

 ISSN 2579-2784 (Print)

 ISSN 2538-2788 (Online)

 MATHEMATICAL

PROBLEMS

OF COMPUTER

SCIENCE

 LVII

Yerevan
2022

Հայաստանի Հանրապետության Գիտությունների ազգային ակադեմիայի
Ինֆորմատիկայի և ավտոմատացման պրոբլեմների ինստիտուտ

Институт проблем информатики и автоматизации Национальной академии наук
Республики Армения

Institute for Informatics and Automation Problems of the National Academy of
Sciences of the Republic of Armenia

Կոմպյուտերային գիտության
մաթեմատիկական խնդիրներ

Математические проблемы
компьютерных наук

Mathematical Problems of Computer
Science

LVII

ՀՐԱՏԱՐԱԿՎԱԾ Է ՀՀ ԳԱԱ ԻՆՖՈՐՄԱՏԻԿԱՅԻ ԵՎ ԱՎՏՈՄԱՏԱՑՄԱՆ
ՊՐՈԲԼԵՄՆԵՐԻ ԻՆՍՏԻՏՈՒՏԻ ԿՈՂՄԻՑ

ОПУБЛИКОВАНО ИНСТИТУТОМ ПРОБЛЕМ ИНФОРМАТИКИ И
АВТОМАТИЗАЦИИ НАН РА

PUBLISHED BY INSTITUTE FOR INFORMATICS AND AUTOMATION
PROBLEMS OF NAS RA

ԵՐԵՎԱՆ 2022 YEREVAN

Կոմպյուտերային գիտության մաթեմատիկական խնդիրներ, LVII

Կոմպյուտերային գիտության մաթեմատիկական խնդիրներ պարբերականը
հրատարակվում է տարեկան երկու անգամ ՀՀ ԳԱԱ Ինֆորմատիկայի և ավտոմատացման
պրոբլեմների ինստիտուտի (ԻԱՊԻ) կողմից: Այն ընդգրկում է տեսական և կիրառական
մաթեմատիկայի, ինֆորմատիկայի և հաշվողական տեխնիկայի ժամանակակից
ուղղությունները:

Այն ընդգրկված է Բարձրագույն որակավորման հանձնաժողովի ընդունելի ամսագրերի
ցանկում:

 Տպագրվում է Խմբագրական խորհրդի 2022թ. մայիսի 27-ի N 22-05/1

նիստի որոշման հիման վրա

ԽՄԲԱԳՐԱԿԱՆ ԽՈՐՀՈՒՐԴ

Գլխավոր խմբագիր

Յու. Շուքուրյան Գիտությունների ազգային ակադեմիա, Հայաստան
Գլխավոր խմբագրի տեղակալ

 Մ. Հարությունյան ՀՀ ԳԱԱ ԻԱՊԻ, Հայաստան
Խմբագրական խորհրդի անդամներ

Ս. Աղայան Նյու Յորքի քաղաքային համալսարան, ԱՄՆ
Հ. Ավետիսյան ՌԳԱ Համակարգային ծրագրավորման ինստիտուտ, Ռուսաստան
Լ. Ասլանյան ՀՀ ԳԱԱ ԻԱՊԻ, Հայաստան
Հ. Ասցատրյան ՀՀ ԳԱԱ ԻԱՊԻ, Հայաստան
Մ. Դայդե Թուլուզի համակարգչային գիտությունների հետազոտական

համալսարան, Ֆրանսիա
Ա. Դեգտյարյով Սանկտ Պետերբուրգի պետական համալսարան, Ռուսաստան
Ե. Զորյան Սինոփսիս, Կանադա
Յու. Հակոբյան Երևանի պետական համալսարան, Հայաստան
Գ. Մարգարով Հայաստանի ազգային պոլիտեխնիկական համալսարան, Հայաստան
Հ. Մելաձե Վրաստանի տեխնիկական համալսարան, Վրաստան
Հ. Շահումյան Դուբլինի համալսարանական քոլեջ, Իռլանդիա
Ս. Շուքուրյան Երևանի պետական համալսարան, Հայաստան
Է. Պողոսյան ՀՀ ԳԱԱ ԻԱՊԻ, Հայաստան
Վ. Սահակյան ՀՀ ԳԱԱ ԻԱՊԻ, Հայաստան

Պատասխանատու քարտուղար

Փ. Հակոբյան ՀՀ ԳԱԱ ԻԱՊԻ, Հայաստան

ISSN 2579-2784 (Print)
ISSN 2738-2788 (Online)
© Հրատարակված է ՀՀ ԳԱԱ Ինֆորմատիկայի և ավտոմատացման պրոբլեմների

ինստիտուտի կողմից, 2022

Математические проблемы компьютерных наук, LVII

Журнал Математические проблемы компьютерных наук издается два раза в год
Институтом проблем информатики и автоматизации НАН РА. Он охватывает
современные направления теоретической и прикладной математики, информатики и
вычислительной техники.

 Он включен в список допустимых журналов Высшей квалификационной комиссии.

 Печатается на основании решения N 22-05/1 заседания
Редакционного совета от 27 мая 2022г.

РЕДАКЦИОННЫЙ СОВЕТ
Главный редактор
Ю. Шукурян Национальная академия наук, Армения
Зам. главного редактора
М. Арутюнян Институт проблем информатики и автоматизации, Армения
Члены редакционного совета
А. Аветисян Институт системного программирования РАН, Россия
С. Агаян Городской университет Нью-Йорка, США
Л. Асланян Институт проблем информатики и автоматизации, Армения
Г. Асцатрян Институт проблем информатики и автоматизации, Армения
Ю. Акопян Ереванский государственный университет, Армения
М. Дайде Тулузский научно-исследовательский институт компьютерных наук,

Франция
А. Дегтярев Санкт-Петербургский государственный университет, Россия
Е. Зорян Синопсис, Канада
Г. Маргаров Национальный политехнический университет Армении, Армения
Г. Меладзе Грузинский технический университет, Грузия
Э. Погосян Институт проблем информатики и автоматизации, Армения
В. Саакян Институт проблем информатики и автоматизации, Армения
А. Шаумян Дублинский университетский колледж, Ирландия
С. Шукурян Ереванский государственный университет, Армения

Ответственный секретарь
П. Акопян Институт проблем информатики и автоматизации, Армения

ISSN 2579-2784 (Print)
ISSN 2738-2788 (Online)
© Опубликовано Институтом проблем информатики и автоматизации НАН РА, 2022

Mathematical Problems of Computer Science, LVII

The periodical Mathematical Problems of Computer Science is published twice per year by
the Institute for Informatics and Automation Problems of NAS RA. It covers modern
directions of theoretical and applied mathematics, informatics and computer science.

 It is included in the list of acceptable journals of the Higher Qualification Committee.

Printed on the basis of decision N 22-05/1 of session of the Editorial
Council dated May 27, 2022.

EDITORIAL COUNCIL
Editor–in–Chief
Yu. Shoukourian National Academy of Sciences, Armenia
Deputy Editor
M. Haroutunian Institute for Informatics and Automation Problems, Armenia
Members of Editorial Council
S. Agaian City University of New York, USA
A. Avetisyan Institute for System Programming of the RAS, Russia
L. Aslanyan Institute for Informatics and Automation Problems, Armenia
H. Astsatryan Institute for Informatics and Automation Problems, Armenia
M. Dayde Institute for research in Computer Science from Toulouse, France
A. Degtyarev St. Petersburg University, Russia
Yu. Hakopian Yerevan State University, Armenia
G. Margarov National Polytechnic University of Armenia, Armenia
H. Meladze Georgian Technical University, Georgia
E. Pogossian Institute for Informatics and Automation Problems, Armenia
V. Sahakyan Institute for Informatics and Automation Problems, Armenia
A. Shahumyan University College Dublin, Ireland
S. Shoukourian Yerevan State University, Armenia
E. Zoryan Synopsys, Canada

Responsible Secretary
P. Hakobyan Institute for Informatics and Automation Problems, Armenia

ISSN 2579-2784 (Print)
ISSN 2738-2788 (Online)
© Published by Institute for Informatics and Automation Problems of NAS RA, 2022

CONTENTS

N. Tumanyan
Emotion Classification of Voice Recordings Using Deep Learning

7

H. Ayunts and S. Agaian
A New Image Decolorization Evaluation Quality Metric

18

D. Karamyan and T. Karamyan
Compact N -gram Language Models for Armenian

30

A. Avetisyan
Electronic Voting System Essentials and Problems

39

L. Apinyan and A. Chubaryan
On Sizes of Linear and Tree-like Proofs for any Formulae Families in Some
Systems of Propositional Calculus

47

K. Karapetyan
Complete Caps in Affine Geometry 𝐴𝐴𝐴𝐴(𝑛𝑛, 3)

56

UDC 004.934

Emotion Classification of Voice Recordings Using Deep

Learning

Narek T. Tumanyan

Weizmann Institute of Science, Rehovot, Israel

e-mail: narek.tumanyan@weizmann.ac.il

Abstract

In this work, we present methods for voice emotion classification using deep learning
techniques. To processing audio signals, our method leverages spectral features of voice
recordings, which are known to serve as powerful representations of temporal signals.
To tackling the classification task, we consider two approaches to processing spectral
features: as temporal signals and as spatial/2D signals. For each processing method, we
use different neural network architectures that fit the approach. Classification results
are analyzed and insights are presented.
Keywords: Voice sentiment detection, Mood recognition, Speech emotion recognition,
Cepstral features.
Article info: Received 10 February 2022; received in revised form 17 April 2022;
accepted 25 April 2022.

1. Introduction

The problem that is addressed in this work is the emotion classification from voice record-
ing. Formally, given some representation X of voice recording data and a set of n emotion
labels/classes {y1, y2, ..., yn}, the aim is to come up with a classifier F (X) = yi that maps
X to a label yi ∈ {y1, ..., yn}. Practically, having such a classifier F can have a wide range
of applications, such as recommendation systems of movies or music driven by users’ mood,
systems for tracking the emotional state and satisfaction of clients through time, security
systems for preventing harmful actions based on emotion, and so on.

Previous attempts to tackle the voice emotion classification problem include SVM-based
algorithms of classifying voice into 5 categories - angry, happy, neutral, sad, or excited [1],
which also considers the facial expression of the speaker during speech as an additional signal.
Glüge et al. [2] propose a Deep Neural Network Extreme Learning method with efficient
performance on small datasets. Eskimez et al. [3] tackle the speech emotion recognition
problem through an unsupervised approach, by which they come up with meaningful speech
representations by learning the underlying structure of the data, which aids in solving the
main task. Bertero et al. [4] introduce a Convolutional Neural Network (CNN)-based ap-
proach of 3-label (“angry”, “happy”, “sad”) emotion recognition of speech, where they use

7

Mathematical Problems of Computer Science 57, 7–17, 2022.

doi: 10.51408/1963-0082

8 Emotion Classification of Voice Recordings Using Deep Learning

the standard pulse-code modulation (PCM) temporal representation of the audio signal as
input. Mirsamadi et al. [5] propose a 4-label (“angry”, “happy”, “sad”, “neutral”) speech
emotion recognition model based on Long Short TermMemory Network (LSTM) architecture
and local attention, and base their model on Mel-Frequency Cepstral Coefficients (MFCC),
Fast Fourier Transform (FFT), fundamental frequency and zero-crossing rate features of the
audio. In our setups, we experiment with both CNN-based and LSTM-based architectures
and consider 8 emotional labels for classification, which are described in Section 2.

In this paper, we use cepstral features as representations of voice data, particularly, we
utilize Mel-Frequency Cepstral Coefficients (MFCC) for representing the audio signal. We
experiment with two views for processing MFCCs: processing them as sequential data in
the time domain, and processing them as spatial data. For each of the approaches, we use
the appropriate neural network architecture. Specifically, for processing MFCCs as temporal
data, we utilize Long Short Term Memory Networks (LSTM), and for processing MFCC as
spatial/2D data, we make use of Convolutional Neural Networks (CNN).

2. Datasets

In our setup, we consider 8 emotion labels for classification. The databases used in the paper
are as follows: Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS)
[6], Surrey Audio-Visual Expressed Emotion (SAVEE) [7] and Toronto Emotional Speech
Set (TESS) [8]. Each item in the datasets is a recording of an actor that pronounces some
statement with a certain expressed emotion. Voice recordings in the databases come in a .wav
format, which describes the amplitude of air pressure oscillations in the temporal domain.
Each voice recording has an emotion label attached to it. The RAVDESS database has 24
actors that pronounce 2 phrases: “Kids are talking by the door“ and “Dogs are sitting by the
door” with 2 intensities: Normal and High each repeated twice. Neutral emotion has no high
intensity so it is only repeated twice. The emotion labels are: “neutral”, “calm”, “happy”,
“sad”, “angry”, “fearful”, “disgust”, “surprised”. TESS dataset has 2 actors, young and old,
and both of them are female. There are 2800 voices in total with each phrase being of the
form “Say the word x, where x stands for some word. Recordings in the TESS dataset have
the same labeled emotions as in RAVDESS, except for the calm label, which is absent in this
dataset. SAVEE dataset has 4 English male actors with 480 voice recordings. 7 emotions are
present, with the calm emotion missing. In total, there are 4720 samples. The distribution
of samples and classes is summarised in Table 1 and in Table 2.

Table 1: Summary of datasets used.

Database Num of Recordings Num of Actors Emotion Labels

RAVDESS 1440 24 8

SAVEE 480 4 7

TESS 2880 2 7

N. Tumanyan 9

Table 2: Number of voice recordings per emotion label across all databases.

Neutral Calm Sad Fear Anger Surprises Happiness Disgust

616 192 652 652 652 652 652 652

3. Method

3.1 Feature Extraction

To extract audio features from voice recordings, we use librosa library for python [9]. It
handles most of the transformations done to voice recordings to get final features used for
classification. The first step before extracting features is to resample voice recording files to
obtain their time domain and amplitude representation. Voice recordings from our databases
have different original sampling rates, which range from 22Khz to 48Khz. However, the
content that we are trying to analyze from those recordings are the human voices themselves.
Normally, the human voice ranges from low range frequencies 300Hz to higher ranges of 4 -
10Khz. This means that we can use lower sampling rates to resample our voice recording. We
chose 22.05Khz sampling rate, which preserves all human voices in original audio recordings
and also preserves some possible frequency deviations from the normal range, which can be
caused by pronouncing high-frequency tones, e.g. fricatives. The result is a floating-point
time series describing the amplitude of air pressure oscillations from a mean frequency of 0
at each time point. Thus, we obtain a time-domain representation of the signal. An example
is illustrated below in Fig. 1.

Fig. 1. Sample waveform representation of a voice recording signal.

Having the temporal signal representation of the voice signal, we then process it to obtain
its spectral features, which serves as the main data representation for our models.

10 Emotion Classification of Voice Recordings Using Deep Learning

3.2 Spectral Features Extraction

Conceptually, given a temporal signal x(t), we can represent it as a combination of periodic
functions of varying frequencies [10]:

x(t) =

∞∫
−∞

X(w)ejwtdw,

where w is the frequency of the corresponding periodic function. Thus, having the coeffi-
cients X(w) is equivalent to having the original signal x(t), and we can use these coefficients
as a representation of the temporal signal in the frequency space. To achieving such a rep-
resentation, the Fourier Transform operation is used [10]. Since we are dealing with discrete
data, the equivalent operation used is Discrete Fourier Transform (DFT), which converts
discrete temporal signal x[n] of length K to a representation of this signal in frequency
space by obtaining the coefficients / intensities X[k] for each frequency k [11]:

X[k] =
K∑

n=1

x[n]e−i2πkn/N ; 1 ≤ k ≤ K.

In signal processing, frequency decomposition is often performed by dividing the signals
into time intervals of specified window size and performing DFT on each windowed signal,
thus coming up with frequency components in multiple time intervals. Such representation
of a signal is called the Short-Time Fourier Transform (STFT) of a signal [10].

For audio signals, in some cases, more sophisticated representations of the signal based on
STFT are necessary for higher efficiency. Mel-frequency cepstral coefficients, a.k.a. MFCCs,
are features, which represent a given signal by cepstral energy coefficients at specific short
intervals of time. The advantage of MFCC features is that they represent the signal in a
way that is close to the signal perception by the human ear, which, is intuitively achieved by
applying smaller window-sized cepstral filters on low frequencies on a signal and increasing
the window size of the filters as the considered frequency increases. The reason behind such
intuition is that the human ear perceives frequencies in lower ranges much better than in
higher ones. Hence, higher resolution at lower ranged frequencies is used while computing
MFCCs [12].

In its final form, the MFCC of a signal can be represented simply as a function Pi(k),
where the outputted value is the intensity of k-th cepstral coefficient in i-th temporal frame
index.

An example of an extracted MFCC feature is demonstrated in Fig. 2

Fig. 2. Sample MFCC representation of a voice recording signal.

N. Tumanyan 11

3.3 Architectures and Results

3.3.1 Long Short Term Memory Networks (LSTMs)

Considering the temporal nature of the data in hand, i.e., the voice recordings that are rep-
resented as magnitudes of air pressure (amplitude) across time, and the computed MFCC’s
that are a time series of energy coefficient values, it is sensible to use architectures that are
by design intended for processing sequential data and have the appropriate inductive bias.
One example of such architectures are Long Short Term Memory Networks (LSTM) [13],
which are a variant of Recursive Neural Networks (RNN). The main idea behind LSTM
is the usage of feedback connections for preventing the vanishing gradient problem. The
architecture of LSTM used is summarized in Fig. 3.

Fig. 3. The architecture of the trained LSTM model.

Fig. 4. ROC curves of the trained LSTM model. Each curve corresponds to an emotion label.

12 Emotion Classification of Voice Recordings Using Deep Learning

MFCC sequences are fed into an LSTM recurrent layer with a hidden dimension of size
1024. There are 2 LSTM layers stacked on top of each other, meaning that the outputs
of the first layer are processed by the second one. This increases the perceptiveness of the
network towards the features present in the sequence. Due to the dataset being small, we
used dropout with high probability (p = 0.5) on the outputs of the first LSTM unit to prevent
overfitting. The output of the last LSTM layer is then passed to a Multilayer perceptron
(MLP), which outputs an 8-dimensional vector representing the logits of each emotion label.

The network was trained using only the RAVDESS dataset. The recordings of the 1st and
2nd actors (one male and one female) were used as a testing set, the rest of the recordings
were used for training the network. Adam optimizer with learning rate of 0.0005 was used
and the loss function to minimize was cross entropy loss given by:

l (ŷi) = log

(
exp (ŷi)∑
j exp (ŷj)

)
,

L (ŷi) = −
∑
i

yil (ŷi) ,

where {ŷi} are the estimated class labels, and {yi} are the ground-truth labels.
The classification results and comparison to the existing relevant method are demon-

strated in Table 3. The Receiver Operating Characteristic curves (ROC curves) of the
results are shown in Fig. 4.

3.3.2 Convolutional Neural Networks (CNNs)

As stated in subsection 3.2, the MFCC of a recording can be observed as a 2D feature
map of a signal, with one dimension being the temporal dimension and the other being
the cepstral coefficient dimension. Thus, a possible approach to working with MFCC’s is
processing them as spatial signals. Convolutional Neural Networks (CNN) are one of the
most prominent architectures used for processing spatial data due to their shift equivariance,
their inductive bias in searching for local patterns, and many other inherent benefits.

Thus, we consider solving the voice emotion classification task by training a CNN on
extracted MFCC data. For MFCC calculation, the window size of 4096 and the overlap of
between subsequent windows were chosen. Decreasing the window size by half degrades the
performance of the network. On average, these settings produced better results. 4096 for a
window size is good because it allows computing the FFT of length 4096 on that window to
capture frequency spectrum of up to 4Khz. This means that the majority of human speech
in those recordings is captured in each window. After calculating MFCCs for every recording
and padding sequences with less length than the longest sequence, we obtain input matrices
to our network of size (40 x 160) where at each sequence point we have 40 MFCCs.

The architecture of the CNN used is depicted in Fig. 5, and the method is summarized
as follows:

There are 3 convolutional layers in the network followed by average pooling layers of size
(2x2). The last layer is a fully connected layer that maps output of convolutional layers to
an 8 length vector. Log softmax activation is applied to use cross entropy loss. Each layer
has 32 kernels of parameters. The first layer has kernels of size (10x3), and it is deliberately
chosen to be narrow and heighty to capture features from change of MFCCs through the
sequence. Between layers, leaky rectified linear unit (ReLU) activation function given as
h(x)=max(x, 0)+0.01*min(0, x)is used both to enable fast training and to prevent neurons

N. Tumanyan 13

from dying. Leaky ReLU adds a small slope to non activated neurons thus preventing
them from becoming 0 and not contributing to backpropagation in later epochs [14]. Since
our dataset is very small, we used dropout with high probability (p = 0.5) as well as L2
regularization to prevent overfitting, which penalizes the sum of squares of the weights of
the model.

Fig. 5. The architecture of the trained CNN model.

All recordings of the 1st and 2nd actors, one male and one female from the RAVDESS
database were used for testing, which the neural network was not trained on. All remaining
recordings were used for training. We used Adam optimizer with a learning rate of 0.00005
and L2 regularization with decay of 10−4. The final loss function becomes:

l(ŷi) = log

(
exp (ŷi)∑
j exp (ŷj)

)
,

L (ŷi) = −
∑
i

yil (ŷi) + λ
∑
w∈W

w2,

where W is the set of all trainable weights of the CNN.
The classification results and comparison to the existing related method are summarized

in Table 3. Average ROC Area Under Curve (AUC) for all classes was 0.927. ROC curves
for all classes are demonstrated in Fig. 6.

