The hardware must support the parallel computing mode.

The developed software connects the RNN to frag-3 and modbus preprocessors (frag- 3

preprocessor for defragmenting an IP packet, modbus - preprocessor for processing data from

a variety of devices operating in SCADA networks (Supervisory Control And Data

Acquisition, SCADA).Since the frag-3 preprocessor is designed to build packages, using a

trained RNN can neutralize the process of «assembling» malicious packages inside the IDS,

increasing the level of reliability of its functioning. On Fig.2 shows a diagram of the Snort

IDS with the proposed data processing software implemented on RNN.

Fig. 2. Snort IDS with developed data processing software.

 Research of Model Increasing Reliability Intrusion Detection Systems

74

5. Description of the Module

The network traffic coming from the decoders is directed to the preprocessor processing module

(standard operation of the Snort IDS). The traffic that should processed by the frag - 3 and

modbus preprocessors is sent to the developed module based on the RNN. After processing

according to the developed algorithm, this traffic is again sent to the standard detection modules.

The task of the module is to carry out the primary «cut-off» of possible malware and protect the

IDS itself from being modified by malware.

The developed algorithm is shown in Fig. 3.

Fig. 3. Developed algorithm.

Algorithm operation

The software that searches for fragmented malware receives network traffic datasets from

a decoder (Snort IDS a low-level interceptor) as input. Only traffic that must be processed by the

frag-3 and modbus preprocessors is subject to processing.

Step 1. Converting received datasets to «Data Frame». This conversion is necessary to speed up

the work of the RNN, since the traffic not processed by the developed module goes directly to

T. Jamgharyan

75

the preprocessor module and the processing delay should not exceed the boundary conditions

(boundary condition 2).

Step 2 phase 1. Calculation of the distance from the target object, which must be classified to

each of the sample objects (traffic). Computing a distance metric between likely malware

datasets. All calculations are performed in parallel mode (boundary condition 3),

 2.1 k=0 calculation of the distance metric and detection of malicious datasets is not

performed, since the classification of malicious and non-malicious datasets is impossible,

 2.2 k=1 the distance between malicious and non-malicious datasets is constant (k=const).

Only those malicious datasets that fall within the specified distance metric are detected,

 2.3 k=m continuous detection mode.Upper limit: the value of m that the hardware can

handle,

 2.4 k>m malicious datasets are not detected,

 2.5 k<m malicious datasets are detected down to the minimum CTPH value. All calculations

were based on the scikit-learn ML library (using instances of the kNeighborsClassifier class).

Step 3 phase 2. Selection of k objects from the sample, the distances to which are minimal.

The RNN to fed only datasets, where corresponding to paragraphs 2.2, 2.3, 2.5. When a number

value with an undefined result NaN (Not-a-Number, NaN) appears in the handler, the execution

of the entire program is «stopped», which resets all values to zero (step 5).

Step 4 phase 3. Obtaining a class of sample objects based on the most frequently occurring k.

Setting the «weights» of the RNN. The weight setting is determined by the number of malware

hash values detected by the CTPH method. Increasing the value ;, i mx (increasing the

number of hits) for a certain type of dataset increases the «weight» of this dataset in the RNN.

The output is a class of malware datasets.

Step 5. Stop and reset all values when NaN values appear in the dataset.

Step 6. Buffering values one step before zeroing. The buffer always contains n-1 dataset values

(the n-dataset currently being processed).

Step 7. Detected malware datasets.

Step 8. Transfer of traffic to the input of the preprocessor module.

All class instances are implemented based on the StandardScaler library. The training

was carried out on the basis of the fit software library.