Table 3: Classification results.

Architecture Train Test Mirsamadi et al. [5] Bertero et al. [4]

Accuracy Accuracy Test Accuracy Test Accuracy

LSTM 93.58% 65% 63.5% -

CNN 96% 67.5% - 66.1%

As it can be observed, the network captures some emotions more easily than others. For
instance, Neutral, Calm, Angry and Surprise were captured better than the rest. ROC-AUC
metric also suggests that the model learned meaningful representations for the task.

14 Emotion Classification of Voice Recordings Using Deep Learning

Fig. 6. ROC curves of the trained CNN model. Each curve corresponds to an emotion label.

Overall, the results show that the models managed to learn meaningful representations
from the training procedure. In Table 3, we compare our results to the LSTM-based method
of Mirsamadi et al. [5], which was trained and tested on the IEMOCAP benchmark [16]
with a 4-label (“angry”, “happy”, “sad”, “neutral”) classification setting, as well as to the
CNN-based method of Bertero et al. [4], which was trained and tested on the TED-LIUM
benchmark [15] with a 3-label (“angry”, “happy”, “sad”) classification setting. As it can be
observed, our method gains superior results on our 8-label classification setting. In contrast
to the 2 methods, we leverage only the MFCC representation of the signal, which highlights
the efficiency of the MFCC representation and its usage with deep learning methods for the
task.

4. Discussion and Conclusion

This paper proposes deep learning approaches for the voice emotion classification problem.
Particularly, CNN and LSTM architectures were trained on MFCC features of voice record-
ings, depending on processing MFCCs either as a spatial signal or as a sequential signal. The
results indicate that the networks have learned meaningful representations from the training
data. A possible future direction for improving the classification performance of the pro-

N. Tumanyan 15

posed models could be adding augmentations to the audio data. The recent advancements in
using transformers [17] for multi-modal representation learning [18] and the expressiveness of
the resulting feature space can also be a promising direction for solving the speech emotion
recognition task.

References

[1] E. Mower, M. J. Mataric and S. Narayanan,“A framework for automatic human emo-
tion classification using emotion profiles”, IEEE Transactions on Audio, Speech, and
Language Processing, vol. 19, no. 5, pp. 1057–1070, 2010.

[2] S. Glüge, R. Böck and T. Ott, “Emotion recognition from speech using representation
learning in extreme learning machines”, Proceedings of the 9th International Joint
Conference on Computational Intelligence, Funchal, Portugal, pp. 179–185, 2017.

[3] S.E. Eskimez, Z. Duan and W. Heinzelman, “Unsupervised learning approach to fea-
ture analysis for automatic speech emotion recognition”, IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada.,
pp. 5099–5103, 2018.

[4] D. Bertero and P. Fung, “A first look into a convolutional neural network for speech
emotion detection”, IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), New Orleans, USA., pp. 5115–5119, 2017.

[5] S.Mirsamadi, E. Barsoum and C. Zhang, “Automatic speech emotion recognition using
recurrent neural networks with local attention”, IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), New Orleans, USA., pp. 2227–
2231, 2017.

[6] S. R. Livingstone and F. A. Russo, “The ryerson audio-visual database of emotional
speech and song (RAVDESS): A dynamic, multimodal set of facial and vocal expres-
sions in North American English”, PLoS ONE , vol. 13, no. 5, 2018.

[7] P. Jackson and S. Haq, “Surrey audio-visual expressed emotion (savee) database”,
University of Surrey: Guildford, UK. 2014.

[8] M. K. Pichora-Fuller and K. Dupuis, “Toronto emotional speech set (TESS)”, Scholars
Portal Dataverse, 2020.

[9] B. McFee, A. Metsai, M. McVicar, S. Balke, C. Thom, C. Raffel, F. Zalkow, A.
Malek, Dana, K. Lee, O. Nieto, D. Ellis, J. Mason, E. Battenberg and S. Seyfarth,
librosa/librosa: 0.9.0 (0.9.0). Zenodo, 2022, https://doi.org/10.5281/zenodo.5996429

[10] K. Gröchenig, Foundations of Time-Frequency Analysis, First Edition. Birkhuser,
Boston, MA, 2001.

[11] A. Kulkarni, M. F. Qureshi, and M. Jha, “Discrete fourier transform: approach to sig-
nal processing”, International Journal of Advanced Research in Electrical, Electronics
and Instrumentation Engineering, vol. 03, pp. 12341–12348, 2014.

[12] M. Sahidullah and G. Saha, “Design, analysis and experimental evaluation of block
based transformation in MFCC computation for speaker recognition”, Speech Commu-
nication, vol. 54, no. 4, pp. 543–565, 2012.

1 6 Emotion Classi¯cation of Voice Recordings Using Deep Learning

[1 3] S . H o c h r e it e r a n d J. S c h m id h u b e r , \ L o n g s h o r t -t e r m m e m o r y" , Neural Computation,
vo l. 9 , n o . 8 , p p . 1 7 3 5 { 1 7 8 0 , 1 9 9 7 .

[1 4] B . X u , N . W a n g , T. Ch e n a n d M. L i, \ E m p ir ic a l e va lu a t io n o f r e c t ī e d a c t iva t io n s in
c o n vo lu t io n a l n e t wo r k" , CoR R , vo l. a b s / 1 5 0 5 .0 0 8 5 3 , 2 0 1 5 .

[1 5] A . R o u s s e a u a n d P . D e le g lis e , \ E n h a n c in g t h e TE D -L IU M c o r p u s wit h s e le c t e d d a t a
fo r la n g u a g e m o d e lin g a n d m o r e TE D t a lks " , International Conference on L anguage
R esources and E valuation, R e ykja vik, Ic e la n d , p p . 3 9 3 5 -3 9 3 9 , 2 0 1 4 .

[1 6] C. B u s s o , M. B u lu t , Ch i-Ch u n L e e , A . K a z e m z a d e h , E . Mo we r , S . K im , J. N . Ch a n g ,
S . L e e a n d S . S . N a r a ya n a n , \ Ie m o c a p : In t e r a c t ive e m o t io n a l d ya d ic m o t io n c a p t u r e
d a t a b a s e " , L anguage R esources and E valuation , vo l. 4 2 , n o . 4 , p p . 3 3 5 { 3 5 9 , 2 0 0 8 .

[1 7] A . V a s wa n i, N . S h a z e e r , N . P a r m a r , J. U s z ko r e it , L . Jo n e s , A . N . Go m e z , L . K a is e r
a n d I. P o lo s u kh in , \ A t t e n t io n is a ll yo u n e e d " , CoR R , vo l. a b s / 1 5 0 5 .0 0 8 5 3 , 2 0 1 7 .

[1 8] H . A kb a r i, L . Y u a n , R . Qia n , W .H . Ch u a n g , S .-Fu Ch a n g , Y . Cu i a n d B . Go n g ,
\ V A TT: Tr a n s fo r m e r s fo r m u lt im o d a l s e lf-s u p e r vis e d le a r n in g fr o m r a w vid e o , a u d io
a n d t e xt ," Advances in Neural Information P rocessing Systems, 2 0 2 1 .

ÊáñÁ áõëáõóÙ³Ý íñ³ ÑÇÙÝí³Í Ó³ÛÝ³·ñáõÃÛáõÝÝ»ñÇ
¿ÙáóÇ³Ý»ñÇ ¹³ë³Ï³ñ·Ù³Ý Ù»Ãá¹Ý»ñ

Ü³ñ»Ï î. ÂáõÙ³ÝÛ³Ý

ì»ÛóÙ³ÝÇ ·ÇïáõÃÛáõÝÝ»ñÇ Ñ³Ù³Éë³ñ³Ý, è»Ëáíáï, Æëñ³Û»É

e-mail: narek.tumanyan@weizmann.ac.il

²Ù÷á÷áõÙ

îíÛ³É Ñá¹í³ÍáõÙ Ý»ñÏ³Û³óíáõÙ »Ý ËáñÁ áõëáõóÙ³Ý íñ³ ÑÇÙÝí³Í Ó³ÛÝ³·ñáõ-
ÃÛáõÝÝ»ñÇ ¹³ë³Ï³ñ·Ù³Ý Ù»Ãá¹Ý»ñ: ²áõ¹Çá ³½¹³Ýß³ÝÝ»ñÁ Ùß³Ï»Éáõ Ñ³Ù³ñ û·-
ï³·áñÍíáõÙ »Ý Ó³ÛÝ³·ñáõÃÛáõÝÝ»ñÇ Ñ³×³Ë³Ï³Ý ïíÛ³ÉÝ»ñ, áñáÝù Ñ³ÛïÝÇ »Ý
Å³Ù³Ý³Ï³ÛÇÝ ³½¹³Ýß³ÝÝ»ñÇ ³ñ¹ÛáõÝ³í»ï Ý»ñÏ³Û³óÙ³Ùµ: ¸³ë³Ï³ñ·Ù³Ý ËÝ¹ÇñÁ
ÉáõÍ»Éáõ Ñ³Ù³ñ Ñá¹í³ÍáõÙ Ñ³ßíÇ »Ý ³éÝíáõÙ Ñ³×³Ë³Ï³Ý Ñ³ïÏ³ÝÇßÝ»ñÇ Ùß³ÏÙ³Ý
»ñÏáõ Ùáï»óáõÙ` áñå»ë Å³Ù³Ý³Ï³ÛÇÝ ³½¹³Ýß³ÝÝ»ñÇ Ùß³ÏÙ³Ý Ùáï»óáõÙ ¨ áñå»ë
ï³ñ³Í³Ï³Ý ³½¹³Ýß³ÝÝ»ñÇ Ùß³ÏÙ³Ý Ùáï»óáõÙ: Úáõñ³ù³ÝãÛáõñ Ùáï»óÙ³Ý Ñ³Ù³ñ
ÏÇñ³éíáõÙ »Ý Ñ³Ù³å³ï³ëË³Ý ³ñÑ»ëï³Ï³Ý ó³Ýó»ñÇ Ùá¹»ÉÝ»ñ: Ü»ñÏ³Û³óíáõÙ ¿
¹³ë³Ï³ñ·Ù³Ý ³ñ¹ÛáõÝùÝ»ñÇ í»ñÉáõÍáõÃÛáõÝ, Ï³ï³ñíáõÙ »Ý »½ñ³Ï³óáõÃÛáõÝÝ»ñ:

´³Ý³ÉÇ µ³é»ñ` Ó³ÛÝÇ ïñ³Ù³¹ñáõÃÛ³Ý ×³Ý³ãáõÙ, ËáëùÇ ¿ÙáóÇ³ÛÇ ¹³ë³Ï³ñ·áõÙ,
Ñ³×³Ë³Ï³Ý Ñ³ïÏ³ÝÇßÝ»ñ:

N. Tumanyan 1 7

Êëàññèôèêàöèÿ ýìîöèé â ãîëîñå ñ èñïîëüçîâàíèåì
ãëóáîêîãî îáó÷åíèÿ

Íàðåê Ò. Òóìàíÿí

Èíñòèòóò Âåéöìàíà, Ðåõîâîò, Èçðàèëü
e-mail: narek.tumanyan@weizmann.ac.il

Àííîòàöèÿ

Â ýòîé ñòàòüå ìû ïðåäñòàâëÿåì ìåòîäû êëàññèôèêàöèè ýìîöèé â ãîëîñå ñ
èñïîëüçîâàíèåì ìåòîäîâ ãëóáîêîãî îáó÷åíèÿ. Äëÿ îáðàáîòêè àóäèîñèãíàëîâ,
äàííûé ìåòîä èñïîëüçóåò ÷àñòîòíûå ïðèçíàêè èçâëå÷åííûå èç ãîëîñîâûõ
çàïèñåé, êîòîðûå, êàê èçâåñòíî, ñëóæàò ìîùíûì ïðåäñòàâëåíèåì âðåìåííûõ
ñèãíàëîâ. Äëÿ ðåøåíèÿ çàäà÷è êëàññèôèêàöèè, â äàííîé ðàáîòå ðàññìàòðèâàþòñÿ
äâà ïîäõîäà îáðàáîòêè ÷àñòîòíûõ ïðèçíàêîâ: êàê âðåìåííûå ñèãíàëû è êàê
ïðîñòðàíñòâåííûå/2D-ñèãíàëû. Äëÿ êàæäîãî èç ïîäõîäîâ ìû èñïîëüçóåì
ïîäõîäÿùèå àðõèòåêòóðû íåéðîííûõ ñåòåé. Áûëè ïðîàíàëèçèðîâàíû ðåçóëüòàòû
êëàññèôèêàöèè è ïðåäñòàâëåíû âûâîäû.

Êëþ÷åâûå ñëîâà: îïðåäåëåíèå íàñòðîåíèÿ ïî ãîëîñó, ðàñïîçíàâàíèå
íàñòðîåíèÿ, êëàññèôèêàöèè ýìîöèé â ãîëîñå, ÷àñòîòíûå ïðèçíàêè.

Mathematical Problems of Computer Science 57, 18–29, 2022.

doi: 10.51408/1963-0083

UDC 004.932

A New Image Decolorization Evaluation Quality

Metric

Hrach Y. Ayunts1 and Sos S. Agaian2

1Yerevan State University, Yerevan, Armenia
2College of Staten Island (CSI), City University of New York, New York, USA

e-mail: hrach.ayunc@gmail.com, sos.agaian@csi.cuny.edu

Abstract

Image decolorization, the process of color-to-gray conversion, plays a crucial role in
single-channel processing, computer vision, digital printing, and monochrome visual-
ization. This process induces new artifacts, the impact of which on visual quality has
to be identified. While visual quality assessment has been the subject of many stud-
ies, there are still some open questions regarding new color-to-gray conversion quality
metrics. For example, computer simulations show that the commonly used grayscale
conversion quality metrics such as CCPR, CCFR, and E-score depend on parameters
and may pick different best decolorization methods by changing the parameters.

This paper proposes a new quality metric to evaluate image decolorization methods.
It uses the human visual properties information and regression method. Experimental
results also show (i) strong correlations between the presented image decolorization
quality metric and the Mean Opinion Score (MOS), (ii) more robust than the existing
quality metrics, and (iii) help to choose the best state-of-the-art decolorization methods
using the presented metric and existing quality metrics.
Keywords: Color-to-gray conversion, Decolorization, Grayscale, Regression, Quality
metric.
Article info: Received 18 April 2022; accepted 20 May 2022.
Acknowledgement: This work was supported by the professors of the Department
of Informatics and Applied Mathematics of Yerevan State University (S. Sargsyan, E.
Danoyan, Yu. Hakopian) and the Armenian Engineers and Scientists of America.

The authors would like to thank the Picsart employees for participating in the user
study. The authors would also like to thank Sowmya et al. [13] and Lu et al. [4] for
sharing source codes and experiment materials.

1. Introduction

Image decolorization aims to convert a color image into a grayscale image to improve the
image’s visual appearance or provide a “better” gray-level representation for the future
automated image. The overall purpose of image decolorization is to preserve the visible

18

H. Ayunts and S. Agaian 19

color contrast, which usually suffers from information loss. It plays an essential role in
single-channel image processing (analysis, detection, segmentation, and recognition), com-
puter vision, monochrome printing, e-ink display, etc. [1]. The analysis of the existing image
decolorization techniques shows the common problems that need to be solved because such
methods introduce certain artifacts. It isn’t easy to evaluate decolorization methods and
select their optimal parameters. There are various quality metrics for color images [2, 3].
Thus, these types of metrics are not suitable for the evaluation of color-to-gray conversion.
There is also no efficient measure that can be served as a building criterion for image decol-
orization.

Practically, all quality metrics for image decolorization are based on the fact that the
human visual system cannot perceive color differences smaller than a certain threshold [4,
5, 6]. Extensive computer simulations show that (i) commonly used grayscale conversion
quality metrics such as CCPR, CCFR and E-score depend on the color difference parameter,
and (ii) by changing the parameter, we pick a different decolorization method. Thus, one
needs to develop a new robust threshold-independent quality metric that does not require a
reference image.

This paper makes several key contributions:
1. Propose a non-parametric, robust, monotonic, and non-reference quality metric for

image decolorization.
2. Present extensive computer simulation results.
3. Present qualitative and perceptual evaluation of state-of-the-art decolorization meth-

ods.
The structure of this paper is organized as follows. Section 2. discusses the existing image

decolorization methods and quality metrics. Section 3. presents a new non-parametric quality
metric. Section 4. provides the results of extensive computer simulation. Section 5. validates
the new metric using preference scores from the user study. Finally, Section 6. concludes the
work.

2. Background

This section presents the existing color-to-gray conversion methods and quality metrics.
Traditional color-to-gray conversion methods usually use a linear combination of R (red),
G(green), B (blue) channels of a color image. It is based on the theory of T. Young (1802),
which states that any color can be created by combining three primary colors: R, G, and B.
Gray = aR + bG+ cB [7], were a, b, c coefficients are calculated as

(i) Lightness method: Gray = max(R,G,B)+min(R,G,B)
2

(ii) Average method: a = b = c = 1/3, or Gray = R+G+B
3

(iii) Luminosity method: a = 0.21, b = 0.72, c = 0.07, or Gray = 0.21R + 0.72G+ 0.07B.
These are the most popular and straightforward conversions used in electronic displays,

printers, computer vision, image processing, and many other algorithms as a preprocessing
step.

However, Fig. 1 shows that the grayscale conversion suffers from information loss (many
details didn’t preserve, and the color contrast was lost in the grayscale images). It is natural
to ask.
(a) Can we have a better decolorization algorithm?
(b) How to quantitatively evaluate the performance of different methods or choose the

parameters such as a, b, and c?

20 A New Image Decolorization Evaluation Quality Metric

Source Lightness Average Luminosity We need this

kind of quality
Fig. 1. Comparison of traditional grayscale conversion methods. Decolorized images can lose

can lose the contrast and become hardly visible.

(c) How do you improve the quality of a color image using decolorized images?
More advanced decolorization methods use the values of other pixels to specify color

orders to preserve the color contrast. Local methods rely on local chrominance edges to
enhance the contrast [8, 9]. Most recent notable decolorization methods are based on the
parametric decolorization model and its modification [5, 4, 10].

Parametric Decolorization Model(PDM). The basic idea here is to convert a
color image into gray using a combination of a polynomial of R, G, and B components:
{R,G,B,RG,RB,GB,R2, G2, B2}. It generalizes commonly used linear and nonlinear
color-to-gray conversion/mapping systems. More details on this method one can find in [5].

There are also neural network solutions to this problem [11].
Decolorization needs quantitative evaluation to understand the performance of different

methods.
Exiting decolorization quality metrics. The most commonly used decolorization

quality metrics are based on the fact that the human visual system cannot perceive color
difference δ smaller than a certain threshold. For example, the Color Contrast Preserving
Ratio (CCPR) (suggested by Lu et al. [4]), defined as

CCPR =
#{(x, y)|(x, y) ∈ Ω, |gx − gy| ≥ τ}

||Ω||
, (1)

where Ω is the set of all pixel pairs with δx,y ≥ τ , and gx, is the value of the x pixel after
decolorization.

CCPR shows the percentage of distinctive pixel pairs after the conversion, but it does not
necessarily indicate if the grayscale image was “distorted” after conversion. To complement
CCPR, Lu et al. [4] suggested Color Content Fidelity Ratio (CCFR). It is defined as

CCFR = 1− #{(x, y)|(x, y) ∈ Θ, δx,y ≤ τ}
||Θ||

, (2)

where Θ is the set of all pixel pairs with |gx − gy| > τ . This metric shows how much the
converted image has changed in terms of structure.

H. Ayunts and S. Agaian 21

Finally, the combination of CCPR and CCFR, E-score [4], is defined as

E-score =
2 · CCPR · CCFR
CCPR + CCFR

. (3)

3. Proposed Quality Metric

This section shows the shortcomings of the existing decolorization metrics and suggests a
better quality metric for quantitative evaluations.

Table 1: E-score metric for some threshold values for different decolorization methods

Image Method τ = 3 τ = 5 τ = 7 τ = 9 τ = 15 τ = 25

PDM 0.9934 0.9776 0.9759 0.9737 0.9644 0.9551

LUM 0.9613 0.9174 0.8526 0.7990 0.5956 0.3997

SPD 0.9862 0.9769 0.9751 0.9713 0.9475 0.9192

SVD 0.9896 0.9821 0.9765 0.9744 0.9279 0.8514

PDM 0.9726 0.9502 0.9272 0.9035 0.8298 0.6647

LUM 0.9646 0.9356 0.9046 0.8704 0.7447 0.4993

SPD 0.9777 0.9550 0.9275 0.8956 0.7823 0.5662

SVD 0.9745 0.9525 0.9279 0.9003 0.7987 0.5965

The commonly used grayscale conversion quality metrics such as CCPR, CCFR, and
E-score depend on the color difference parameter τ . Computer simulations show that by
changing the parameter τ , we pick a different decolorization method.

To verify this statement, we compare different decolorization methods on a couple of
images from Ĉad́ıks dataset [12].

We calculate the E-score quality metric for different values of threshold. We use three
state-of-the-art methods (Lu et al. [5], Sowmya et al. [13], Liu et al. [10]) and the Luminosity
method for comparison. The results are listed in Table 1. Obviously, the best method differs
depending on the threshold value. For example, we can pick three different best methods by
changing parameter τ in the case of the second image. The visual results of decolorization
on these images are shown in Fig. 4..

In the previous work, the quantitative evaluation of color-to-gray conversion was per-
formed using E-score for fixed values of threshold [4, 5]) or the average of several threshold
values [10]. Therefore, there is a need for more independent metrics to investigate the con-
version process for each image.

We introduce a new quality metric called Threshold-Independent Slope (TIS), which
shows the decreasing speed of the E-score as the threshold value grows. We calculate the
E-score metric for different τ values (τ = 1, 2, ..15) and choose the slope of the linear regres-
sion of this data as a new metric. The main advantage of the new metric is that it is not
dependent on the τ parameter.

Linear Regression can be solved using several linear models. A simple linear model
function is defined as

y = α + βx, (4)

22 A New Image Decolorization Evaluation Quality Metric

Fig. 2. Simple linear function estimation using the Least Squares method,

Ridge regression, and Lasso regression.

which describes a line with a slope β and y-intercept α. One of the easiest ways to estimate
the slope is to use the Least Squares method:

β̂ls = argmin
β

||y − βx||22. (5)

Another method for coefficient estimation of (4) is Ridge regression [14]. It is most
suitable when data contains a higher number of predictor variables than the number of
observations. The ridge regression estimator solves the regression problem using l2 penalized
least squares:

β̂ridge = argmin
β

||y − βx||22 + λ||β||22, (6)

where λ > 0 is a tuning parameter that controls the strength of the penalty term. Similar
to ridge regression, Lasso regression can be used for slope estimation [15]. The lasso
estimator uses l1 penalized least squares for solving the following optimization problem with
λ tuning parameter:

β̂lasso = argmin
β

||y − βx||22 + λ||β||1. (7)

Fig. 2 compares these three regression models on a sample image from Ĉad́ıks dataset [12].
Each of these models is used to calculate the TIS metric. To find the best model for our case,
we calculate the fitting scores of each model on every image from the dataset. The Least
Squares method has the best average fitting score: thus, we use it for further evaluations.
Therefore, our TIS metric is defined as

TIS = max(1− |αβ|, 0), (8)

where α and β are coefficients of a simple linear function (4) estimated with the Least
Squares method (5). TIS ranges in [0, 1], and higher values mean a lower decreasing speed
of the E-score metric when the threshold is increased.

H. Ayunts and S. Agaian 23

Fig. 3. The TIS metric grows with a contrast and visibility increase.

Fig. 3. shows the decolorization result on a sample image with four different levels of
visibility. The value of our TIS metric grows with better visibility and contrast in the result.
Therefore, the TIS is also a monotonic metric.

4. Computer Simulation

This section evaluates four decolorization methods using our TIS metric and the existing
quality metrics. We also show the usefulness of our metric in picking the best parameters
for grayscale conversion.

Evaluation of decolorization methods. We chose one traditional conversion method:
the Luminosity method (denoted as LUM in tables) is the most popular conversion used

TIS 0.53565 0.72862 0.82799 0.87882

Fig. 4. Visual results of different decolorization algorithms

(from left to right: source image, PDM, LUM, SPD, SVD)

24 A New Image Decolorization Evaluation Quality Metric

in many image processing algorithms and electronic devices. In many cases, it fails to
preserve the contrast because the conversion considers only current pixel information. We
also chose three state-of-the-art contrast preserving decolorization methods for evaluation.
These methods are suggested by Lu et al. [5], Liu et al. [10], and Sowmya et al. [13] (we use
PDM, SPD, and SVD acronyms in the tables, respectively). These methods consider global
pixel information and color differences in the image for better conversion.

Fig. 5. Visual results of different decolorization algorithms

(from left to right: source image, PDM, LUM, SPD, SVD)

Figs. 4 and 5 show the visual results of four decolorization methods on several images.
The simple Luminosity method usually fails to preserve the color contrast, while the other
three methods produce better visual outputs.

We use Ĉad́ık’s dataset [12] for performance evaluation. It contains 24 PNG images and
mainly consists of synthetically generated images and some colorful real-life photos. Most of
these images are challenging for traditional color-to-gray conversion methods. That’s why
Ĉad́ık’s dataset is the most popular in this field and can be beneficial for the evaluation of
decolorization methods.

Table 2: Average TIS and E-score for different thresholds on Ĉad́ık’s dataset.

Method τ = 3 τ = 5 τ = 7 τ = 9 τ = 15 τ = 25 TIS

PDM 0.98222 0.97009 0.95866 0.94697 0.90971 0.84409 0.91635

LUM 0.96340 0.93755 0.91399 0.89556 0.83167 0.71761 0.84992

SPD 0.98241 0.97060 0.95922 0.94810 0.90966 0.83835 0.91560

SVD 0.98045 0.96651 0.95334 0.94040 0.89324 0.81638 0.90121

H. Ayunts and S. Agaian 25

The quantitative evaluation of four decolorization methods using the E-score metric for
different thresholds and our new TIS metric on Ĉad́ık’s dataset are presented in Table 2. It
presents the performance of each metric (average value) of all images from Ĉad́ık’s dataset.
It also shows that the presented TIS metric is more stable and picks only the best method
for this dataset. So it can be helpful in both individual and large-scale evaluations of the
grayscale conversion methods.

Picking the best parameter for the simple grayscale conversion. Image decol-
orization quality metrics can not only be useful in method evaluation, but they can also
help pick the best parameters for an algorithm. For example, in simple grayscale conversion,
coefficients can be changed to get a “better” conversion.

Fig. 6. Comparison of the “best” linear conversion with the luminosity method

(from left to right: source image, luminosity, the best conversion).

We pick the best parameters of the linear grayscale conversion by maximizing the value
of the quality metric for each image individually. Fig. 6 shows the results corresponding to
the highest values of the TIS for two images (a = 0.02, b = 0, c = 0.98 for the first image,
and a = 0, b = 0.06, c = 0.94 for the second one).

5. Perceptual Validation

This section validates our TIS metric using the preference scores.

We invited 20 users to participate in a survey to show the effectiveness and importance
of our metric. After a small introduction to decolorization, they were asked to rate the
color-to-gray conversion for ten random images from the Ĉad́ık’s dataset on a scale of one
to three. To facilitate the scoring process, we use the three-scale modification of the Mean
Opinion Score (MOS). One means the conversion is bad, and it failed to preserve the contrast.

26 A New Image Decolorization Evaluation Quality Metric

Score two corresponds to mediocre conversion. Finally, three is for the best conversion with
contrast preservation and the most visually pleasing result.

To validate our metric, we use the Kendall rank correlation coefficient [16]. It is defined
as

R =
#{concordant pair} −#{disconcordant pair}

1
2
n(n− 1)

, (9)

where n = 4 denotes the number of methods. Let si be the score for the result produced by
the ith method, and pi be the preference score for the same result. If two pairs (si, sj) and
(pi, pj) are with the same order (i.e., (si − sj)(pi − pj) > 0), the pair (i, j) is concordant.
Otherwise, it is discordant. R ranges in [−1, 1]. We get R > 0 if the two rankings agree with
each other and R < 0 otherwise.

We calculate the Kendall rank correlation coefficient (R) for the existing metrics and our
TIS metric. The TIS metric has a high correlation with the user preference scores and can
easily replace the existing quality metrics for quantitative evaluations of decolorization. The
ranks for several images presented in the survey are listed in Table 3.

Table 3: Kendall rank correlation coefficient for the E-score metric with different thresholds,
and our TIS metric

Image τ = 5 τ = 7 τ = 9 τ = 15 τ = 25 TIS

0.333 0.333 0.333 0.667 0.667 0.667

0.333 0.333 0.333 1 1 1

0.667 0.333 0.333 0.333 0 0.333

6. Conclusion

This paper proposes a new TIS image quality metric for accurately evaluating image decol-
orization methods. The TIS quality metric is a blind, robust, monotonic, non-parametric
metric and correlates with subjective preference scores. The quantitative and qualitative
computer simulations on the Ĉad́ık’s dataset demonstrate that the proposed metric outper-
forms the current state-of-the-art metrics. The TIS metric is also helpful in picking the best
parameters of the grayscale algorithm.

Our future work will extend the proposed work to other types of distortion, generate new
decolorization methods, and evaluate them on other databases.

References

[1] C. Saravanan, “Color image to grayscale image conversion”, Second Inter. Conference
on Computer Engineering and Applications, IEEE, vol. 2, pp. 196–199, March 2010.

[2] K. Panetta, C. Gao, and S. Agaian, “No reference color image contrast and quality
measures”, IEEE trans. on Consumer Electronics, vol. 59, no. 3, pp. 643–651, 2013.

H. Ayunts and S. Agaian 27

[3] K. Panetta, C. Gao, and S. Agaian, “Human-visual-system-inspired underwater image
quality measures”, IEEE Journal of Oceanic Engineering, vol. 41, no. 3, pp. 541–551,
2015.

[4] C. Lu, L. Xu, and J. Jia, “Contrast preserving decolorization with perception-based
quality metrics”, Inter. Journal of computer vision, vol. 110, no. 2, pp. 222–239, 2014.

[5] C. Lu, L. Xu, and J. Jia, “Contrast preserving decolorization”, Proc. of IEEE inter.
conference on computational photography (ICCP), pp. 1–7, 2012.

[6] S. Agaian, “Visual Morphology”, Proc. of SPIE, Nonlinear Image Processing X, San
Jose CA, vol. 3646, pp. 139–150, 1999.

[7] J. Cook, (2009) Three algorithms for converting color to grayscale. [Online]. Available:
https://www.johndcook.com/blog/2009/08/24/algorithms-convert-color-grayscale/

[8] R. Bala, and R. Eschbach, “Spatial color-to-grayscale transform preserving chrominance
edge information”, Color and Imaging Conference, Society for Imaging Science and
Technology, vol. 2004, no. 1, pp. 82–86, 2004.

[9] L. Neumann, M. Ĉad́ık, and A. Nemcsics, “An efficient perception-based adaptive color
to gray transformation”, Proc. of the Third Eurographics conference on Computational
Aesthetics in Graphics, Visualization and Imaging pp. 73–80, 2007.

[10] Q. Liu, P. Liu, Y. Wang, and H. Leung, “Semiparametric decolorization with Laplacian-
based perceptual quality metric”, IEEE Trans. on Circuits and Systems for Video Tech-
nology, vol. 27, no. 9, pp. 1856–1868, 2016.

[11] Q. Liu, and H. Leung, “Variable augmented neural network for decolorization and multi-
exposure fusion”, Information Fusion, vol. 46, pp. 114–127, 2019.

[12] M. Ĉad́ık, “Perceptual Evaluation of Color-to-Grayscale Image Conversions”, Computer
Graphics Forum, vol. 27, no. 7, Wiley Online Library, pp. 1745–54, 2008.

[13] V. Sowmya, D. Govind, and K. Soman, “Significance of incorporating chrominance
information for effective color-to-grayscale image conversion”, Signal, Image and Video
Processing, vol. 11, no. 1, pp. 129–136, 2017.

[14] A. Hoerl, and R. Kennard, “Ridge regression: Biased estimation for nonorthogonal
problems”, Technometrics, vol. 12, no. 1, pp. 55–67, 1970.

[15] R. Tibshirani, “Regression shrinkage and selection via the lasso”, Journal of the Royal
Statistical Society: Series B (Methodological), vol. 58, no. 1, pp. 267–288, 1996.

[16] H. Abdi, “The Kendall rank correlation coefficient”, Encyclopedia of Measurement and
Statistics. Sage, Thousand Oaks, CA, pp. 508–510, 2007.

2 8 A New Image Decolorization Evaluation Quality Metric

ä³ïÏ»ñÇ ·áõÝ³½ñÏÙ³Ý áñ³ÏÇ ·Ý³Ñ³ïÙ³Ý Ýáñ ã³÷áñáßÇã

Ðñ³ã Úáõ. ²ÛáõÝó1 ¨ êáë ê. ²Õ³Û³Ý2

1ºñ¨³ÝÇ å»ï³Ï³Ý Ñ³Ù³Éë³ñ³Ý, ºñ¨³Ý, Ð³Û³ëï³Ý
2êÃ»ÛÃ»Ý ²ÛÉ»Ý¹Ç ùáÉ»ç, ÜÛáõ ÚáñùÇ ù³Õ³ù³ÛÇÝ Ñ³Ù³Éë³ñ³Ý, ÜÛáõ Úáñù, ²ØÜ

e-mail: hrach.ayunc@gmail.com, sos.agaian@csi.cuny.edu

²Ù÷á÷áõÙ

Íîâàÿ ìåòðèêà êà÷åñòâà îöåíêè îáåñöâå÷èâàíèÿ
èçîáðàæåíèÿ

Ãðà÷ Þ. Àþíö1 è Ñîñ Ñ. Àãàÿí2

1Åðåâàíñêèé ãîñóäàðñòâåííûé óíèâåðñèòåò, Åðåâàí, Àðìåíèÿ
2Êîëëåäæ Ñòàòåí-Àéëåíäà, Ãîðîäñêîé óíèâåðñèòåò Íüþ-Éîðêà, Íüþ-Éîðê, ÑØÀ

e-mail: hrach.ayunc@gmail.com, sos.agaian@csi.cuny.edu

Àííîòàöèÿ

Îáåñöâå÷èâàíèå èçîáðàæåíèÿ, ïðîöåññ ïðåîáðàçîâàíèÿ öâåòíîãî èçîáðà-
æåíèÿ â ìîíîõðîìíîå, èãðàåò ðåøàþùóþ ðîëü â îäíîêàíàëüíîé îáðàáîòêå,
êîìïüþòåðíîì çðåíèè, öèôðîâîé ïå÷àòè è ìîíîõðîìíîé âèçóàëèçàöèè. Ýòîò
ïðîöåññ âûçûâàåò íîâûå àðòåôàêòû, âëèÿíèå êîòîðûõ íà âèçóàëüíîå êà÷åñòâî
äîëæíî áûòü îïðåäåëåíî. Íåñìîòðÿ íà òî, ÷òî îöåíêà âèçóàëüíîãî êà÷åñòâà

ä³ïÏ»ñÇ ·áõÝ³½ñÏáõÙÁ` ·áõÝ³íáñ å³ïÏ»ñÇó ÙáÝáËñáÙ å³ïÏ»ñÇ ÷áË³Ï»ñåÙ³Ý
·áñÍÁÝÃ³óÁ, Ï³ñ¨áñ ¹»ñ ¿ Ë³ÕáõÙ Ù»Ï µ³Õ³¹ñÇãáí å³ïÏ»ñÝ»ñÇ Ùß³ÏÙ³Ý,
Ñ³Ù³Ï³ñ·ã³ÛÇÝ ï»ëáÕáõÃÛ³Ý, Ãí³ÛÇÝ ïå³·ñáõÃÛ³Ý ¨ ÙáÝáËñáÙ íÇ½áõ³ÉÇ½³óÇ³ÛÇ
Ù»ç: ²Ûë ·áñÍÁÝÃ³óÁ ³é³ç³óÝáõÙ ¿ Ýáñ ³Õ³í³ÕáõÙÝ»ñ, áñáÝó ³½¹»óáõÃÛáõÝÁ
ï»ëáÕ³Ï³Ý áñ³ÏÇ íñ³ å»ïù ¿ µ³ó³Ñ³ÛïíÇ: Â»¨ ï»ëáÕ³Ï³Ý áñ³ÏÇ ·Ý³Ñ³ïáõÙÁ
»Õ»É ¿ µ³½Ù³ÃÇí áõëáõÙÝ³ëÇñáõÃÛáõÝÝ»ñÇ ³é³ñÏ³, ¹»é¨ë Ï³Ý áñáß µ³ó Ñ³ñó»ñ
Ï³åí³Í ÷áË³Ï»ñåÙ³Ý áñ³ÏÇ Ýáñ Ù»ïñÇÏ³Ý»ñÇ Ñ»ï: úñÇÝ³Ï` Ñ³Ù³Ï³ñ·ã³ÛÇÝ
Ùá¹»É³íáñáõÙÁ óáõÛó ¿ ï³ÉÇë, áñ Ñ³×³Ë û·ï³·áñÍíáÕ áñ³ÏÇ ã³÷áñáßÇãÝ»ñÁ,
ÇÝãåÇëÇù »Ý` CCPR-Á, CCFR-Á ¨ E-score-Á, Ï³Ëí³Í »Ý å³ñ³Ù»ïñ»ñÇó ¨ Ï³ñáÕ »Ý
ÁÝïñ»É ï³ñµ»ñ É³í³·áõÛÝ Ù»Ãá¹Ý»ñ‘ ÷á÷áË»Éáí å³ñ³Ù»ïñ»ñÁ:

Ðá¹í³ÍáõÙ ³é³ç³ñÏíáõÙ ¿ å³ïÏ»ñÝ»ñÇ ·áõÝ³½ñÏÙ³Ý áñ³ÏÇ ·Ý³Ñ³ïÙ³Ý Ýáñ
ã³÷áñáßÇã, áñÁ ÑÇÙÝí³Í ¿ Ù³ñ¹áõ ï»ëáÕ³Ï³Ý Ñ³ïÏáõÃÛáõÝÝ»ñÇ íñ³ ¨ Ñ³ßííáõÙ
¿ é»·ñ»ëÇ³ÛÇ Ù»Ãá¹Ç ÙÇçáóáí: öáñÓ³ñ³ñ³Ï³Ý ³ñ¹ÛáõÝùÝ»ñÁ óáõÛó »Ý ï³ÉÇë, áñ
³é³ç³ñÏíáÕ Ù»ïñÇÏ³Ý ³í»ÉÇ Ï³ÛáõÝ ¿, ù³Ý ·áÛáõÃÛáõÝ áõÝ»óáÕÝ»ñÁ, ³ÛÝ Ý³¨ áõÝÇ
µ³ñÓñ Ïáñ»É³óÇ³ ÙÇçÇÝ Ï³ñÍÇùÇ ·Ý³Ñ³ï³Ï³ÝÇ (MOS) Ñ»ï, ¨ ¹ñ³ û·ÝáõÃÛ³Ùµ
ÑÝ³ñ³íáñ ¿ ÁÝïñ»É É³í³·áõÛÝ ·áõÝ³½»ñÍÙ³Ý Ù»Ãá¹Ý»ñÁ:

´³Ý³ÉÇ µ³é»ñ` ·áõÝ³íáñ å³ïÏ»ñÝ»ñÇ ÷áË³Ï»ñåáõÙ ÙáÝáËñáÙ å³ïÏ»ñÝ»ñÇ,
·áõÝ³½ñÏáõÙ, ÙáÝáËñáÙ å³ïÏ»ñ, é»·ñ»ëÇ³, áñ³ÏÇ ã³÷áñáßÇã:

H. Ayunts and S. Agaian 2 9

áûëà ïðåäìåòîì ìíîãèõ èññëåäîâàíèé, âñå åùå îñòàåòñÿ íåñêîëüêî îòêðûòûõ
âîïðîñîâ, êàñàþùèõñÿ íîâûõ ïîêàçàòåëåé êà÷åñòâà ïðåîáðàçîâàíèÿ öâåòíîãî
èçîáðàæåíèÿ â ñåðûé. Íàïðèìåð, êîìïüþòåðíîå ìîäåëèðîâàíèå ïîêàçûâàåò,
÷òî îáû÷íî èñïîëüçóåìûå ïîêàçàòåëè êà÷åñòâà ïðåîáðàçîâàíèè, òàêèå êàê CCPR,
CCFR è E-score, çàâèñÿò îò ïàðàìåòðîâ è ìîãóò âûáèðàòü ðàçëè÷íûå íàèëó÷øèå
ìåòîäû ïóòåì èçìåíåíèÿ ïàðàìåòðîâ.

Â ýòîé ñòàòüå ïðåäëàãàåòñÿ íîâàÿ ìåòðèêà êà÷åñòâà äëÿ îöåíêè ìåòîäîâ
îáåñöâå÷èâàíèÿ èçîáðàæåíèÿ. Îíà èñïîëüçóåò èíôîðìàöèþ î çðèòåëüíûõ
ñâîéñòâàõ ÷åëîâåêà è ìåòîä ðåãðåññèè. Ýêñïåðèìåíòàëüíûå ðåçóëüòàòû
òàêæå ïîêàçûâàþò ñèëüíóþ êîððåëÿöèþ ìåæäó ïðåäñòàâëåííîé ìåòðèêîé
êà÷åñòâà îáåñöâå÷èâàíèÿ èçîáðàæåíèÿ è ñðåäíåé îöåíêîé ìíåíèé (MOS), áîëåå
íàäåæíóþ, ÷åì ñóùåñòâóþùèå ìåòðèêè êà÷åñòâà, è ïîìîãàþò âûáðàòü ëó÷øèé
èç ñîâðåìåííûõ ìåòîäîâ îáåñöâå÷èâàíèÿ ñ èñïîëüçîâàíèåì ïðåäñòàâëåííîé
ìåòðèêè è ñóùåñòâóþùèõ ìåòðèê êà÷åñòâà.

Êëþ÷åâûå ñëîâà: ïðåîáðàçîâàíèÿ öâåòíîãî èçîáðàæåíèÿ â ìîíîõðîìíîå,
îáåñöâå÷èâàíèå, ìîíîõðîìíîå èçîáðàæåíèå, ðåãðåññèÿ, ìåòðèêà êà÷åñòâà.