6. Description of the Experiment

In Windows Server 2016 Standard operating system environment installed the Hyper-V role

(Based on the Dell Power Edge T-330 server). A software-defined network (SDN) has been

deploy, in which Parrot OS is installed with the Metasploit framework and Ubuntu v20.04 OS in

which are installed: IDS Snort version 2.9.18, Clion development environment and developed

software. The introduction of traffic with malware that could lead to a denial of service for the

Snort IDS and an attack on the Infrastructure was carried out using the Metasploit framework

based on the Parrot OS pentest distribution kit. The malicious input was based on a pcap network

traffic dump file. The choice of version 2.9.18.1 of the Snort IDS is due to the fact that in this

version there is a vulnerability CVE-2022-20685 (CVE-2022-20685 Snort IDS vulnerability

leading to a denial of service, bypassing security restrictions and compromising the system [19])

when exploited, attackers can inject malware into the IDS itself and attack the Infrastructure.

With the correct operation of the developed software, the attack should be detected, which will

make it possible to further check the effectiveness of the software for possible and probable

 Research of Model Increasing Reliability Intrusion Detection Systems

76

unknown attacks. Through this vulnerability, athena, dyre, engrat, grum, mimikatz, surtr

malware was introduced into the virtual Infrastructure. The Windows Server 2016 operating

system, which is the test.local domain controller, and the Windows 10 client machine were used

as the protected Infrastructure. To increase the reliability of the experiment results, all virtual

machines are connected to each other by a private virtual adapter and connected to different

VLAN (Virtual Local Area Network, VLAN, with vlan ID=100 and vlan ID=101). Network

address translation (NAT) is configured between virtual networks 172.16.0.0/30 and

192.168.0.0/29.

The experiment was carried out in 2 stages.

Stage 1.

Injection of mimikatz malware through CVE-2022-20685 with kNN-based detection software

disabled. In the first case, the IDS did not detect the intrusion, and the mimikatz software

implemented through the Snort IDS in the «noise attack» mode compromised the domain

administrator's password and did not register the Snort network IDS in any way.

Stage 2.

Introduction of various types of malware (athena, dyre, engrat, grum, mimikatz, surtr) into

the Infrastructure through a vulnerability in the Snort network IDS. The mimikatz, surtr, engrat,

and grum malware were detected immediately, while the athena and dyre malware was detected

after the second iteration.

The scheme of the experiment is shown in Fig. 4.

Fig. 4. Scheme of the experiment in SDN.

T. Jamgharyan

77

7. Results

Fig. 5. Visualization of datasets classified by the
kNN method of malware (I-iteration).

Fig. 6. Visualization of datasets classified by the
kNN method of malware (II-iteration).

Fig. 7. Visualization of datasets classified by the
kNN method of malware (III-iteration).

Fig. 8. Visualization of datasets classified by the

kNN method of malware (IV-iteration).

Fig. 9. Visualization of datasets classified by the

kNN method of malware. k=1, 20, 50.

Fig. 10. Visualization of datasets classified
by the kNN method of malware. k=60, 75, 90.

 Research of Model Increasing Reliability Intrusion Detection Systems

78

As part of the all research, was developed an IDS with ML. The results of the first model on a

real infrastructure are presented in Fig. 11,12. At this research stage, the sixth version of the

model has been developed and tested in SDN [20].

Fig. 11. Visualization of the work of the Snort IDS

in a 24-hour period without a module with ML.

Fig. 12. Visualization of the work of the Snort IDS

in a 24-hour period with a ML module.

Explanation of visualized results

The Fig. 5,6,7,8 present a visualization of the distribution of detected and classified

malicious datasets embedded in network traffic at different iterations. The first and second

iterations, the percentage of malware detection is about (7.6-8)%, the percentage of classification

is less than 3%. The third iteration, the improvement in the solution of the detection problem is

insignificant (7.9-8.02)%, but the solution of the classification problem becomes acceptable for

practical use (14-16)%. An increase in the number of iterations on the same dataset leads to

retraining of the RNN and an avalanche deterioration in the results of solving the problem of

malware classification (Fig. 8). The most effective detection occurs at speeds up to 50-60 Mbps.