Mathematical Problems of Computer Science 57, 30–38, 2022.

doi: 10.51408/1963-0084

UDC 004.8

Compact N-gram Language Models for Armenian

Davit S. Karamyan1 and Tigran S. Karamyan2

1Russian-Armenian University, Yerevan, Armenia
2Yerevan State University, Yerevan, Armenia

e-mail: davitkar98@gmail.com, t.qaramyan@ysu.am

Abstract

Applications such as speech recognition and machine translation use language mod-
els to select the most likely translation among many hypotheses. For on-device appli-
cations, inference time and model size are just as important as performance. In this
work, we explored the fastest family of language models: the N-gram models for the
Armenian language. In addition, we researched the impact of pruning and quantiza-
tion methods on model size reduction. Finally, we used Bye Pair Encoding to build
a subword language model. As a result, we obtained a compact (100 MB) subword
language model trained on massive Armenian corpora.
Keywords: Armenian language, N-gram Language Model, Subword Language Model,
Pruning, Quantization.
Article info: Received 31 March 2022; accepted 17 May 2022.

1. Introduction

Language modeling is a fundamental task of NLP. Models that assign probabilities to se-
quences of tokens are called language models or LMs. Here, tokens can be words, characters,
or subwords. The N-gram is the simplest model that assigns probabilities to sentences and
sequences of tokens. Although the N-gram models are much simpler than modern neural
language models based on RNN[1, 2] and transformers[3, 4, 5], they are much faster than
others since they perform constant-time lookups and scalar multiplications (instead of ma-
trix multiplications in neural models). As always, trade-offs exist between time, space, and
accuracy[6]. Hence, much recent work has focused on building faster and smaller N-gram
language models[7, 8, 9].

N-gram language models are widely utilized in spelling correction[10], speech
recognition[11] and machine translation[12] systems. In such systems, for each utter-
ance/sentence translation, the system generates several alternative token sequences and
scores them using N-gram LM to peek the most likely translation sequence. In addition,
LM rescoring can be combined with beam search algorithms[13].

The Armenian language has a rich morphology: one word can have several tenses and
surface forms. Moreover, one can form long words in Armenian by stringing word pieces

30

D. Karamyan and T. Karamyan 31

together. The inclusion of every form in the vocabulary will make it intractable. Subword
dictionaries, in which words are divided into frequent parts, can help reduce vocabulary size.
Many efforts have been made to use word decomposition and subword LMs for dealing with
out-of-vocabulary words in inflective languages such as Arabic[14], Finnish[15], Russian[16],
and Turkish[17]. A review of the literature revealed that there have been no publicly available
LM resources for the Armenian language. This work is devoted to the creation of a compact
and fast N-gram LM for the Armenian language.

Summing up, we will give answers to the following practical questions: Q1. What order
of N-grams is enough to build a good LM for the Armenian language? Q2. How much data
is needed to build a model? Q3. How can pruning and quantization help reduce the size of
the model? Q4. Can we build more compact models by using subwords?

In addition, we are going to release training codes and models.1

2. Background

Language Modeling (LM) is the task of predicting which token or word comes next. You
might also think of an LM as a system that assigns probability to a piece of text. The
probability of a sequence of n tokens tn1{t1, ..., tn} is denoted as P (tn1). Using the chain rule
of probability we can decompose this probability:

P ({t1, ..., tn}) =
n∏

k=1

P (tk|tk−1
1).

Instead of computing the probability of a token given its entire history, it is usually
conditioned on a window of N previous tokens. The assumption that the probability of a
token depends only on the previous N − 1 token is called a Markov assumption:

P (tk|tk−1
1) ≈ P (tk|tk−1

k−N+1).

We can estimate the probabilities of an N-gram model by getting counts from a corpus
and normalizing the counts so that they lie between 0 and 1. For example, to compute a
particular N-gram probability of a token tk given the previous tokens tk−1

k−N+1, we’ll compute
the count of the N-gram tkk−N+1 and normalize it by the sum of all the N-grams that share
the same prefix tk−1

k−N+1:

P (tk|tk−1
k−N+1) =

Count(tkk−N+1)∑
t Count(tk−1

k−N+1, t)
=

Count(tkk−N+1)

Count(tk−1
k−N+1)

.

There are two major problems with N-gram language models: storage and sparsity. To
compute N-gram probability we need to store counts for all N-grams in the corpus. As
N increases or the corpus size increases, the model size increases as well. Pruning and
Quantization may provide a partial solution to reduce the model size. Any N-gram that
appeared a sufficient number of times might have a reasonable estimate for its probability.
Since any corpus is limited, some perfectly acceptable tokens may never appear in the corpus.
As a result of it, for any training corpus, there will be a substantial number of cases of
putative zero probability N-grams. To keep an LM from assigning zero probability to these
unseen events, we will have to shave off a bit of probability mass from some more frequent
events and give it to the events we have never seen. This is called smoothing. There are many
ways to do smoothing: add-one(add-k) smoothing, backoff, and Kneser-Ney smoothing[18].

1https://github.com/naymaraq/arm-n-gram

32 Compact N-gram Language Models for Armenian

3. Experiments

Setup. We estimate N-gram probabilities on Armenian Wikipedia corpus2 and CC-100 Web
Crawl Data3[19]. To test the language models, we compute perplexity on two test datasets:
Armenian Paraphrase Detection Corpus4 (ARPA[20]) and Universal Dependencies treebank5

(UD). All datasets are normalized by removing punctuation marks and non-Armenian sym-
bols. Table 1 provides some statistics of the data after all normalization steps have been
performed. Table 2 shows unique N-gram counts presented in the training corpus.

We are going to measure the perplexity of corpus C that contains m sentences and
N tokens. Let’s the sentences (s1, s2, ..., sm) be part of C. Under assumption that those
sentences are independent, the perplexity of the corpus is given by:

Perp(C) = N

√
1

p(s1, s2, ..., sm)
= N

√
1∏m

k=1 p(sk)
.

We use KenLM [21] to train language models. KenLM implements two data structures:
Probing and Trie, for efficient language model queries, reducing both time and memory
costs. KenLM estimates language model parameters from text using modified Kneser-Ney
smoothing.

Table 1: Datasets statistics.

Dataset Tokens (M) Bytes Split

CC-100 409 5.4Gb train

Wiki 18.6 249Mb train

ARPA 0.133 1.8Mb test

UD 0.034 425Kb test

Table 2: N-gram counts.

Order (N) Count of unique N -grams

1 3648574

2 60190581

3 160796455

4 217396323

5 233510708

Q1. Order of Grams vs Perplexity

To determine what order of N -grams is sufficient to build a good LM for Armenian, we
trained several LMs with different orders and calculated perplexity on the test datasets.
Fig. 1 shows the trend between perplexity and order of N-gram. It also shows how the size
of the model changes as N increases.

From Fig. 1 we can deduce that the effective orders are 5 and 6 grams. Although their
sizes are quite large: 3.9GB and 5.5GB.

Q2. Training Corpus size vs Perplexity

The next question we would like to ask is about corpus size. If the training corpus is small,
we will end up with a very sparse model, and all perfectly acceptable Armenian tokens will

2https://github.com/YerevaNN/word2vec-armenian-wiki
3https://data.statmt.org/cc-100/
4https://github.com/ivannikov-lab/arpa-paraphrase-corpus
5https://github.com/UniversalDependencies/UD Armenian-ArmTDP

D. Karamyan and T. Karamyan 33

Fig. 1. N -gram order vs perplexity.
Fig. 2. Number of tokens in training corpus vs

perplexity.

be considered unknown. To find out how much data is required, we shuffled and divided the
entire training corpus into parts and trained a 5-gram LM for each part. Fig. 2 shows the
trend between perplexity and corpus size.

It can be seen that the perplexity reaches saturation when the number of tokens exceeds
380M. Of course, there is always a trade-off between the corpus size, perplexity and the
model size: the larger the corpus size, the less perplexity and the larger the model.

Q3. Quantization and Pruning

On-device applications should be as compact as possible. So, the next question we would
like to raise concerns the size of the model. Can we build a smaller LM without sacrificing
performance?

To reduce the size of the model, we prune all n-grams that appear in the training corpus
less than or equal to a given threshold. In addition, we use quantized probabilities by setting
fewer bits. For this experiment, we trained a 5-gram LM.

The effect of pruning and quantization is provided in Table 3. Quantization can help
reduce the size of a model by a couple of megabytes without perplexity degradation. In
contrast, pruning drastically reduces the size of the model at the cost of worsening perplexity.
For example, removing all n-grams less than or equal to 4 can reduce the size of the model
by more than 12 times with a relative perplexity degradation of 36% for the UD dataset and
100% for the ARPA dataset.

Q4. Subword Language Modeling

So far, we have considered text as a sequence of words separated by a space. Space tokeniza-
tion is an example of word tokenization, which is defined as breaking sentences into words.
The word tokenization method can lead to problems for massive text corpora and usually
generates a very big vocabulary (e.g., our training corpus contains 3, 648, 574 unique tokens,
see Table 1). Instead of using word tokenization, we will use subword tokenization, which is
based on the principle that frequently used words should not be split into smaller subwords,
but rare words should be decomposed into meaningful subwords. There are several subword

34 Compact N-gram Language Models for Armenian

Table 3: The effect of pruning and quantization on the trade-off between size and perplexity.

Pruning threshold N-bits Size UD ARPA

0 5 3.44Gb 3043.47 631.58
0 6 3.59Gb 3068.62 638.84
0 7 3.74Gb 3075.99 641.57
0 8 3.9Gb 3089.41 642.93

2 5 481.28Mb 3781.29 1131.82
2 6 501.76Mb 3768.36 1128.14
2 7 512.0Mb 3767.81 1125.54
2 8 532.48Mb 3764.69 1125.0

4 5 296.96Mb 4252.71 1344.56
4 6 307.2Mb 4219.03 1335.89
4 7 317.44Mb 4218.13 1332.73
4 8 317.44Mb 4217.73 1332.84

6 5 245.76Mb 4473.19 1486.95
6 6 245.76Mb 4432.03 1474.89
6 7 256.0Mb 4435.29 1471.75
6 8 256.0Mb 4431.23 1471.89

8 5 215.04Mb 4694.73 1588.09
8 6 225.28Mb 4655.29 1576.21
8 7 225.28Mb 4652.95 1571.46
8 8 225.28Mb 4652.89 1571.94

Fig. 3. N -gram order vs perplexity (subword).

D. Karamyan and T. Karamyan 35

tokenization algorithms: Byte-Pair Encoding[22] , WordPiece[23], and SentencePiece[24].
Subword tokenization allows the model to have a reasonable vocabulary size. In addition,
subword tokenization enables the model to process words it has never seen before by decom-
posing them into known subwords. This is especially useful in agglutinative languages such
as Armenian, where you can form long words by stringing subwords together.

We trained a BPE tokenizer with a vocabulary size of 128 using the SentencePiece
package6. Next, we build several N -gram models on a tokenized corpus. Fig. 3 shows
the trend between perplexity and order of N-gram for subword model. It also shows how the
size of the model changes as N increases.

Table 4: Pruning effect for the subword model with 10-gram.

Pruning Size UD ARPA

0 36.66Gb 6.055 3.941

2 1.11Gb 6.199 4.19

4 634.88Mb 6.323 4.306

6 440.32Mb 6.373 4.381

8 348.16Mb 6.435 4.44

10 286.72Mb 6.53 4.491

16 184.32Mb 6.781 4.619

20 153.6Mb 6.892 4.69

24 122.88Mb 7.02 4.751

30 102.4Mb 7.146 4.837

First, in Fig. 3 the perplexity (0-10) is significantly lower than the perplexity of the word-
based tokenized model (0-7000, see Fig. 1). This is because we no longer have unknown
tokens. In contrast to word-based models, subword models are much larger (e.g., 10-gram
subword model is 3 times bigger).

Since the sequences no longer contain words, but contain subwords, in order to capture
sufficient context, we need to consider higher order grams. From Fig. 3 it can be seen that
the higher the order, the larger the model (for example, a subword model with 10-gram has
a size of 36.7 GB). To reduce the size of the model, we use pruning again. Table 4 provides
information about the pruning effect for the subword model with 10-gram. It can be seen
that we can reduce the model size by a factor of 368 from 36.7 GB to 102 MB with a relative
perplexity degradation of 18% for the UD dataset and 23% for the ARPA dataset.

4. Conclusions

In this article, we have explored N-gram language models for the Armenian language. Our
experiments have shown that for word-based language models, the effective orders are 5 and
6. In contrast, the effective order for subword language models can be higher than 10.

We have also explored the impact of pruning and quantization on the trade-off between
model size and perplexity. Quantization can help reduce the size of the model without

6https://github.com/google/sentencepiece

36 Compact N-gram Language Models for Armenian

degrading perplexity significantly. Pruning, on the other hand, drastically reduces the size
of the model at the expense of aggravating perplexity. For the subword language model, the
perplexity degradation is much lower than for the word-based language model.

We have released compact N-gram language models built on very large corpora.

References

[1] S. Hochreiter and J. Schmidhuber, “Long short-term memory. Neural computation”,
vol. 9, no. 8, pp. 1735-1780, 1997.

[2] J. Sarzyska-Wawer, A. Wawer, A. Pawlak, J. Szymanowska, I. Stefaniak, M. Jarkiewicz
and . Okruszek, “Detecting formal thought disorder by deep contextualized word rep-
resentations”, Psychiatry Research, vol. 304, pp. 114–135, 2021.

[3] J. Devlin, M. Chang, K. Lee and K. Toutanova, ”Bert: Pre-training of deep bidi-
rectional transformers for language understanding”, arXiv preprint arXiv:1810.04805,
2018.

[4] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li
and P.J. Liu, “Exploring the limits of transfer learning with a unified text-to-text
transformer”, arXiv preprint arXiv:1910.10683, 2019.

[5] T.B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell and others, “Language models are few-shot learners”,
arXiv preprint arXiv:2005.14165, 2020.

[6] C. Buck, K. Heafield and B.V. Ooyen, “N-gram counts and language models from the
common crawl”, In: LREC, vol. 2, no. 4, 2014.

[7] A. Pauls and D. Klein, “Faster and smaller n-gram language models”. In: Proceedings
of the 49th annual meeting of the Association for Computational Linguistics: Human
Language Technologies, pp. 258-267, 2011.

[8] D. Guthrie and M. Hepple, “Storing the web in memory: Space efficient language mod-
els with constant time retrieval”, In: Proceedings of the 2010 Conference on Empirical
Methods in Natural Language Processing, pp. 262-272, 2010.

[9] U. Germann, E. Joanis and S. Larkin, “Tightly packed tries: How to fit large models
into memory, and make them load fast, too”, In: Proceedings of the Workshop on
Software Engineering, Testing, and Quality Assurance for Natural Language Processing
(SETQA- NLP 2009), pp. 31-39, 2009.

[10] S.D. Hernandez and H. Calvo, “Conll 2014 shared task: Grammatical error correction
with a syntactic n-gram language model from a big corpora”, In: Proceedings of the
Eighteenth Conference on Computational Natural Language Learning: Shared Task,
pp. 53-59, 2014.

[11] A.Y. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen, R. Prenger,
S. Satheesh, S. Sengupta, A. Coates and others, “Deep speech: Scaling up end-to-end
speech recognition”, arXiv preprint arXiv:1412.5567, 2014.

[12] H. Schwenk, D. Dchelotte and J. Gauvain, “Continuous space language models for
statistical machine translation”, In: Proceedings of the COLING/ACL 2006 Main
Conference Poster Sessions, pp. 723-730, 2006.

D. Karamyan and T. Karamyan 37

[13] A.Y. Hannun, A.L. Maas, D. Jurafsky and A. Y. Ng, “First-pass large vocabulary
continuous speech recognition using bi-directional recurrent dnns”, arXiv preprint
arXiv:1408.2873, 2014.

[14] A.E.D. Mousa, H.J. Kuo, L. Mangu and H. Soltau, “Morpheme-based feature-rich
language models using deep neural networks for lvcsr of egyptian arabic”, In: 2013
IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 8435-
8439, 2013.

[15] V. Siivola, T. Hirsimki, M. Creutz and M. Kurimo, “Unlimited vocabulary speech
recognition based on morphs discovered in an unsupervised manner”, In: Proc. Eu-
rospeech, vol. 3, pp. 2293-2296, 2003.

[16] I. Oparin, “Language models for automatic speech recognition of inflectional lan-
guages”, University of West Bohemia, 2008.

[17] D. Yuret and E. Bicici, “Modeling morphologically rich languages using split words
and unstructured dependencies”, In: Proceedings of the ACL-IJCNLP 2009 conference
short papers, pp.345–348, 2009.

[18] D. Jurafsky, “Speech and language processing”, Pearson Education India, 2000.

[19] A. Conneau, K. Khandelwal, N. Goyal, V. Chaudhary, G. Wenzek, F. Guzmn, E.
Grave, M. Ott, L. Zettlemoyer, V. Stoyanov, “ Unsupervised cross-lingual representa-
tion learning at scale”, arXiv preprint arXiv:1911.02116, 2019.

[20] A. Malajyan, K. Avetisyan and T. Ghukasyan, “Arpa: Armenian paraphrase detection
corpus and models”, In: 2020 Ivannikov Memorial Workshop (IVMEM), pp. 35-39,
2020.

[21] K. Heafield, “Kenlm: Faster and smaller language model queries”, In: Proceedings of
the sixth workshop on statistical machine translation, pp. 187-197, 2011.

[22] R. Sennrich, B. Haddow and A. Birch, “Neural machine translation of rare words with
subword units”, arXiv preprint arXiv:1508.07909, 2015.

[23] M. Schuster and K. Nakajima, “Japanese and korean voice search”, In: 2012 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP). pp.
5149-5152, 2012.

[24] T. Kudo and J. Richardson, “Sentencepiece: A simple and language indepen-
dent subword tokenizer and detokenizer for neural text processing”, arXiv preprint
arXiv:1808.06226, 2018.

3 8 Compact N-gram Language Models for Armenian

ÎáÙå³Ïï N-·ñ³Ù É»½íÇ Ùá¹»ÉÝ»ñ Ñ³Û»ñ»ÝÇ Ñ³Ù³ñ

¸³íÇÃ ê. ø³ñ³ÙÛ³Ý1 ¨ îÇ·ñ³Ý ê. ø³ñ³ÙÛ³Ý2

1 èáõë-Ñ³ÛÏ³Ï³Ý Ñ³Ù³Éë³ñ³Ý, ºñ¨³Ý, Ð³Û³ëï³Ý
2 ºñ¨³ÝÇ å»ï³Ï³Ý Ñ³Ù³Éë³ñ³Ý, ºñ¨³Ý, Ð³Û³ëï³Ý

e-mail: davitkar98@gmail.com, t.qaramyan@ysu.am

²Ù÷á÷áõÙ

Êîìïàêòíûå ÿçûêîâûå ìîäåëè N-ãðàìì äëÿ
àðìÿíñêîãî ÿçûêà

Äàâèä Ñ. Êàðàìÿí1 è Òèãðàí Ñ. Êàðàìÿí2

1 Ðîññèéñêî-Àðìÿíñêèé óíèâåðñèòåò, Åðåâàí, Àðìåíèÿ
2Åðåâàíñêèé ãîñóäàðñòâåííûé óíèâåðñèòåò, Åðåâàí, Àðìåíèÿ

e-mail: davitkar98@gmail.com, t.qaramyan@ysu.am

Àííîòàöèÿ

Òàêèå ïðèëîæåíèÿ, êàê ðàñïîçíàâàíèå ðå÷è è ìàøèííûé ïåðåâîä,
èñïîëüçóþò ÿçûêîâûå ìîäåëè äëÿ âûáîðà íàèáîëåå âåðîÿòíîãî ïåðåâîäà ñðåäè
ìíîæåñòâà ãèïîòåç. Äëÿ ïðèëîæåíèé íà óñòðîéñòâå âðåìÿ âûâîäà è ðàçìåð
ìîäåëè òàê æå âàæíû, êàê è ïðîèçâîäèòåëüíîñòü. Â ýòîé ðàáîòå ìû èññëåäîâàëè
ñàìîå áûñòðîå ñåìåéñòâî ÿçûêîâûõ ìîäåëåé: ìîäåëè N-ãðàìì äëÿ àðìÿíñêîãî
ÿçûêà. Êðîìå òîãî, ìû èññëåäîâàëè âëèÿíèå ìåòîäîâ îáðåçêè è êâàíòîâàíèÿ íà
óìåíüøåíèå ðàçìåðà ìîäåëè. Íàêîíåö, ìû èñïîëüçîâàëè Bye Pair Encoding äëÿ
ïîñòðîåíèÿ ìîäåëè ÿçûêà ïîäñëîâ. Â ðåçóëüòàòå ìû ïîëó÷èëè êîìïàêòíóþ (100
ÌÁ) ìîäåëü ÿçûêà ïîäñëîâ, îáó÷åííóþ íà ìàññèâíûõ àðìÿíñêèõ êîðïóñàõ.

Êëþ÷åâûå ñëîâà: Àðìÿíñêèé ÿçûê, ìîäåëü ÿçûêà N-ãðàìì, ìîäåëü ÿçûêà
ïîäñëîâ, îáðåçêà, êâàíòîâàíèå.

´³Ý³ÉÇ µ³é»ñ` Ñ³Ûáó É»½áõ, N-gram É»½íÇ Ùá¹»É, »ÝÃ³µ³é»ñÇ É»½íÇ Ùá¹»É, ¿ïáõÙ,
ùí³Ýï³óáõÙ:

²ÛÝåÇëÇ Ñ³í»Éí³ÍÝ»ñ, ÇÝãåÇëÇù »Ý ËáëùÇ ×³Ý³ãáõÙÁ ¨ Ù»ù»Ý³Û³Ï³Ý Ã³ñ·Ù³Ýáõ-
ÃÛáõÝÁ, û·ï³·áñÍáõÙ »Ý É»½íÇ Ùá¹»ÉÝ»ñ µ³½Ù³ÃÇí í³ñÏ³ÍÝ»ñÇ Ù»ç ³Ù»Ý³Ñ³í³Ý³Ï³Ý
Ã³ñ·Ù³ÝáõÃÛáõÝÝ ÁÝïñ»Éáõ Ñ³Ù³ñ: ê³ñù»ñÇ íñ³ ï»Õ³¹ñí³Í Ñ³í»Éí³ÍÝ»ñÇ
Ñ³Ù³ñ »½ñ³Ï³óáõÃÛ³Ý Å³Ù³Ý³ÏÁ ¨ Ùá¹»ÉÇ ã³÷Á ÝáõÛÝù³Ý Ï³ñ¨áñ »Ý, áñù³Ý
³ñï³¹ñáÕ³Ï³ÝáõÃÛáõÝÁ: ²Ûë ³ßË³ï³ÝùáõÙ Ù»Ýù áõëáõÙÝ³ëÇñ»É »Ýù É»½í³Ï³Ý
Ùá¹»ÉÝ»ñÇ ³Ù»Ý³³ñ³· ÁÝï³ÝÇùÁ` N-gram Ùá¹»ÉÝ»ñÁ Ñ³Û»ñ»ÝÇ Ñ³Ù³ñ: ´³óÇ ³Û¹,
Ù»Ýù áõëáõÙÝ³ëÇñ»É »Ýù ÏïñÙ³Ý ¨ ùí³Ýï³óÙ³Ý Ù»Ãá¹Ý»ñÇ ³½¹»óáõÃÛáõÝÁ Ùá¹»ÉÇ ã³÷Ç
Ïñ×³ïÙ³Ý íñ³: Æ í»ñçá, Ù»Ýù û·ï³·áñÍ»É »Ýù Bye Pair Encoding` »ÝÃ³µ³é»ñÇ É»½íÇ
Ùá¹»É ëï»ÕÍ»Éáõ Ñ³Ù³ñ: ²ñ¹ÛáõÝùáõÙ ëï³ó»É »Ýù ÏáÙå³Ïï (100 Ø´) »ÝÃ³µ³é»ñÇ É»½íÇ
Ùá¹»É` å³ïñ³ëïí³Í Ñ³ÛÏ³Ï³Ý ½³Ý·í³Í³ÛÇÝ ÏáñåáõëÝ»ñÇ íñ³:

Mathematical Problems of Computer Science 57, 39–46, 2022.

doi: 10.51408/1963-0085

UDC 004.05

Electronic Voting System Essentials and Problems

Arman A. Avetisyan

Russian-Armenian University

e-mail: armanavetisyan1997@gmail.com

Abstract

The development of reliable and safe e-voting systems is relevant because of the
wide range of applications. This paper provides an analysis of modern electronic vot-
ing systems based on security criteria. An analysis was conducted based on the most
popular modern e-voting system architectures. The analysis provides a baseline for
developing a secure e-voting system.
Keywords: Electronic voting, Internet voting, Information security, Elections, Sys-
tem architecture, Voting systems.
Article info: Received 18 February 2022; received in revised form 16 September 2022;
accepted 15 November 2022.
Acknowledgement: The work was supported by the Science Committee of RA,
within the framework of the research project 21T-1B151.

1. Introduction

Electronic voting (e-voting) is a term that encompasses several different types of voting
methods and electronic means of counting votes. E-voting systems include punched cards,
optical voting systems and specialized voting kiosks (including stand-alone electronic systems
for direct voting), as well as means for the transmission of ballots and votes by telephone,
via a private computer network or via the Internet [1]. Such systems would speed up the
counting of votes and make voting more accessible and transparent. However, weak e-voting
systems could encourage electoral fraud. The advantages and disadvantages of modern
e-voting solutions and technologies should be explored in order to create a secure system.
This study focuses on the electronic systems through which the entire electoral process (voter
registration, voting and counting votes) is conducted. The study distinguishes the standard
functionality of e-voting systems.

Standard e-voting systems include the following modules [2]:

• electronic voter lists and a method of voter identification,

• interface for polling station staff,

• interface for voters,

39

40 Electronic Voting System Essentials and Problems

• system for sending votes to count,

• interface to show results.

The e-voting system should correspond to a series of criteria, which can be divided into two
important groups: primary - based on the security and safety of the system, and secondary
- based on the user friendliness and accessibility.

System safety requirements are:

• integrity of elections (ensuring the accuracy of the elections, all the ballots should
be accounted for and no changes must be made to them),

• privacy of the vote (make ballots indistinguishable from one another, as well as
protect any information about the voter),

• authenticity of the voters (only eligable voters can take part in elections),

• verifiability of the votes (a person should be able to verify that his vote has been
cast and counted),

• protection against attacks (the system should be secure against attacks in any
phase of the elections, and the voters should be able to alert the committee if any
fraud has been detected),

• ensuring the confidentiality of personal data (no voter should be able to prove
to a third party that he voted for a particular person).

At the international level, the systems developed and tested today have some security prob-
lems. A great deal of scientific literature has been devoted to this study [2] - [5], but a number
of questions still remain. Even the best e-voting systems today have some drawbacks.

In [6], the author reviewed electoral systems in some countries, where e-voting was used
during elections. The comparative analysis was carried out on the basis of the main safety
criteria of the most popular modern e-voting systems used in several countries. The study
showed that the systems used nowadays are insecure against external attacks and thus raise
questions about the integrity of elections they are used in. Most of the systems were imple-
mented more than a decade ago, and the security protocols used have gone obsolete since
then. Even the best systems that are steadily replacing paper voting, have been criticized by
third-party studies due to massive vulnerabilities. The need for secure and reliable e-voting
systems remains a relevant problem nowadays. This paper proposes a model based on the
most popular practices in modern e-voting systems.

2. E-voting System Architecture

In the last twenty years there has been active research into the creation of secure voting
systems. These systems are based on public-key cryptography and on the approach that
the voter’s vote is encrypted with a public key that corresponds to it. The private key is
distributed among the members of the electoral commission, so the members of the electoral
commission will be able to decrypt and count the votes together. In addition, special methods
are used to ensure the secrecy of the ballots (MIX network, additive homomorphic encryption
systems...). This study proposes a baseline system architecture based on e-voting systems
and protocols used nowadays, as well as their known vulnerabilities.

A. Avetisyan 41

First, we outline the basic voting procedure, divided into 5 key phases:

• setup phase - setting up the election system architecture,

• e-ballot filling phase - filling out an e-ballot on a device and casting the vote,

• e-ballot registration phase - checking if the e-ballot is eligible and storing it on a
server,

• anonymity phase - making sure all the voter info is stripped away from the e-ballot,

• counting phase - counting all the anonymous ballots and providing the results to
public.

2.1 3-Server Architecture

The proposed e-voting system architecture consists of 3 main servers (see Fig. 1):

• Vote forwarding server is the only publicly accessible server. It verifies the eligibility
of the voter and acts as an intermediary to the backend vote storage server.

• Vote storage server is a backend server that stores signed, encrypted votes during
the online voting period. Upon receiving a vote from the forwarding server, it confirms
that the vote is formatted correctly and verifies the voter’s digital signature.

• Vote counting server is never connected to a network and is only used during the
final stage of the election to count the votes received from the storage server.

Fig. 1. 3-Server architecture.

42 Electronic Voting System Essentials and Problems

2.2 Voting Process

During the initial voting stage, the voter uses client software to cast a vote. The software
has a connection with a forwarding server, which is used to authenticate the voter and check
their eligibility. All communication with elections servers is done via the vote forwarding
server which is the only server accessible from the voter’s device. The vote forwarding
server is an intermediary between the client device and the storage server. After the voter is
authenticated, the client receives a package with a set of candidates. When the voter picks
a candidate, the software encrypts the information about the candidate and signs the data
with the unique key of the voter.The software then sends the encrypted data package to the
forwarding server which returns an ID of the package meaning the vote has been successfully
casted. It is important to note that no information about the voter is sent to the election
server other than their unique signature which can only be used to check the eligibility of
the vote and not the identity of the voter.
The transfer of this data between the forwarding server and storage server remains a huge
issue even nowadays because each part of the system trusts the channels through which the
vote data is transferred. The transfer from client to storage is done via the Internet using
secure protocols (see Fig. 2).

Fig. 2. Casting Vote.

When the vote data arrives at the vote storage server, it is once again checked and
verified. Then the sensitive data like the unique signature is stripped from the votes to make
them completely anonymous before sending to the counting server where the data (which
contains only information about who the vote is for) is decrypted and tabulated (see Fig.
3).

Counting server then writes all the data into an accessible database from which the final
results can be gathered.

A. Avetisyan 43

Fig. 3. Vote Counting.

The discussed system is a basic model of e-voting systems being used nowadays [7] - [10],
but there are vulnerabilities and areas for improvement.

3. Discussion About Vulnerabilities

Although the system may seem straightforward and secure, its current implementations have
raised serious concerns [11] - [13]. The main concern is the secure transfer of the vote data.
Usage of client-side software is essential in e-voting systems so the process of transferring
votes from the client device to the election server should be handled carefully. The inclusion
of transfer server as a buffer between the client and the storage server is integral. We can
differentiate two types of attacks: client-side and server-side.

Client-side attacks target the client device and exploit its vulnerabilities. The client
software needs to be as secure as possible against this kind of attacks by not having any
unwarranted communication with the device.

Server-side attacks target server architecture. The system must be minimally dependent
on the person or people controlling it to be secure. The human factor plays a huge role in
exploiting the election systems. Another major vulnerability is the code vulnerability. Due
to the complex nature of the system, current implementations have been proven to have
significant oversight in security against attacks like denial of service or shell injection.

Attacks target client software or server architecture and try to achieve the following:

• find out confidential information about voters like the candidate they voted for,

• try to alter the results of the election by changing or adding fake votes,

• altering/destroying enough votes to create mistrust in the election results.

To find out information about voters, the attack needs to take place before the anonymity
phase, so client-side attacks mainly take place for this purpose. If the channel between the

44 Electronic Voting System Essentials and Problems

client software and the transfer server is not secure, the data may be intercepted and even
altered. Modern cryptography methods help to encrypt data, so it is hard to decode, but
adding noise to an insecure channel to alter or ruin the vote is easy if someone already has
access. These attacks are generally low-scale as user devices need to be exploited one by
one, even with techniques like botnets it is unlikely to cause too much harm to the overall
security of elections.

The main damage to elections is caused by attacking storage and counting servers and the
channel between them. As all the important vote databases are in those servers, if access
is received by an attacker, the damage to elections will be massive. Having a good and
secure architecture is the key to preventing that from happening. Currently, the systems
use physical data transfer from one server to another, as well as a physical decryption device
that holds the key. This relies too much on actual human beings to securely transfer a lot
of essential data from one point to another, and the whole point of implementing e-voting
is to get rid of the human factor. This also means that the storage server must be easily
accessible for humans to put in data, which is not ideal.

We see that modern systems in use still use ”hybrid” systems partly run by people to
make up for software vulnerabilities that need to be addressed in the future works when it
comes to developing better e-voting systems.

4. Conclusion and Future Work

The paper discussed the basic architecture of the e-voting system, which is the baseline
of systems used nowadays. Understanding the potential problems and vulnerabilities is
essential to creating a secure e-voting system. The 3-server architecture is a good starting
point to build a new system. It is evident that the physical transportation of data in modern
systems is the key problem that has to be addressed first. The use of various steganographic
models can help to reduce the risks of data corruption and tampering. More specifically,
the steganography models with active adversary are very close to imitating attacks that can
happen during elections. One of the main focus points of more secure systems will be the
testability, it is essential to have an ability to quantify the level of security of the model.
To achieve this goal, research has to be conducted in various fields of security, specifically
steganography and differential privacy.

References

[1] M. Stenbro, “Survey of Modern Electronic Voting Technologies”, The Norwegian Uni-
versity of Science and Technology, Master Thesis, 2010.

[2] International IDEA “Introducing Electronic Voting: Essential Considerations”,
https://www.corteidh.or.cr/tablas/28047, 2011.

[3] K. Sanjay and E. Walia, “Analysis of electronic voting system in various countries”,
International Journal on Computer Science and Engineering, vol. 3, no. 5, pp. 1825–
1830, May 2011.

[4] V. Martin, “Evaluation of internet voting systems based on requirements satisfaction”,
International Review of Social Sciences and Humanities, vol. 6, no.1 , pp. 41-52, 2013.

A. Avetisyan 45

[5] A. T. Sherman, R. A. Fink, R. Carback and D. Chaum, “Scantegrity III: Automatic
trustworthy receipts, highlighting over/under votes, and full voter verifiability”, In
Proceedings of the Electronic Voting Technology/Workshop on Trustworthy Elections,
EVT/WOTE, 2011.

[6] A. Avetisyan, “Comparative analysis of modern E-voting systems based on security
criteria”,Proceedings of International Conference CSIT 2021, Yerevan, Armenia, pp.
81-84, 2021.

[7] N. Goodman, J.H. Pammett and J. De Bardeleben, “A comparative assessment of
electronic voting”, Report Prepared for Elections Canada, 2010.

[8] L. Loeber, “E-Voting in the Netherlands: from general acceptance to general doubt in
two years, 3rd International Conference on Electronic Voting, pp. 2130, 2008.

[9] D. F. Aranha and J. van de Graaf, “The Good, the Bad, and the Ugly: Two decades
of E-voting in Brazil”, IEEE Security and Privacy, vol. 16, no. 6, pp. 22-30, Nov.-Dec.
2018.

[10] M. Hapsara, A. Imran and T. Turner, ”E-Voting in developing countries”, Electronic
Voting. E-Vote-ID 2016. Lecture Notes in Computer Science, vol. 10141, pp. 3655,
2017.

[11] D. Springall, T. Finkenauer, Z. Durumeric, J. Kitcat, H. Hursti, M. MacAlpine and J.
Halderman, ”Security analysis of the estonian internet voting system”, Proceedings of
the 21st ACM Conference on Computer and Communications Security, pp. 703-715,
2014.

[12] T. Haines, S. J. Lewis, O. Pereira and V. Teague, “How not to prove your election
outcome,” IEEE Symposium on Security and Privacy (SP), pp. 644-660, 2020.

[13] M. A. Specter, J. Koppel and D. Weitzner, “The ballot is busted before the blockchain:
a security analysis of voatz, the first internet voting application used in U.S. fed-
eral elections”, Proceedings of the 29th USENIX Conference on Security Symposium.
USENIX Association, pp. 1535-1552, 2020.

4 6 Electronic Voting System Essentials and Problems

¾É»ÏïñáÝ³ÛÇÝ ùí»³ñÏáõÃÛ³Ý ÑÇÙáõÝùÝ»ñÁ ¨ ËÝ¹ÇñÝ»ñÁ

²ñÙ³Ý ². ²í»ïÇëÛ³Ý

èáõë-Ñ³ÛÏ³Ï³Ý Ñ³Ù³Éë³ñ³Ý, ºñ¨³Ý, Ð³Û³ëï³Ý

e-mail: armanavetisyan1997@gmail.com

²Ù÷á÷áõÙ

Îñíîâû è ïðîáëåìû ýëåêòðîííîãî ãîëîñîâàíèÿ

Àðìàí À. Àâåòèñÿí

Ðîññèéñêî-Àðìÿíñêèé óíèâåðñèòåò, Åðåâàí, Àðìåíèÿ
e-mail: armanavetisyan1997@gmail.com

Àííîòàöèÿ

Ðàçðàáîòêà íàäåæíûõ è áåçîïàñíûõ ñèñòåì ýëåêòðîííîãî ãîëîñîâàíèÿ
àêòóàëüíà èç-çà øèðîêîãî ñïåêòðà ïðèìåíåíèé. Â äàííîé ðàáîòå áûë ïðîâåäåí
àíàëèç ñîâðåìåííûõ ñèñòåì ýëåêòðîííîãî ãîëîñîâàíèÿ íà îñíîâå êðèòåðèåâ
áåçîïàñíîñòè. Àíàëèç ïðîâîäèëñÿ íà îñíîâå íàèáîëåå ïîïóëÿðíûõ ñîâðåìåííûõ
àðõèòåêòóð ñèñòåì ýëåêòðîííîãî ãîëîñîâàíèÿ. Äàííûé àíàëèç ÿâëÿåòñÿ îñíîâîé
äëÿ ðàçðàáîòêè áåçîïàñíîé ñèñòåìû ýëåêòðîííîãî ãîëîñîâàíèÿ.

Êëþ÷åâûå ñëîâà: ýëåêòðîííîå ãîëîñîâàíèå, èíòåðíåò-ãîëîñîâàíèå, èíôîðìà-
öèîííàÿ áåçîïàñíîñòü, âûáîðû, àðõèòåêòóðà ñèñòåìû, ñèñòåìû ãîëîñîâàíèÿ.

Ðáõë³ÉÇ ¨ ³Ýíï³Ý· ¿É»ÏïñáÝ³ÛÇÝ ùí»³ñÏáõÃÛ³Ý Ñ³Ù³Ï³ñ·»ñÇ Ùß³ÏáõÙÝ
³ñ¹Ç³Ï³Ý ¿ ÏÇñ³éáõÃÛáõÝÝ»ñÇ É³ÛÝ ßñç³Ý³ÏÇ å³ï×³éáí: ²ßË³ï³ÝùáõÙ Ý»ñÏ³Û³ó-
íáõÙ ¿ Å³Ù³Ý³Ï³ÏÇó ¿É»ÏïñáÝ³ÛÇÝ ùí»³ñÏáõÃÛ³Ý Ñ³Ù³Ï³ñ·»ñÇ í»ñÉáõÍáõÃÛáõÝ`
ÑÇÙÝí³Í ³Ýíï³Ý·áõÃÛ³Ý ã³÷³ÝÇßÝ»ñÇ íñ³: ì»ñÉáõÍáõÃÛáõÝÝ Çñ³Ï³Ý³óí»É ¿`
ÑÇÙÝí»Éáí ¿É»ÏïñáÝ³ÛÇÝ ùí»³ñÏáõÃÛ³Ý ³Ù»Ý³Ñ³ÛïÝÇ Å³Ù³Ý³Ï³ÏÇó Ñ³Ù³Ï³ñ·»ñÇ
íñ³: ì»ñÉáõÍáõÃÛáõÝÁ ÑÇÙù ¿ Ñ³Ý¹Çë³ÝáõÙ ³Ýíï³Ý· ¿É»ÏïñáÝ³ÛÇÝ ùí»³ñÏáõÃÛ³Ý
Ñ³Ù³Ï³ñ·»ñÇ Ùß³ÏÙ³Ý Ñ³Ù³ñ:

´³Ý³ÉÇ µ³é»ñ` ¿É»ÏïñáÝ³ÛÇÝ ùí»³ñÏáõÃÛáõÝ, ÇÝï»ñÝ»ï ùí»³ñÏáõÃÛáõÝ, ï»-
Õ»Ï³ïí³Ï³Ý ³Ýíï³Ý·áõÃÛáõÝ, ÁÝïñáõÃÛáõÝÝ»ñ, Ñ³Ù³Ï³ñ·Ç ×³ñï³ñ³å»ïáõÃÛáõÝ,
ùí»³ñÏáõÃÛ³Ý Ñ³Ù³Ï³ñ·»ñ:

Mathematical Problems of Computer Science 57, 47–55, 2022.
doi: 10.51408/1963-0086

 UDC 510.64

On Sizes of Linear and Tree-Like Proofs for any Formulae

Families in Some Systems of Propositional Calculus

 Levon A. Apinyan1 and Anahit A. Chubaryan2

1Russian-Armenian University, Yerevan, Armenia

2Yerevan State University, Yerevan, Armenia
e-mail: apinlev00@gmail.com, achubaryan@ysu.am

Abstract

The sizes of linear and tree-like proofs for any formulae families are investigated in

some systems of propositional calculus: in different sequent systems (with quantifier rules,
with the substitution rule, with the cut rule, without the cut rule, monotone) and in the
generalization splitting system. The comparison of results obtained here with the bounds
obtained formerly for the steps of proofs for the same formulas in the mentioned systems
shows the importance of the size of proof among the other characteristics of proof
complexities.

 Keywords: The varieties of propositional sequent systems, The generalization splitting
 system, The proof size and number of proof steps, Exponential speed-up.
 Article info: Received 15 March 2022; accepted 12 May 2022.