The results of the work of the developed software integrated into the IDS Snort in various modes

shows on Fig. 9,10. As can be seen from Fig. 9, 10, the use of a RNN at the level before the

preprocessor increases the reliability of the data processed in the network IDS. An important

factor when using a RNN before the preprocessor is the need for training datasets to differ not

only quantitatively, but also variably.

Increase, in efficiency by (10-12)% managed to achieve only, the CTPH method.

8. Conclusion

The paper considers a software model for detecting malware using a RNN as part of the Snort

version 2.9.18.1 IDS. A pcap network traffic file with embedded malware was used as a dataset.

The training datasets for RNN are based on the source code of malware obtained from open

sources. The k nearest neighbors method was used as a mathematical apparatus for solving the

classification problem.

Based on the research, it can be concluded:

The use of the k nearest neighbors method at the preprocessor level is justified in the

presence of a large and unique training dataset.

T. Jamgharyan

79

The use of augmentation for training a, RNN included in the IDS before the preprocessor is

inappropriate, since solving the classification problem using the k nearest neighbors method

requires a data set with unique data that differ from each other in many criteria, which is difficult

to achieve using the augmentation method. The use of RNN as part of an IDS at the preprocessor

level is justified in the presence of a large computing resource (a special role is played by the

amount and type of RAM).

References

[1] G.Stoneburner, “Underlying Technical Models for Information Technology Security”,

NIST Special Publication 800-33, 2001.

[2] R.Atefinia, M.Ahmadi, Performance Evaluation of Apache Spark Mlib Algorithms on

an Untrusion Detection Dataset. [Online].Available:https://arxiv.org/abs/2212.05269

[3] M. Bachi, A. Harti, J. Fabini and T. Zseby, Walling up Backdoors in Intrusion

Detection Systems. [Online].Available:https://arxiv.org/abs/1909.07866

[4] National standard of the Russian Federation, “Quality of official information”,

GOST R-51170-98, (2020)// 12, Moscow, Standardinform.

[5] B.E.Zolbayar et al, “Generating practical adversarial network traffic flows using

NIDSGAN”, [Online].Available:https://arxiv.org/abs/2203.06694

[6] F. Zhong et al, “MalFox: Camouflaged adversarial malware example generation based

on Conv-GAN againist black—box detectors”,

[Online].Available:https://arxiv.org/abs/2011.01509

[7] Dominik Kus et al, “A false sense of security? Revisting the state of machine learning-

based industrial intrusion system”, [Online].Available:https://arxiv.org/abs/2205.09199

[8] K.Jallad, M. Aljnidi and M.Desoki, «Big data analysis and distributed deep learning for

next-generation intrusion detection system optimization», (2022)//[Online].Available:

https://arxiv.org/abs/2209.13961

[9] A. Branitsky and I. Kotenko, «Analysis and classification of methods for detecting

network attacks», Proceedings of SPIIRAS, (2016) // issue 45, pp. 207-244.

[10] Electronic resource dedicated to digital transformation technologies.

[Online].Available:https://www.osp.ru/os/2020/03/13055601

[11] T. V. Jamgharyan and V.H.Ispiryan, “Network infrastructures assessment stability”

Proceedings of 13th International Conference on Computer Science and Information

Technologies (CSIT), Yerevan, Armenia, pp. 199-203, 2021.

[12] Malware Bazaar Database. [Online]. Available:https://bazaar.abuse.ch/browse/

[13] Malware database. [Online]. Available:http://vxvault.net/ViriList.php

[14] Malware repository. [Online]. Available:https://avcaesar.malware.lu/

[15] Viruses repository. [Online]. Available:https://virusshare.com/

[16] G.Campos, A.Zimek, et al, «On the evaluation of unsupervised outlier detection:

measures,datasets, and an empirical study».