1. Introduction

The existence of a propositional proof system, which has polynomial-size proofs for all
tautologies, is equivalent to saying that N P = co -N P [1]. This simple observation has drawn
attention in recent years to the formalisms of propositional logic for the study of questions of
computational complexity A hierarchy of propositional proof systems has been defined in terms
of two main complexity characteristics (size and lines), and the relations between these systems
are currently being analyzed. New systems are discovered and, as a consequence, the
computational power of the old ones is better understood. It was shown in [2] that the addition of
quantifier rules to the propositional sequent calculus induces, for some sequences of formulas, an
exponential speed-up by lines over Substitution Frege systems when proofs are considered as trees.
It was shown in [3] that the lines for linear proofs of the same formulae families both in quantifier
systems and in the systems with substitution systems are the same by order. In this paper, we

47

mailto:apinlev00@gmail.com
mailto:achubaryan@ysu.am

On Sizes of Linear and Tree-Like Proofs for any Formulae Families in Some Systems

48

investigate the sizes of linear and tree-like proofs for the mentioned sequence of formulas in some
sequent systems (QPK – the system with quantifier rules, SPK – the system with substitution rule,
PK – the system with cut-rule, PK- – the system without cut-rule, Pmon- the monotone system)
and in the system GS, based on the generalized splitting method. The comparative analysis of our
results shows that the size of proofs is a more important complexity characteristic of proofs and
the linear proofs are preferable to the tree-like proofs.

2. Preliminaries

We will use the current concepts of a propositional formula, quantified propositional formula,
a free variable in a quantified formula, sequent, different sequent systems and proof
complexities. The language of the considered systems contains the propositional variables,
logical connectives ¬, &,˅,⊃ and parentheses (,). Note that some parentheses can be omitted
in generally accepted cases. In some systems, we can use the symbols Τ for «true» and
⏊ for «false».

2.1 Definition of Considered Sequent Systems

The sequent system uses the denotation of sequent Γ → Δ, where Γ (antecedent) and Δ
(succedent) are finite (may be empty) sequences of propositional formulas.

For every propositional variable p, the sequents p → p, → Τ are axioms of PK. For every
formulas 𝐴𝐴 ,𝐵𝐵, for any sequence of formulas Γ and sequence Δ, the logic rules are as follows:

⊃→
 Γ → Δ, A B, Γ → Δ

𝐴𝐴 ⊃ 𝐵𝐵, Γ → Δ
 →⊃

A, Γ → B, Δ
Γ → 𝐴𝐴 ⊃ 𝐵𝐵,Δ

∨→
 A, Γ → Δ and B, Γ → Δ

𝐴𝐴 ∨ 𝐵𝐵, Γ → Δ
 →∨

Γ → A, Δ or Γ → B, Δ
Γ → 𝐴𝐴 ∨ 𝐵𝐵, Δ

& →
 A, Γ → Δ or B, Γ → Δ

𝐴𝐴&𝐵𝐵, Γ → Δ
 → &

Γ → A,Δ and Γ → B,Δ
Γ → 𝐴𝐴&𝐵𝐵,Δ

¬→
 Γ → A, Δ

¬𝐴𝐴, Γ → Δ
 → ¬

𝐴𝐴, Γ → Δ
Γ → ¬𝐴𝐴, Δ

,

 Structural rule is Cut rule is

 Γ → Δ
 Γ′ → Δ′

,
Γ → Δ, A A, Γ → Δ

Γ → Δ
.

where Γ′(Δ′) contains Γ(Δ)

The system PK— is obtained from the system PK by removing the cut rule. The system SPK

is obtained from the system PK by adding a substitution rule:

𝑆𝑆𝑝𝑝В
С(p),Γ → Δ, A(p)
С(В), Γ → Δ, A(B)

,

L. Apinyan and A. Chubaryan

49

where the variable р has no occurrences either in Γ or in Δ, В is the formula, which is
substituted everywhere for the variable р.
 The system QPK is obtained from the system PK by adding the following rules :

A(q),Γ → Δ
 (∃p)A(p),Γ → Δ

(∃ →)
Γ → Δ, A(B)

Γ → Δ, (∃p)A(p)
(→ ∃)

A(B)Γ → Δ

 (∀p)A(p),Γ → Δ
(∀→) Γ → Δ,A(q)

Γ → Δ,(∀p)A(p)
(→ ∀),

where B is any quantified propositional formula. The application of the rules ∃ → and → ∀ is
restricted to the following requirements: the eigenvariable q does not occur free in the lower sequent
of the rule, and all occurrences of q in A(q) are substituted by p. The rules → ∃ and ∀→ require B
not to contain variables, which are under the scope of some quantifier.
 All formulas in the antecedents and succedents of the system Pmon use only monotone
logical functions, therefore the rules for implication and negation are not used here.

2.2 Definition of the System GS

Following the usual terminology, we call the variables and negated variables literals.
 The following notions were introduced in [4]. Each of the under-mentioned trivial identities
for a propositional formula 𝜓𝜓 is called a replacement rule:

Application of the replacement rule to some words consists in the replacing of some of its
subwords having the form of the left-hand side of one of the above identities by the corresponding
right-hand side.

The proof system GS. Let φ be some formula and p be some of its variables. Results of
the splitting method of formula φ by the variable p (splinted variable) are the formulas φ[p𝛅𝛅] for
every 𝛅𝛅 from the set {0,1}, which are obtained from φ by assigning 𝛅𝛅 to each occurrence of p and
successively using replacement rules. The generalization of the splitting method allows every
formula φ to associate some tree with a root, the nodes of which are labeled by formulas and edges,
labeled by literals. The root is labeled by the formula φ itself. If some node is labeled by the
formula v and α is some of its variable, then both edges outgoing from this node, are labeled by
one of the literals α𝛅𝛅 for every 𝛅𝛅 from the set {0,1}, and each of 2 “sons” of this node is labeled by
the corresponding formula v[α𝛅𝛅]. Each of the tree’s leaves is labeled with some constant from the
set {0,1}. The tree, which is constructed for the formula φ by the described method, we will call a
splitting tree (s.t.) of φ. It is obvious, that by changing the order of splinted variables in the given
formula φ, we can obtain different splitting trees of φ.

 The GS proof system can be defined as follows: for every formula φ must be constructed
some s.t. and if all the tree’s leaves are labeled by the value 1, then the formula φ is a tautology,
and therefore we can consider the pointed constant 1 as an axiom, and for every formula 𝑣𝑣, which
is a label of some s.t. node, and p is its splinted variable, then the following figure 𝑣𝑣 [𝑝𝑝0], 𝑣𝑣 [𝑝𝑝1] ⊢𝑣𝑣

0 & 𝜓𝜓 = 0, 𝜓𝜓 & 0 = 0, 1 & 𝜓𝜓 = 𝜓𝜓, 𝜓𝜓 & 1 = 𝜓𝜓,
0 ˅ 𝜓𝜓 = 𝜓𝜓, 𝜓𝜓 ˅ 0 = 𝜓𝜓, 1 ˅𝜓𝜓 = 1, 𝜓𝜓 ˅ 1 = 1,
0 ⊃ 𝜓𝜓 = 1, 𝜓𝜓 ⊃ 0 = 𝜓𝜓�, 1 ⊃ 𝜓𝜓 = 𝜓𝜓, 𝜓𝜓 ⊃ 1 = 1,
0� = 1, 1� = 0, 𝜓𝜓� = 𝜓𝜓,
0 ≡ 𝜓𝜓 = 𝜓𝜓�, 𝜓𝜓 ≡ 0 = 𝜓𝜓�, 1 ≡ 𝜓𝜓 = 𝜓𝜓, 𝜓𝜓 ≡ 1 = 𝜓𝜓

On Sizes of Linear and Tree-Like Proofs for any Formulae Families in Some Systems

50

can be considered as some inference rule, hence, every above-described s.t. can be considered as
some proof of φ in the system GS .

2.3 Proof Complexities

By | 𝜑𝜑| we denote the size of a formula 𝜑𝜑, defined as the number of all logical signs in it. It is
obvious that the full size of a formula, which is understood to be the number of all symbols, is
bounded by some linear function in |𝜑𝜑 |.

In the theory of proof complexity, the two main characteristics of the proof are: t-
complexity (lines) defined as the number of proof steps, 𝒍𝒍-complexity (size) defined as the sum
of sizes for all formulas (sequents) in the proof [1, 2].

Let ϕ be some proof system, φ be some tautology. By 𝒕𝒕ϕ(φ)�𝒍𝒍ϕ(φ)� is denoted the minimal
possible value of t-complexity (𝑙𝑙-complexity) for all Φ-proofs of φ (sequent → φ).

If for some sequence of sequents →ϕn in two systems 𝜙𝜙1 and 𝜙𝜙2for sufficiently large n is
valid 𝑡𝑡𝜙𝜙1(𝜑𝜑𝑛𝑛) = Ω(2𝑡𝑡𝜙𝜙2(𝜑𝜑𝑛𝑛)), then we say that the system 𝜙𝜙2 has exponential sped-up by lines
over the system 𝜙𝜙1.

2.4. Results of the Papers [2,3]

Some family of tautologies is introduced in [2]. For propositional variable p, the formula pm is
defined inductively as 𝑝𝑝0 ≡ 𝑝𝑝 и 𝑝𝑝𝑖𝑖+1 ≡ (𝑝𝑝𝑖𝑖&𝑝𝑝𝑖𝑖) for 𝑖𝑖 ≥ 0. It is easy to verify that the formula 𝑝𝑝𝑚𝑚
has 2𝑚𝑚 − 1 logical signs and m distinct subformulas.

To simplify further notes, we introduce the following denotations. Let Ф be some sequent
system, t- complexity (l-complexity) for tree-like proofs of the sequent 𝑝𝑝 → 𝑝𝑝𝑚𝑚 is denoted by
𝑻𝑻𝒕𝒕(𝒎𝒎)�𝑻𝑻𝒍𝒍ϕ(𝒎𝒎)�, and for linear proofs, accordingly, by 𝐿𝐿𝒕𝒕ϕ(𝒎𝒎)�𝑳𝑳𝒍𝒍ϕ(𝒎𝒎)�.

Theorem 1: ([2]). For sufficiently large n and sequence of sequents 𝑝𝑝 → 𝑝𝑝2𝑛𝑛the following holds:

𝑇𝑇𝒕𝒕𝐐𝐐𝐏𝐏𝐏𝐏(2𝑛𝑛)=О(n); 𝑇𝑇𝒕𝒕𝐒𝐒𝐏𝐏𝐏𝐏(2𝑛𝑛)= 𝛺𝛺(2𝑛𝑛); T𝒕𝒕𝐏𝐏𝐏𝐏(2𝑛𝑛)= 𝛺𝛺(2𝑛𝑛); 𝑇𝑇𝒕𝒕𝐏𝐏𝐏𝐏—(2𝑛𝑛)= 𝛺𝛺�22𝑛𝑛�.

 For the lines of linear proofs of the same sequence, the following was proved in [3]..

Theorem 2: ([3]). For sufficiently large n and sequence of sequents 𝑝𝑝 → 𝑝𝑝2𝑛𝑛the following holds:

𝑳𝑳𝒕𝒕𝐐𝐐𝐏𝐏𝐏𝐏(2𝑛𝑛)=О(n); L𝒕𝒕𝐒𝐒𝐏𝐏𝐏𝐏(2𝑛𝑛)= О(n); 𝐿𝐿𝒕𝒕𝐏𝐏𝐏𝐏(2𝑛𝑛)= 𝜃𝜃(2𝑛𝑛); 𝐿𝐿𝒕𝒕𝐏𝐏𝐏𝐏—(2𝑛𝑛)= 𝜃𝜃(2𝑛𝑛).

The comparative analysis results of both above theorems shows that the system QPK has no

preference by lines of proof over the system SPK, and the latter system has a well-known speed-
up by lines over PK. Analogous sped-up was first fixed in [5].

3. The Main Results

3.1. The l-complexities of linear proofs for the same family of sequents 𝑝𝑝 → 𝑝𝑝2𝑛𝑛in above-
mentioned sequent systems are investigated here.

L. Apinyan and A. Chubaryan

51

Theorem 3: For sufficiently large n and sequence of sequents 𝑝𝑝 → 𝑝𝑝2𝑛𝑛the following holds:

𝐿𝐿𝑙𝑙𝐐𝐐𝐏𝐏𝐏𝐏(2𝑛𝑛)= 𝜃𝜃(22𝑛𝑛); 𝐿𝐿𝑙𝑙𝐒𝐒𝐏𝐏𝐏𝐏(2𝑛𝑛)= 𝜃𝜃(22𝑛𝑛); 𝐿𝐿𝑙𝑙𝐏𝐏𝐏𝐏(2𝑛𝑛)= 𝜃𝜃(22𝑛𝑛); 𝐿𝐿𝑙𝑙𝐏𝐏𝐏𝐏—(2𝑛𝑛)=𝜃𝜃(22𝑛𝑛) and
𝐿𝐿𝑙𝑙𝐏𝐏𝒎𝒎𝒎𝒎𝒎𝒎(2𝑛𝑛)= 𝜃𝜃�22𝑛𝑛�.

 To prove the mentioned results, we should evaluate the sizes of proofs for the sequents 𝑝𝑝 →
𝑝𝑝2𝑛𝑛in all the mentioned systems. Note that | 𝑝𝑝2𝑛𝑛 | = 22𝑛𝑛 − 1 and as the derivable sequent itself must
be in every proof, then the lower bounds Ω(22𝑛𝑛) are obvious for all systems. To prove the upper
bounds, we investigate the “good” linear proofs in the mentioned systems.

Linear proof in QPK

We use the tree-like proofs of 𝑝𝑝 → 𝑝𝑝2𝑛𝑛 in the system QPK with О(n) lines [2]. At first, we
consider the provable sequent ∀𝑞𝑞(𝑞𝑞 ⊃ 𝑞𝑞𝑘𝑘) → ∀𝑞𝑞(𝑞𝑞 ⊃ 𝑞𝑞2𝑘𝑘), where k is an arbitrary integer and
𝑞𝑞2𝑘𝑘 = (𝑞𝑞𝑘𝑘)𝑘𝑘. The proof of this sequent will not depend on k and can be obtained in a constant
number of lines as follows (note, that their sizes are written to the right of every sequent):

𝑝𝑝 → 𝑝𝑝 𝑝𝑝𝑘𝑘 → 𝑝𝑝𝑘𝑘 2k+2+2
𝑝𝑝 ⊃ 𝑝𝑝𝑘𝑘,𝑝𝑝 → 𝑝𝑝𝑘𝑘 2k+2+2
∀𝑞𝑞(𝑞𝑞 ⊃ 𝑞𝑞𝑘𝑘),𝑝𝑝 → 𝑝𝑝𝑘𝑘 𝑝𝑝2𝑘𝑘 → 𝑝𝑝2𝑘𝑘 2k+2+22k+2+5
∀𝑞𝑞(𝑞𝑞 ⊃ 𝑞𝑞𝑘𝑘),𝑝𝑝𝑘𝑘 ⊃ 𝑝𝑝2𝑘𝑘, 𝑝𝑝 → 𝑝𝑝2𝑘𝑘 2k+2+22k+2+5
∀𝑞𝑞(𝑞𝑞 ⊃ 𝑞𝑞𝑘𝑘),𝑝𝑝𝑘𝑘 ⊃ 𝑝𝑝2𝑘𝑘 → 𝑝𝑝 ⊃ 𝑝𝑝2𝑘𝑘 2k+2+22k+2+6
∀𝑞𝑞(𝑞𝑞 ⊃ 𝑞𝑞𝑘𝑘),∀𝑞𝑞(𝑞𝑞 ⊃ 𝑞𝑞𝑘𝑘) → 𝑝𝑝 ⊃ 𝑝𝑝2𝑘𝑘 2k+2+22k+1+8
∀𝑞𝑞(𝑞𝑞 ⊃ 𝑞𝑞𝑘𝑘) → 𝑝𝑝 ⊃ 𝑝𝑝2𝑘𝑘 2k+1+22k+1+5
∀𝑞𝑞(𝑞𝑞 ⊃ 𝑞𝑞𝑘𝑘) → ∀𝑞𝑞(𝑞𝑞 ⊃ 𝑞𝑞2𝑘𝑘) 2k+1+22k+1+7

Note, that this proof is also linear. By combining the above sequents n times, one obtains

∀𝑞𝑞(𝑞𝑞 ⊃ 𝑞𝑞2) → ∀𝑞𝑞�𝑞𝑞 ⊃ 𝑞𝑞2𝑛𝑛�,

and since ∀𝑞𝑞(𝑞𝑞 ⊃ 𝑞𝑞2) is provable in constant lines, one infers ∀𝑞𝑞(𝑞𝑞 ⊃ 𝑞𝑞2𝑛𝑛), and therefore → 𝑝𝑝 ⊃
𝑝𝑝2𝑛𝑛in O(n) lines. The number of all logical signs in the pointed part of the proof is

7∙2k+2 + 9 ∙ 22k+1+ 40, and as such steps are repeated n times with k = 2i, for i = 0, 1, 2, …, n, then

the size of all proofs must be � (7 ∙ 22𝑖𝑖+2 + 9 ∙
𝑛𝑛

𝑖𝑖=0
22𝑖𝑖+1+1 + 40). The bound of the major

addendum is 7� 22𝑖𝑖+2
𝑛𝑛

𝑖𝑖=0
≤ 7� 2𝑖𝑖2𝑛𝑛+2

𝑖𝑖=0 ≤ 7 ∙ (22𝑛𝑛+3 − 1), and hence the upper bound is

O(22𝑛𝑛). So, 𝐿𝐿𝑙𝑙𝐐𝐐𝐏𝐏𝐏𝐏(2𝑛𝑛)= 𝜃𝜃(22𝑛𝑛).

Linear proof in SPK

1 𝑝𝑝0 → 𝑝𝑝0 axs. 0
2 𝑝𝑝0 → 𝑝𝑝1 (→ &) 21 - 1
3 𝑝𝑝1 → 𝑝𝑝2 subst. 21 − 1 + 22 − 1
4 𝑝𝑝0 → 𝑝𝑝2 cut 22 − 1
5 𝑝𝑝2 → 𝑝𝑝4 subst. 22 − 1 + 24 − 1 (1)
6 𝑝𝑝0 → 𝑝𝑝4 cut 24 - 1

On Sizes of Linear and Tree-Like Proofs for any Formulae Families in Some Systems

52

…
2n + 1 𝑝𝑝2𝑛𝑛−1 → 𝑝𝑝2𝑛𝑛 subst. 22𝑛𝑛−1 − 1+ 22𝑛𝑛 − 1
2n + 2 𝑝𝑝0 → 𝑝𝑝2𝑛𝑛 cut 22𝑛𝑛 − 1

It is not difficult to see that the size cannot be more, than 3 � 22𝑖𝑖
𝑛𝑛

𝑖𝑖=0
 ≤ 3� 2𝑖𝑖2𝑛𝑛

𝑖𝑖=0 ≤ 22𝑛𝑛+3 ,

hence the upper bound is O(22𝑛𝑛). So, 𝐿𝐿𝑙𝑙𝐒𝐒𝐏𝐏𝐏𝐏(2𝑛𝑛)= 𝜃𝜃(22𝑛𝑛).

Linear proof in PK

1 𝑝𝑝0 → 𝑝𝑝0 0
2 𝑝𝑝0 → 𝑝𝑝1 (→ &) 21 - 1
3 𝑝𝑝0 → 𝑝𝑝2 (→ &) 22 − 1
4 𝑝𝑝0 → 𝑝𝑝3 (→ &) 23 − 1
... (2)
2𝑛𝑛 𝑝𝑝0 → 𝑝𝑝2𝑛𝑛−1 (→ &) 22𝑛𝑛−1 −1
2𝑛𝑛+1 𝑝𝑝0 → 𝑝𝑝2𝑛𝑛 (→ &) 22𝑛𝑛 −1

The size of such linear proof must be no more, than � 2𝑖𝑖2𝑛𝑛

𝑖𝑖=0 ≤ 22𝑛𝑛+1, hence the upper
bound is O(22𝑛𝑛). So, 𝐿𝐿𝑙𝑙𝐏𝐏𝐏𝐏(2𝑛𝑛)= 𝜃𝜃(22𝑛𝑛).

As in this proof we do not use the cut rule, but only the rule (→ &), then the bounds both
in PK— and in Pmon are analogous.

 Theorem 1 is proved.

3.2. The l-complexities of tree-like proofs for the same family of sequents 𝑝𝑝 → 𝑝𝑝2𝑛𝑛in the above-
mentioned sequent systems are investigated here.

Theorem 4: For sufficiently large n and sequence of sequents 𝑝𝑝 → 𝑝𝑝2𝑛𝑛the following holds:

𝑇𝑇𝑙𝑙𝐐𝐐𝐏𝐏𝐏𝐏(2𝑛𝑛)= 𝜃𝜃(22𝑛𝑛); 𝑇𝑇𝑙𝑙𝐒𝐒𝐏𝐏𝐏𝐏(2𝑛𝑛)= 𝜃𝜃(22𝑛𝑛);
 log2 (𝑇𝑇𝑙𝑙𝐏𝐏𝐏𝐏(2𝑛𝑛)) = 𝜃𝜃(2𝑛𝑛); log2 (𝑇𝑇𝑙𝑙𝐏𝐏𝐏𝐏—(2𝑛𝑛))=𝜃𝜃(2𝑛𝑛) и log2 (𝑇𝑇𝑙𝑙𝐏𝐏𝒎𝒎𝒎𝒎𝒎𝒎(2𝑛𝑛))= 𝜃𝜃(2𝑛𝑛).

To prove these results, we transform every linear proof above into a tree-like proof in the

same system.

The size of tree-like proof in QPK: As we noted above, the proof in QPK is linear and

tree-like simultaneously, hence the bound is the same.

The size of tree-like proof in SPK: We should transform the above proof (1) into tree-like.

It is enough to change every part « p0→ 𝑝𝑝2𝑖𝑖, 𝑝𝑝2𝑖𝑖 → 𝑝𝑝2𝑖𝑖+1 (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑖𝑖𝑡𝑡𝑠𝑠𝑡𝑡𝑖𝑖𝑠𝑠𝑠𝑠), p0→ 𝑝𝑝2𝑖𝑖+! (cut)» for 0≤
𝑖𝑖 ≤ 𝑠𝑠 − 1 of linear proof with the part «tree-like proof of p0→ 𝑝𝑝2𝑖𝑖 ,𝑝𝑝2𝑖𝑖 → 𝑝𝑝2𝑖𝑖+1 (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑖𝑖𝑡𝑡𝑠𝑠𝑡𝑡𝑖𝑖𝑠𝑠𝑠𝑠),
tree-like proof of p0→ 𝑝𝑝2𝑖𝑖, p0→ 𝑝𝑝2𝑖𝑖+! (cut)». After such transformation we have

𝑇𝑇𝑙𝑙𝐒𝐒𝐏𝐏𝐏𝐏�2𝑖𝑖� ≤2𝑇𝑇𝑙𝑙𝐒𝐒𝐏𝐏𝐏𝐏�2𝑖𝑖−1� + �𝑝𝑝2𝑖𝑖−1 → 𝑝𝑝2𝑖𝑖� + �𝑝𝑝0 → 𝑝𝑝2𝑖𝑖� 𝑓𝑓𝑠𝑠𝑓𝑓 1 ≤ 𝑖𝑖 ≤ 𝑠𝑠,

hence

L. Apinyan and A. Chubaryan

53

 𝑇𝑇𝑙𝑙SPK(2n) ≤ 2𝑛𝑛𝑙𝑙дSPK(20) + � 2𝑛𝑛−𝑖𝑖(22𝑖𝑖+2
𝑛𝑛

𝑖𝑖=1
) ≤ 2𝑛𝑛 + 2𝑛𝑛+222𝑛𝑛+2.

So, the upper bound is O(22𝑛𝑛), hence 𝑇𝑇𝑙𝑙𝐒𝐒𝐏𝐏𝐏𝐏(2𝑛𝑛)= 𝜃𝜃(22𝑛𝑛).

The size of tree-like proof in PK: Here we should transform the above proof (2) into tree-
like. It is enough to change every part « p0→ 𝑝𝑝𝑖𝑖, p0→ 𝑝𝑝𝑖𝑖+1 (→ &)» for 0≤ 𝑖𝑖 ≤ 𝑠𝑠 − 1 of linear proof
with the part « tree-like proof of p0→ 𝑝𝑝𝑖𝑖 , tree-like proof of p0→ 𝑝𝑝𝑖𝑖, p0→ 𝑝𝑝𝑖𝑖+1 (→ &)», then it is
obvious that

𝑇𝑇𝑙𝑙𝐏𝐏𝐏𝐏(𝒊𝒊) ≤2𝑇𝑇𝑙𝑙𝐏𝐏𝐏𝐏(𝒊𝒊 − 𝟏𝟏) + �𝑝𝑝0 → 𝑝𝑝𝑖𝑖� 𝑓𝑓𝑠𝑠𝑓𝑓 1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛,
hence we have

𝑇𝑇𝑙𝑙PK(2n) ≤ 22𝑛𝑛𝑇𝑇𝑙𝑙PK(20) + � 2𝑖𝑖(2𝑛𝑛−𝑖𝑖2𝑛𝑛

𝑖𝑖=1) ≤ 22𝑛𝑛 + 2𝑛𝑛22𝑛𝑛(2𝑛𝑛+1)/2.

So, the upper bound for log2(𝑇𝑇𝑙𝑙PK(2n)) is O(2𝑛𝑛), and hence log2 (𝑇𝑇𝑙𝑙𝐏𝐏𝐏𝐏(2𝑛𝑛)) = 𝜃𝜃(2𝑛𝑛).
As above, in this proof we do not use the cut rule, but only the rule (→ &), then the bounds

both in PK— and in Pmon are analogous.
Theorem 4 is proved.

 Note that we do not have any exponential speed-up here (it may only be quadratic).

The size of linear and tree-like proofs in GS:

Тheorem 5: For sufficiently large n and sequence of formulas 𝑝𝑝 ⊃ 𝑝𝑝2𝑛𝑛the following holds:
𝐿𝐿𝑡𝑡𝑮𝑮𝑮𝑮(2𝑛𝑛)= 𝜃𝜃(1); 𝑇𝑇𝑡𝑡𝑮𝑮𝑮𝑮(2𝑛𝑛)= 𝜃𝜃(1);

𝐿𝐿𝑙𝑙𝑮𝑮𝑮𝑮(2𝑛𝑛)= 𝜃𝜃(22𝑛𝑛); 𝑇𝑇𝑙𝑙𝑮𝑮𝑮𝑮(2𝑛𝑛)= 𝜃𝜃(22𝑛𝑛).

 Note that every formula 𝑝𝑝 ⊃ 𝑝𝑝2𝑛𝑛has only one variable for split, hence the proof of Theorem
5 is obvious.

4. Conclusion

The analysis of all the results shows that in the theory of proof complexity, the investigations of l-
complexity in linear proofs are important.

References

[1] S. A. Cook and A. R. Reckhow, “The relative efficiency of propositional proof systems”,
Symbolic Logic, vol. 44, pp. 36-50, 1979.

[2] A. Carbone, “Quantified propositional logic and the number of lines of tree-like proofs”,
Studia Logica, vol. 64, pp. 315-321, 2000.

On Sizes of Linear and Tree-Like Proofs for any Formulae Families in Some Systems

54

[3] А. A. Тамазян и А. A. Чубарян, “Об отношениях сложностей выводов в ряде систем
исчисления высказываний”, Математические вопросы кибернетики и
вычислстельной техники, vol. 54, pp. 138-146, 2020.

[4] Ан. А. Чубарян и Арм. А. Чубарян, “Оценки некоторых сложностных характеристик
выводов в системе обобщенных расщеплений”, НАУ, Отечественная наука в эпоху
изменений: постулаты прошлого и теории нового времени, часть 10, 2(7), стр.11-14,
2015.

[5] Г. Цейтин и Ан. Чубарян, “Некоторые оценки длин логических выводов в
классическом исчислении высказываний”, ДАН Арм. ССР, том 55, но.1, стр. 10-12,
1972.

Ասույթային հաշվի մի շարք համակարգերում բանաձևերի որոշ
ընտանիքների գծային և ծառատիպ արտածումների

երկարությունների մասին

Լևոն Ա. Ափինյան1 և Անահիտ Ա. Չուբարյան2

1Ռուս-հայկական համալսարան, Երևան, Հայաստան

2Երևանի պետական համալսարան, Երևան, Հայաստան
e-mail: apinlev00@gmail.com, achubaryan@ysu.am

Ամփոփում

Բանաձևերի մի քանի ընտանիքների համար ուսումնասիրված են գծային և
ծառատիպ արտածումների երկարությունները ասույթային հաշվի մի քանի
համակարգերում՝ սեկվենցիալ համակարգերի տարատեսակներում
/ծավալիչներով, տեղադրման կանոնով, հատույթի կանոնով, առանց հատույթի
կանոնի, մոնոտոն/, ինչպես նաև ընդհանրացված տրոհումների համակարգում:
Սույն աշխատանքում ստացված արդյունքների համեմատումը նախկինում
ստացված նույն բանաձևերի նշված համակարգերում արտածումների քայլերի
համար ստացված արդյունքների հետ փաստում են արտածումների երկարության՝
որպես բարդության բնութագրիչի արժեքավորումը:

Բանալի բառեր՝ ասույթային հաշվի սեկվենցիալ համակարգերի
տարատեսակներ, ընդհանրացված տրոհումների համակարգ, արտածման քայլերի
քանակ և երկարություն, էքսպոնենցիալ արագացում:

mailto:apinlev00@gmail.com
mailto:achubaryan@ysu.am

L. Apinyan and A. Chubaryan

55

О длинах линейных и древовидных выводов некоторых
семейств формул в ряде систем исчисления

высказываний

 Левон A. Апинян1 и Анаит А. Чубарян2

1Российско-Армянский университет, Ереван, Армения

2Ереванский государственный университет, Ереван, Армения
e-mail: apinlev00@gmail.com, achubaryan@ysu.am

Аннотация

Для некоторых семейств формул исследованы длины линейных и древовидных

выводов в ряде систем исчисления высказываний: в разновидностях секвенциальных
систем (с кванторами, с правилом подстановки, с правилом сечения, без правила сечения,
монотонных), а также в системе обобщенных расщеплений. Сравнение полученных
результатов с ранее полученными оценками для шагов тех же разновидностей выводов
тех же формул и в тех же системах указывают на определенную значимость именно
длины вывода как основной сложностной характеристики выводов.

Kлючевые слова: разновидности секвенциальных систем исчисления
высказываний; система обобщенных расщеплений; количество шагов и длина вывода;
экспоненциальное ускорение.

mailto:apinlev00@gmail.com
mailto:achubaryan@ysu.am

Mathematical Problems of Computer Science 57, 56–64, 2022.
doi: 10.51408/1963-0087

UDC 519.7

Complete Caps in Affine Geometry 𝑨𝑨𝑨𝑨(𝒏𝒏,𝟑𝟑)

Karen I. Karapetyan

Institute for Informatics and Automation Problems of NAS RA
e-mail: karen-karapetyan@iiap.sci.am

Abstract

We consider the problem of constructing complete caps in affine geometry 𝐴𝐴𝐴𝐴(𝑛𝑛, 3)

of dimension 𝑛𝑛 over the field 𝐹𝐹3 of order three. We will take the elements of 𝐹𝐹3 to be 0, 1
and 2. A cap is a set of points, no three of which are collinear. Using the concept of
𝑃𝑃𝑛𝑛 −set, we give two new methods for constructing complete caps in affine
geometry 𝐴𝐴𝐴𝐴(𝑛𝑛, 3). These methods lead to some new upper and lower bounds on the
possible minimal and maximal cardinality of complete caps in affine geometry 𝐴𝐴𝐴𝐴(𝑛𝑛, 3).

 Keywords: Affine geometry, Projective geometry, Cap, Complete cap.
Article info: Received 28 February 2022; received in revised form 2 May 2022;
accepted 16 May 2022.

1. Introduction

A cap in an affine geometry 𝐴𝐴𝐴𝐴(𝑛𝑛, 𝑞𝑞) or in a projective geometry 𝑃𝑃𝐴𝐴(𝑛𝑛, 𝑞𝑞) over a finite field 𝐹𝐹𝑞𝑞
is a set of points no three of which are collinear. A cap is called complete when it cannot be
extended to a large cap. The central problem in the theory of caps is to find the maximal and
minimal sizes of caps in the affine geometry 𝐴𝐴𝐴𝐴(𝑛𝑛, 𝑞𝑞) or in the projective geometry 𝑃𝑃𝐴𝐴(𝑛𝑛, 𝑞𝑞). In
this paper, 𝑠𝑠𝑛𝑛,𝑞𝑞 and 𝑠𝑠𝑛𝑛,𝑞𝑞

′ denote the size of the largest caps in 𝐴𝐴𝐴𝐴(𝑛𝑛, 𝑞𝑞) and 𝑃𝑃𝐴𝐴(𝑛𝑛, 𝑞𝑞),
respectively. Presently, only the following exact values are known: 𝑠𝑠𝑛𝑛,2 = 𝑠𝑠𝑛𝑛,2

′ = 2𝑛𝑛, 𝑠𝑠2,𝑞𝑞 =
𝑠𝑠2,𝑞𝑞
′ = 𝑞𝑞 + 1 if 𝑞𝑞 is odd, 𝑠𝑠2,𝑞𝑞 = 𝑠𝑠2,𝑞𝑞

′ = 𝑞𝑞 + 2 if 𝑞𝑞 is even, and 𝑠𝑠3,𝑞𝑞
′ = 𝑞𝑞2 + 1, 𝑠𝑠3,𝑞𝑞 = 𝑞𝑞2 [1, 2].

Aside from these general results, the precise values are known only in the following cases: 𝑠𝑠4,3 =
𝑠𝑠4,3
′ = 20 [3], 𝑠𝑠5,3

′ = 56 [4], 𝑠𝑠5,3 = 45 [5], 𝑠𝑠4,4
′ = 41 [6], 𝑠𝑠6,3 = 112 [7]. In the other cases, only

lower and upper bounds on the sizes of caps in 𝐴𝐴𝐴𝐴(𝑛𝑛, 𝑞𝑞) and 𝑃𝑃𝐴𝐴(𝑛𝑛, 𝑞𝑞) are known. Finding the
exact value for 𝑠𝑠𝑛𝑛,𝑞𝑞 and 𝑠𝑠𝑛𝑛,𝑞𝑞

′ in the general case seems to be a very hard problem [8–10]. The
only complete cap in 𝐴𝐴𝐴𝐴(𝑛𝑛, 2) is the whole 𝐴𝐴𝐴𝐴(𝑛𝑛, 2). The trivial lower bound for the size of the

56

K. Karapetyan 57

smallest complete cap in 𝐴𝐴𝐴𝐴(𝑛𝑛, 𝑞𝑞) is √2𝑞𝑞
𝑛𝑛−1
2 . For even 𝑞𝑞 there exist complete caps in geometry

𝐴𝐴𝐴𝐴(𝑛𝑛, 𝑞𝑞) with less than 𝑞𝑞
𝑛𝑛
2 points. But for odd 𝑞𝑞 complete caps in 𝐴𝐴𝐴𝐴(𝑛𝑛, 𝑞𝑞) with less than 𝑞𝑞

𝑛𝑛
2

points are known to exist [11, 12] only for 𝑛𝑛 = 0(𝑚𝑚𝑚𝑚𝑚𝑚 4), 𝑛𝑛 = 2(𝑚𝑚𝑚𝑚𝑚𝑚 4). For more
information about complete caps, for small values 𝑛𝑛 and 𝑞𝑞, we refer the reader to [10–13]. Note
that the problem of determining the minimum size of a complete cap in a given geometry is of
particular interest in Coding theory. Using the concept of 𝑎𝑎 𝑃𝑃𝑛𝑛-set, which was introduced by the author
in 2015 [14], we give two new methods for constructing complete caps in the affine geometry
𝐴𝐴𝐴𝐴(𝑛𝑛, 3). These methods yield some new upper and lower bounds on the possible minimal and maximal
sizes of complete caps in the affine geometry 𝐴𝐴𝐴𝐴(𝑛𝑛, 3).

2. Main Results

We will write the points of 𝐴𝐴𝐴𝐴(𝑛𝑛, 𝑞𝑞) in the following way: 𝒙𝒙 = (𝑥𝑥1,⋯ , 𝑥𝑥𝑛𝑛), and let us denote by
𝟎𝟎 = (0,⋯ , 0) the origin point of the geometry 𝐴𝐴𝐴𝐴(𝑛𝑛, 3). It is easy to check that if 𝑺𝑺 is a cap in
𝐴𝐴𝐴𝐴(𝑛𝑛, 3), then 𝜶𝜶 + 𝜷𝜷 + 𝜸𝜸 ≠ 𝟎𝟎 (𝑚𝑚𝑚𝑚𝑚𝑚 3) for every triple of distinct points 𝜶𝜶,𝜷𝜷,𝜸𝜸 ∈ 𝑺𝑺. Let's
denote by 𝐵𝐵𝑛𝑛 = {𝜶𝜶 = (𝛼𝛼1,⋯ ,𝛼𝛼𝑛𝑛)|𝛼𝛼𝑖𝑖 = 1, 2} and by 𝑃𝑃𝑛𝑛 the set of points of 𝐴𝐴𝐴𝐴(𝑛𝑛, 3) satisfying
the following two conditions:

i) for any two distinct points 𝜶𝜶,𝜷𝜷 ∈ 𝑃𝑃𝑛𝑛, there exists 𝑖𝑖 (1 ≤ 𝑖𝑖 ≤ 𝑛𝑛) such that 𝛼𝛼𝑖𝑖 = 𝛽𝛽𝑖𝑖 = 0,
ii) for any triple of distinct points 𝜶𝜶,𝜷𝜷,𝜸𝜸 ∈ 𝑃𝑃𝑛𝑛, 𝜶𝜶+ 𝜷𝜷 + 𝜸𝜸 ≠ 𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚 3).

We say 𝑃𝑃𝑛𝑛 to be complete when it cannot be extended to a larger one. We will define the
concatenation of the points of the sets in the following way. Let 𝐴𝐴 ⊂ 𝐴𝐴𝐴𝐴(𝑛𝑛, 3) and 𝐵𝐵 ⊂
𝐴𝐴𝐴𝐴(𝑚𝑚, 3). We form a new set 𝐴𝐴𝐵𝐵 ⊂ 𝐴𝐴𝐴𝐴(𝑛𝑛 + 𝑚𝑚, 3) consisting of all points 𝜶𝜶 = (𝛼𝛼1,⋯ ,𝛼𝛼𝑛𝑛,
𝛼𝛼𝑛𝑛+1,⋯ ,𝛼𝛼𝑛𝑛+𝑚𝑚), where 𝜶𝜶(1) = (𝛼𝛼1,⋯ ,𝛼𝛼𝑛𝑛) ∈ 𝐴𝐴 and 𝜶𝜶(2) = (𝛼𝛼𝑛𝑛+1,⋯ , 𝛼𝛼𝑛𝑛+𝑚𝑚) ∈ 𝐵𝐵. In a similar
way, one can define the concatenation of the points for any number of sets.

Claim 1. Note that if 𝑥𝑥,𝑦𝑦, 𝑧𝑧 ∈ 𝐹𝐹3, then 𝑥𝑥 + 𝑦𝑦 + 𝑧𝑧 = 0 (𝑚𝑚𝑚𝑚𝑚𝑚 3) if and only if 𝑥𝑥 = 𝑦𝑦 = 𝑧𝑧 or they
are pairwise distinct numbers.
The following two theorems, which we need, are proven in [16, 17].

Theorem 1: The following recurrence relation 𝑃𝑃𝑛𝑛 = 𝑃𝑃𝑛𝑛1𝑃𝑃𝑛𝑛2𝐵𝐵𝑛𝑛3 ∪ 𝑃𝑃𝑛𝑛1𝐵𝐵𝑛𝑛2𝑃𝑃𝑛𝑛3 ∪ 𝐵𝐵𝑛𝑛1𝑃𝑃𝑛𝑛2𝑃𝑃𝑛𝑛3, with
initial sets 𝑃𝑃1 = {(0)}, 𝑃𝑃2 = {(0, 1), (0, 2)} and 𝑛𝑛 = ∑ 𝑛𝑛𝑗𝑗3

𝑗𝑗=1 , yields a complete 𝑃𝑃𝑛𝑛 set.

Having the sets 𝑃𝑃𝑛𝑛1, 𝑃𝑃𝑛𝑛2, 𝑃𝑃𝑛𝑛3, 𝑃𝑃𝑛𝑛4, 𝑃𝑃𝑛𝑛5 , 𝑃𝑃𝑛𝑛6 and 𝐵𝐵𝑛𝑛1, 𝐵𝐵𝑛𝑛2, 𝐵𝐵𝑛𝑛3, 𝐵𝐵𝑛𝑛4, 𝐵𝐵𝑛𝑛5, 𝐵𝐵𝑛𝑛6, let us form the
following ten sets, by concatenation of the points of the sets.

𝐴𝐴1 = 𝑃𝑃𝑛𝑛1𝑃𝑃𝑛𝑛2𝐵𝐵𝑛𝑛3𝐵𝐵𝑛𝑛4𝐵𝐵𝑛𝑛5𝑃𝑃𝑛𝑛6 , 𝐴𝐴2 = 𝐵𝐵𝑛𝑛1𝑃𝑃𝑛𝑛2𝑃𝑃𝑛𝑛3𝑃𝑃𝑛𝑛4𝐵𝐵𝑛𝑛5𝐵𝐵𝑛𝑛6,
𝐴𝐴3 = 𝑃𝑃𝑛𝑛1𝐵𝐵𝑛𝑛2𝑃𝑃𝑛𝑛3𝐵𝐵𝑛𝑛4𝑃𝑃𝑛𝑛5𝐵𝐵𝑛𝑛6 , 𝐴𝐴4 = 𝐵𝐵𝑛𝑛1𝐵𝐵𝑛𝑛2𝑃𝑃𝑛𝑛3𝑃𝑃𝑛𝑛4𝐵𝐵𝑛𝑛5𝑃𝑃𝑛𝑛6 ,
𝐴𝐴5 = 𝐵𝐵𝑛𝑛1𝐵𝐵𝑛𝑛2𝑃𝑃𝑛𝑛3𝐵𝐵𝑛𝑛4𝑃𝑃𝑛𝑛5𝑃𝑃𝑛𝑛6 , 𝐴𝐴6 = 𝐵𝐵𝑛𝑛1𝑃𝑃𝑛𝑛2𝐵𝐵𝑛𝑛3𝑃𝑃𝑛𝑛4𝑃𝑃𝑛𝑛5𝐵𝐵𝑛𝑛6,
𝐴𝐴7 = 𝐵𝐵𝑛𝑛1𝑃𝑃𝑛𝑛2𝐵𝐵𝑛𝑛3𝐵𝐵𝑛𝑛4𝑃𝑃𝑛𝑛5𝑃𝑃𝑛𝑛6 , 𝐴𝐴8 = 𝑃𝑃𝑛𝑛1𝐵𝐵𝑛𝑛2𝐵𝐵𝑛𝑛3𝑃𝑃𝑛𝑛4𝑃𝑃𝑛𝑛5𝐵𝐵𝑛𝑛6 ,

 𝐴𝐴9 = 𝑃𝑃𝑛𝑛1𝐵𝐵𝑛𝑛2𝐵𝐵𝑛𝑛3𝑃𝑃𝑛𝑛4𝐵𝐵𝑛𝑛5𝑃𝑃𝑛𝑛6 , 𝐴𝐴10 = 𝑃𝑃𝑛𝑛1𝑃𝑃𝑛𝑛2𝑃𝑃𝑛𝑛3𝐵𝐵𝑛𝑛4𝐵𝐵𝑛𝑛5𝐵𝐵𝑛𝑛6.