[Online].Available:https://link.springer.com/article/10.1007/s10618-015-0444-8

[17] Professional information and analytical resource dedicated to machine learning, pattern

recognition and data mining. [Online].Available: http://www. machinelearning.ru

https://arxiv.org/abs/2212.05269
https://arxiv.org/abs/1909.07866
https://arxiv.org/abs/2203.06694
https://arxiv.org/abs/2011.01509
https://arxiv.org/abs/2205.09199
https://arxiv.org/abs/2209.13961
https://www.osp.ru/os/2020/03/13055601
https://bazaar.abuse.ch/browse/
http://vxvault.net/ViriList.php
https://avcaesar.malware.lu/
https://virusshare.com/
https://link.springer.com/article/10.1007/s10618-015-0444-8

 Research of Model Increasing Reliability Intrusion Detection Systems80

[18] T.Jamgharyan, “Research of obfuscated malware with a capsule neural network”,

Mathematical Problems of Computer Science, vol. 58, 67–83, 2022.

[19] Website for identifying, defining and cataloging publicly disclosed cybersecurity

vulnerabilities.

[Online].Available:https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-20685

[20] T.Jamgharyan, “Modernization of intrusion detection system via the generative model”,

«Haikakan Banak» («Armenian Army») Defense-Academic journal, National Defense

Research University, Ministry of Defense, Republic of Armenia, no. 2, pp.75-79, 2021.

[Online].Available:https://razmavaraget.files.wordpress.com/2022/01/hb2-final.pdf

Ներխուժումների հայտնաբերման համակարգի

հավաստիության բարձրացման մոդելի

հետազոտում

Թիմուր Վ․ Ջամղարյան

Հայաստանի ազգային պոլիտեխնիկական համալսարան, Երևան, Հայաստան

e-mail: t.jamgharyan@yandex.ru

Ամփոփում

Հոդվածում ներկայացված են Snort 2.9.18.1 ներխուժումների հայտնաբերման

համակարգի կազմում ռեկուրենտ նեյրոնային ցանցի կիրառման հետազոտության

արդյունքները: Հետազոտությունն իրականացվել է athena, dyre, engrat, grum,

mimikatz, surtr վնասաբեր ծրագրային ապահովման ելակետային կոդի հիման վրա

կառուցած տվյալների հավաքածուներով: Շահագործվել է CVE-2022-20685 Snort

ներխուժումների հայտնաբերման համակարգում խոցելիությունը։ Մուտքային

թրաֆիկի մշակումը իրականացվել է մինչ frag-3 և modbus պրեպրոցեսորները։

Որպես մաթեմատիկական ապարատ օգտագործվել է k մոտակա հարևանների

մեթոդը։ Իրականացվել է ծրագրային ապահովման իրագործման մոդելավորում

տարբեր կրկնություններում և արդյունքների արտացոլում: Հոդվածում չներառված

հետազոտության արդյունքները հասանելի են https://github.com/T-JN կայքում։
Բանալի բառեր՝ մեքենայական ուսուցում, տվյալների հավաքածու, վնասաբեր

ծրագրային ապահովում, k մոտակա հարևանների մեթոդը, ներխուժումների

հայտնաբերման համակարգ, CVE-2022-2068։

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-20685
https://razmavaraget.files.wordpress.com/2022/01/hb2-final.pdf
https://github.com/T-JN

T. Jamgharyan 81

Исследование модели повышения достоверности системы

обнаружения вторжений

Тимур В. Джамгарян

Национальный политехнический университет Армении, Ереван, Армения
e-mail: t.jamgharyan@yandex.ru

Аннотация

В статье представлены результаты исследования применения рекуррентной

нейронной сети для обнаружения вредоносного программного обеспечения в составе

системы обнаружения вторжений Snort. Исследование проводилось на наборах данных

сформированных на основе вредоносного программного обеспечения athena, dyre, engrat,

grum, mimikatz, surtr с эксплуатацией в системе обнаружения вторжений Snort версии

2.9.18.1 уязвимости CVE-2022-20685. Обработка данных входного трафика осуществлялась

до препроцессоров frag-3 и modbus. В качестве математического аппарата использовался

метод k ближайших соседей. Проведено моделирование работы программного

обеспечения при разных итерациях и визуализация результатов. Результаты исследования

не внесенные в статью представлены по адресу https://github.com/T-JN

Ключевые слова: машинное обучение, вредоносное ПО, метод ближайших

соседей, система обнаружения вторжений, препроцессор, CVE-2022-2068․

https://github.com/T-JN

 Կանոններ հեղինակների համար

ՀՀ ԳԱԱ ԻԱՊԻ “Կոմպյուտերային գիտության մաթեմատիկական խնդիրներ”
պարբերականը տպագրվում է 1963 թվականից: Պարբերականում
հրատարակվում են նշված ոլորտին առնչվող գիտական հոդվածներ, որոնք
պարունակում են նոր` չհրատարակված արդյունքներ:

Հոդվածները ներկայացվում են անգլերեն՝ ձևավորված համապատասխան
“ոճով” (style): Հոդվածի ձևավորման պահանջներին ավելի մանրամասն կարելի է
ծանոթանալ պարբերականի կայքէջում՝ http://mpcs.sci.am/:

 Rules for authors

The periodical “Mathematical Problems of Computer Science” of IIAP NAS RA has
been published since 1963. Scientific articles related to the noted fields with novel and
previously unpublished results are published in the periodical.

Papers should be submitted in English and prepared in the appropriate style. For
more information, please visit the periodical's website at http://mpcs.sci.am/.

Правила для авторов

Журнал «Математические проблемы компьютерных наук» ИПИА НАН
РА издается с 1963 года. В журнале публикуются научные статьи в указанной
области, содержащие новые и ранее не опубликованные результаты.

Статьи представляются на английском языке и оформляются в
соответствующем стиле. Дополнительную информацию можно получить на веб-
сайте журнала: http://mpcs.sci.am/.

 82

http://mpcs.sci.am/

The electronic version of the periodical “Mathematical Problems of Computer

Science” and rules for authors are available at

http://mpcs.sci.am/

Phone: (+37460) 62-35-51
Fax: (+37410) 28-20-50
E-mail: mpcs@sci.am
Website: http://mpcs.sci.am/

Ստորագրված է տպագրության՝ 25.05.2023

Թուղթը՝ օֆսեթ:
Հրատարակված է ՀՀ ԳԱԱ Ինֆորմատիկայի և ավտոմատացման

պրոբլեմների ինստիտուտի կողմից
Ծավալը՝ 83 էջ: Տպաքանակը՝ 100

ՀՀ ԳԱԱ ԻԱՊԻ Համակարգչային պոլիգրաֆիայի լաբորատորիա
Երևան, Պ. Սևակի 1
Հեռ. +(374 60) 623553

Գինը՝ անվճար

Подписано в печать 25.05.2023
Офсетная бумага.

Опубликовано Институтом проблем
информатики и автоматизации НАН РА

Объём: 83 страниц. Тираж: 100
Лаборатория компьютерной
полиграфии ИПИА НАН РА.

Ереван, П. Севака 1
Тел.: +(374 60) 623553

Цена: бесплатно

Signed in print 25.05.2023
Offset paper

Published by the Institute for
Informatics and Automation

Problems of NAS RA
Volume: 83 pages
Circulation: 100

Computer Printing Lab
of IIAP NAS RA

Yerevan, 1, P. Sevak str.
Phone: +(374 60) 623553

Free of charge

mailto:mpcs@sci.am

	Face!
	LIX
	Yerevan

	IIAP_journal_Vol_59_new
	Sbornik_59
	Sbornik_59
	45-19-PB
	01_7-15_59
	01_NIKOGHOSYAN_59
	01

	02_16_26_59
	02_VILIK_59_16_26
	02

	03_27_34_59
	03_Chub_59_27_34
	03

	04_35_44_59
	04_Artur_59
	04_1

	05_45_56_59
	05_ՍԵդրակ_59
	05_1

	06_57-68_59
	06_Karamyan_Davit_59 (1)
	06_1

	07_69-81

	last pages_IIAP_journal_vol_59