Complete Caps in Affine Geometry 𝐴𝐴𝐴𝐴(𝑛𝑛, 3)

58

 Theorem 2: The following recurrence relation 𝑃𝑃𝑛𝑛 = ⋃ 𝐴𝐴𝑖𝑖10

𝑖𝑖=1 , with initial sets 𝑃𝑃1 = {(0)}, 𝑃𝑃2 =
{(0, 1), (0, 2)} and 𝑛𝑛 = ∑ 𝑛𝑛𝑖𝑖6

𝑖𝑖=1 yields a complete 𝑃𝑃𝑛𝑛 set.

Claim 2. Note that from the construction of 𝑃𝑃𝑛𝑛 in both theorems it follows that for every i (1 ≤
𝑖𝑖 ≤ 𝑛𝑛), if the point 𝒑𝒑 = (𝑝𝑝1, … ,𝑝𝑝𝑖𝑖, … ,𝑝𝑝𝑛𝑛) ∈ 𝑃𝑃𝑛𝑛 and 𝑝𝑝𝑖𝑖 ≠ 0, then, also, the point 𝒑𝒑′ =
 (𝑝𝑝1, … ,𝑝𝑝𝑖𝑖−1, … ,𝑝𝑝𝑛𝑛) ∈ 𝑃𝑃𝑛𝑛, where 𝑝𝑝𝑖𝑖−1 is the additive inverse of 𝑝𝑝𝑖𝑖 in the field 𝐹𝐹3.

The following two main theorems without proofs were first presented at CSIT 2015 in a weak
form [14], that they yield caps. But at CSIT 2017 they were presented with a strong conclusion
that they yield complete caps [15]. In this paper, we give their complete proofs.

Theorem 3: If 𝑃𝑃𝑛𝑛 and 𝑃𝑃𝑚𝑚 are constructed either by Theorem 1 or by Theorem 2, then for the
given natural numbers n and m, the set 𝑆𝑆 = 𝑃𝑃𝑛𝑛𝐵𝐵𝑚𝑚 ∪ 𝐵𝐵𝑛𝑛𝑃𝑃𝑚𝑚 is a complete cap in the geometry
𝐴𝐴𝐴𝐴(𝑛𝑛 + 𝑚𝑚, 3).

Proof. First of all we will prove that the set 𝑆𝑆 = 𝑃𝑃𝑛𝑛𝐵𝐵𝑚𝑚 ∪ 𝐵𝐵𝑛𝑛𝑃𝑃𝑚𝑚 is a cap. Suppose, to the contrary,
that 𝑆𝑆 is not a cap. Then there is a triple of distinct points 𝜶𝜶,𝜷𝜷,𝜸𝜸 ∈ 𝑆𝑆, such that 𝜶𝜶 + 𝜷𝜷 + 𝜸𝜸 =
𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚 3). Let's represent the points 𝜶𝜶,𝜷𝜷,𝜸𝜸 as 𝜶𝜶 = 𝜶𝜶(𝟏𝟏)𝜶𝜶(𝟐𝟐), 𝜷𝜷 = 𝜷𝜷(𝟏𝟏)𝜷𝜷(𝟐𝟐) and 𝜸𝜸 = 𝜸𝜸(𝟏𝟏)𝜸𝜸(𝟐𝟐),
respectively, where 𝜶𝜶(𝟏𝟏) = (𝛼𝛼1,⋯ ,𝛼𝛼𝑛𝑛), 𝜶𝜶(𝟐𝟐) = (𝛼𝛼𝑛𝑛+1,⋯ ,𝛼𝛼𝑛𝑛+𝑚𝑚), 𝜷𝜷(𝟏𝟏) = (𝛽𝛽1,⋯ ,𝛽𝛽𝑛𝑛), 𝜷𝜷(𝟐𝟐) =
(𝛽𝛽𝑛𝑛+1,⋯ ,𝛽𝛽𝑛𝑛+𝑚𝑚), 𝜸𝜸(𝟏𝟏) = (𝛾𝛾1,⋯ , 𝛾𝛾𝑛𝑛) and 𝜸𝜸(𝟐𝟐) = (𝛾𝛾𝑛𝑛+1,⋯ , 𝛾𝛾𝑛𝑛+𝑚𝑚). Thus, we obtain 𝜶𝜶(𝟏𝟏) +
𝜷𝜷(𝟏𝟏) + 𝜸𝜸(𝟏𝟏) = 𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚 3) and 𝜶𝜶(𝟐𝟐) + 𝜷𝜷(𝟐𝟐) + 𝜸𝜸(𝟐𝟐) = 𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚 3). If all three points 𝜶𝜶,𝜷𝜷,𝜸𝜸 ∈ 𝑃𝑃𝑛𝑛𝐵𝐵𝑚𝑚,
then it follows that 𝜶𝜶(𝟏𝟏),𝜷𝜷(𝟏𝟏),𝜸𝜸(𝟏𝟏) ∈ 𝑃𝑃𝑛𝑛 and 𝜶𝜶(𝟐𝟐),𝜷𝜷(𝟐𝟐),𝜸𝜸(𝟐𝟐) ∈ 𝐵𝐵𝑚𝑚. The definition of the set 𝑃𝑃𝑛𝑛
implies that 𝜶𝜶(𝟏𝟏) = 𝜷𝜷(𝟏𝟏) = 𝜸𝜸(𝟏𝟏) and Claim 1 implies that 𝜶𝜶(𝟐𝟐) = 𝜷𝜷(𝟐𝟐) = 𝜸𝜸(𝟐𝟐). Therefore, 𝜶𝜶 =
𝜷𝜷 = 𝜸𝜸, which contradicts that 𝜶𝜶, 𝜷𝜷 and 𝜸𝜸 are pairwise distinct points. In the same manner, one
can prove the case, when all three points 𝜶𝜶,𝜷𝜷,𝜸𝜸 ∈ 𝐵𝐵𝑛𝑛𝑃𝑃𝑚𝑚, is impossible. Now let us assume that
two of these points belong to one set (say 𝜶𝜶,𝜷𝜷 ∈ 𝑃𝑃𝑛𝑛𝐵𝐵𝑚𝑚) and the third point 𝜸𝜸 belongs to the other
set (say 𝛾𝛾 ∈ 𝐵𝐵𝑛𝑛𝑃𝑃𝑚𝑚). By definition of 𝑃𝑃𝑛𝑛 there is 𝑖𝑖, 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛, so that 𝛼𝛼𝑖𝑖 = 𝛽𝛽𝑖𝑖 = 0. But, by
definition of 𝐵𝐵𝑛𝑛, 𝛾𝛾𝑖𝑖 = 1 𝑚𝑚𝑜𝑜 2. Hence, 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖 + 𝛾𝛾𝑖𝑖 ≠ 0(𝑚𝑚𝑚𝑚𝑚𝑚 3), which contradicts that 𝜶𝜶 + 𝜷𝜷 +
𝜸𝜸 = 𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚 3). In a similar way, one can prove the case when two points belong to 𝐵𝐵𝑛𝑛𝑃𝑃𝑚𝑚 and
the third one belongs to 𝑃𝑃𝑛𝑛𝐵𝐵𝑚𝑚 is impossible. Therefore, 𝑆𝑆 is a cap.
We will prove the completeness of S again by contradiction. Suppose that there is a point 𝜶𝜶 =
�𝛼𝛼1, … ,𝛼𝛼𝑛𝑛,𝛼𝛼𝑛𝑛+1 , … ,𝛼𝛼𝑛𝑛+𝑚𝑚�, such that 𝜶𝜶 ∉ S and S ∪ {𝜶𝜶} is a cap. Let’s represent the point 𝜶𝜶 as
𝜶𝜶 = 𝜶𝜶(𝟏𝟏)𝜶𝜶(𝟐𝟐), where 𝜶𝜶(𝟏𝟏) = (𝛼𝛼1,⋯ ,𝛼𝛼𝑛𝑛), 𝜶𝜶(𝟐𝟐) = (𝛼𝛼𝑛𝑛+1,⋯ ,𝛼𝛼𝑛𝑛+𝑚𝑚). The following two cases are
possible.

 Case 1. At least one of the sets 𝑃𝑃𝑛𝑛 ∪ {𝜶𝜶(𝟏𝟏)} or 𝑃𝑃𝑚𝑚 ∪ {𝜶𝜶(𝟐𝟐)} satisfies the condition i). Assume that
the set 𝑃𝑃𝑛𝑛 ∪ �𝜶𝜶(𝟏𝟏)� satisfies the condition i). If 𝜶𝜶(𝟏𝟏) ∈ 𝑃𝑃𝑛𝑛, then we can choose two points 𝒙𝒙, 𝒚𝒚 ∈
𝐵𝐵𝑚𝑚 in the following way. If 𝛼𝛼𝑖𝑖 = 0, then we will assume that 𝑥𝑥𝑖𝑖 = 1 and 𝑦𝑦𝑖𝑖 = 2, otherwise 𝑥𝑥𝑖𝑖 =
𝑦𝑦𝑖𝑖 = 𝛼𝛼𝑖𝑖, 𝑛𝑛 + 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 + 𝑚𝑚. Therefore, 𝜶𝜶(𝟐𝟐) ∉ 𝐵𝐵𝑚𝑚, since 𝜶𝜶 ∉ S and 𝜶𝜶(𝟏𝟏) ∈ 𝑃𝑃𝑛𝑛. Hence, 𝜶𝜶(𝟐𝟐), 𝒙𝒙
and 𝒚𝒚 are pairwise distinct points. It is not difficult to see that 𝜶𝜶(𝟏𝟏)𝒙𝒙, 𝜶𝜶(𝟏𝟏)𝒚𝒚 ∈ 𝑃𝑃𝑛𝑛𝐵𝐵𝑚𝑚. Claim 1

K. Karapetyan 59

implies that 𝜶𝜶(𝟏𝟏)𝜶𝜶(𝟐𝟐) + 𝜶𝜶(𝟏𝟏)𝒙𝒙 + 𝜶𝜶(𝟏𝟏)𝒚𝒚 = 𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚 3), which contradicts the assumption that S ∪
{𝜶𝜶} is a cap. If 𝜶𝜶(𝟏𝟏) ∉ 𝑃𝑃𝑛𝑛, then the completeness of the 𝑃𝑃𝑛𝑛 implies that there are two distinct
points 𝜷𝜷, 𝜸𝜸 ∈ 𝑃𝑃𝑛𝑛, such that 𝜶𝜶(𝟏𝟏) + 𝜷𝜷 + 𝜸𝜸 = 𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚 3). Now, as described above, we will choose
two points 𝒙𝒙,𝒚𝒚 ∈ 𝐵𝐵𝑚𝑚 in the following way. If 𝛼𝛼𝑖𝑖 = 0, then we will take 𝑥𝑥𝑖𝑖 = 1 and 𝑦𝑦𝑖𝑖 = 2,
otherwise 𝑥𝑥𝑖𝑖 = 𝑦𝑦𝑖𝑖 = 𝛼𝛼𝑖𝑖, 𝑛𝑛 + 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 + 𝑚𝑚. The choice of the points 𝒙𝒙,𝒚𝒚 implies that 𝒙𝒙,𝒚𝒚 ∈
𝐵𝐵𝑚𝑚 and 𝜶𝜶(𝟐𝟐) + 𝒙𝒙 + 𝒚𝒚 = 𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚 3). Therefore, 𝜶𝜶(𝟏𝟏)𝜶𝜶(𝟐𝟐) + 𝜷𝜷𝒙𝒙 + 𝜸𝜸𝒚𝒚 = 𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚3), which
contradicts the assumption that S ∪ {𝜶𝜶} is a cap. Similarly, one can prove the case, when the set
𝑃𝑃𝑚𝑚 ∪ �𝜶𝜶(𝟐𝟐)� satisfies the condition i), is impossible.

Case 2. Both sets 𝑃𝑃𝑛𝑛 ∪ {𝜶𝜶(𝟏𝟏)} and 𝑃𝑃𝑚𝑚 ∪ {𝜶𝜶(𝟐𝟐)} do not satisfy the condition i). Therefore, the
condition i) for the set 𝑃𝑃𝑛𝑛 ∪ {𝜶𝜶(𝟏𝟏)} follows that there is a point 𝜷𝜷 ∈ 𝑃𝑃𝑛𝑛, such that if 𝛼𝛼𝑖𝑖 = 0, then
𝛽𝛽𝑖𝑖 ≠ 0 and if 𝛽𝛽𝑖𝑖 = 0, then 𝛼𝛼𝑖𝑖 ≠ 0, 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛. We will choose the point 𝒙𝒙 ∈ 𝐵𝐵𝑛𝑛 in the following
way. If 𝛼𝛼𝑖𝑖 = 0, then 𝑥𝑥𝑖𝑖 = 𝛽𝛽𝑖𝑖−1 and if 𝛽𝛽𝑖𝑖 = 0, then 𝑥𝑥𝑖𝑖 = 𝛼𝛼𝑖𝑖−1, otherwise, using Claim 2, we can
assume that 𝑥𝑥𝑖𝑖 = 𝛽𝛽𝑖𝑖 = 𝛼𝛼𝑖𝑖, 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛. By the same reason, the condition i) for the set 𝑃𝑃𝑚𝑚 ∪ {𝜶𝜶(𝟐𝟐)}
implies that there is a point 𝜸𝜸 ∈ 𝑃𝑃𝑚𝑚, so that if 𝛼𝛼𝑖𝑖 = 0, then 𝛾𝛾𝑖𝑖 ≠ 0 and if 𝛾𝛾𝑖𝑖 = 0, then 𝛼𝛼𝑖𝑖 ≠
0, 𝑛𝑛 + 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 + 𝑚𝑚. In the same manner, we will choose the point 𝒚𝒚 ∈ 𝐵𝐵𝑚𝑚. If 𝛼𝛼𝑖𝑖 = 0, then
𝑦𝑦𝑖𝑖 = 𝛾𝛾𝑖𝑖−1 and if 𝛾𝛾𝑖𝑖 = 0, then 𝑦𝑦𝑖𝑖 = 𝛼𝛼𝑖𝑖−1, otherwise, by Claim 2, we can assume that 𝑦𝑦𝑖𝑖 = 𝛾𝛾𝑖𝑖 = 𝛼𝛼𝑖𝑖,
𝑛𝑛 + 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 + 𝑚𝑚). It is obvious that 𝜷𝜷𝒚𝒚 ∈ 𝑃𝑃𝑛𝑛𝐵𝐵𝑚𝑚 and 𝒙𝒙𝜸𝜸 ∈ 𝐵𝐵𝑛𝑛𝑃𝑃𝑚𝑚. The choice of the points 𝒙𝒙,𝒚𝒚
implies that 𝜶𝜶(𝟏𝟏) + 𝜷𝜷 + 𝒙𝒙 = 𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚 3) and 𝜶𝜶(𝟐𝟐) + 𝜸𝜸 + 𝒚𝒚 = 𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚 3). Therefore, 𝜶𝜶(𝟏𝟏)𝜶𝜶(𝟐𝟐) +
𝜷𝜷𝒚𝒚 + 𝒙𝒙𝜸𝜸 = 𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚 3), which again contradicts the assumption that S ∪ {𝜶𝜶} is a cap.

Corollary 1: For the given natural numbers n and m, 𝑠𝑠𝑛𝑛+𝑚𝑚,3 ≥ |𝑃𝑃𝑛𝑛||𝐵𝐵𝑚𝑚| + |𝐵𝐵𝑛𝑛||𝑃𝑃𝑚𝑚|.

Corollary 2: For every natural number n, 𝑠𝑠𝑛𝑛+1,3 ≥ 2|𝑃𝑃𝑛𝑛| + |𝐵𝐵𝑛𝑛|.

Theorem 4: If 𝑃𝑃𝑛𝑛 and 𝑃𝑃𝑚𝑚 are constructed by Theorem 1 or by Theorem 2, then for the given
natural numbers 𝑛𝑛 and 𝑚𝑚, 𝑆𝑆 = 𝑃𝑃𝑛𝑛𝑃𝑃𝑚𝑚{0} ∪ 𝑃𝑃𝑛𝑛𝐵𝐵𝑚𝑚{1} ∪ 𝐵𝐵𝑛𝑛𝑃𝑃𝑚𝑚{1} ∪ 𝐵𝐵𝑛𝑛+𝑚𝑚{2} is a complete cap in
the geometry 𝐴𝐴𝐴𝐴(𝑛𝑛 + 𝑚𝑚 + 1, 3).

Proof. First we will prove that the set 𝑆𝑆 = 𝑃𝑃𝑛𝑛𝑃𝑃𝑚𝑚{0} ∪ 𝑃𝑃𝑛𝑛𝐵𝐵𝑚𝑚{1} + 𝐵𝐵𝑛𝑛𝑃𝑃𝑚𝑚{1} + 𝐵𝐵𝑛𝑛+𝑚𝑚{2} is a cap
by contradiction. Assume that there are three distinct points 𝜶𝜶 =
�𝛼𝛼1, … ,𝛼𝛼𝑛𝑛,𝛼𝛼𝑛𝑛+1, … ,𝛼𝛼𝑛𝑛+𝑚𝑚,𝛼𝛼𝑛𝑛+𝑚𝑚+1�, 𝜷𝜷 = �𝛽𝛽1, … ,𝛽𝛽𝑛𝑛,𝛽𝛽𝑛𝑛+1 , … ,𝛽𝛽𝑛𝑛+𝑚𝑚,𝛽𝛽𝑛𝑛+𝑚𝑚+1�, 𝜸𝜸 =
�𝛾𝛾1, … , 𝛾𝛾𝑛𝑛, 𝛾𝛾𝑛𝑛+1 , … , 𝛾𝛾𝑛𝑛+𝑚𝑚, 𝛾𝛾𝑛𝑛+𝑚𝑚+1� ∈ 𝑆𝑆, such that 𝜶𝜶 + 𝜷𝜷 + 𝜸𝜸 = 𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚 3). Therefore, 𝜶𝜶(𝟏𝟏) +
𝜷𝜷(𝟏𝟏) + 𝜸𝜸(𝟏𝟏) = 𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚 3), 𝜶𝜶(𝟐𝟐) + 𝜷𝜷(𝟐𝟐) + 𝜸𝜸(𝟐𝟐) = 𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚 3) and 𝛼𝛼𝑛𝑛+𝑚𝑚+1 + 𝛽𝛽𝑛𝑛+𝑚𝑚+1 + 𝛾𝛾𝑛𝑛+𝑚𝑚+1 =
𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚 3), where 𝜶𝜶(𝟏𝟏) = (𝛼𝛼1,⋯ ,𝛼𝛼𝑛𝑛), 𝜶𝜶(𝟐𝟐) = (𝛼𝛼𝑛𝑛+1,⋯ ,𝛼𝛼𝑛𝑛+𝑚𝑚), 𝜷𝜷(𝟏𝟏) = (𝛽𝛽1,⋯ ,𝛽𝛽𝑛𝑛), 𝜷𝜷(𝟐𝟐) =
(𝛽𝛽𝑛𝑛+1,⋯ ,𝛽𝛽𝑛𝑛+𝑚𝑚), 𝜸𝜸(𝟏𝟏) = (𝛾𝛾1,⋯ , 𝛾𝛾𝑛𝑛) and 𝜸𝜸(𝟐𝟐) = (𝛾𝛾𝑛𝑛+1,⋯ , 𝛾𝛾𝑛𝑛+𝑚𝑚). Claim 1 implies that
𝛼𝛼𝑛𝑛+𝑚𝑚+1 = 𝛽𝛽𝑛𝑛+𝑚𝑚+1 = 𝛾𝛾𝑛𝑛+𝑚𝑚+1 or 𝛼𝛼𝑛𝑛+𝑚𝑚+1, 𝛽𝛽𝑛𝑛+𝑚𝑚+1, and 𝛾𝛾𝑛𝑛+𝑚𝑚+1 are pairwise distinct numbers.
Hence, the following four cases are possible.

Case 1. 𝛼𝛼𝑛𝑛+𝑚𝑚+1 = 𝛽𝛽𝑛𝑛+𝑚𝑚+1 = 𝛾𝛾𝑛𝑛+𝑚𝑚+1= 0. Therefore,𝜶𝜶,𝜷𝜷,𝜸𝜸 ∈ 𝑃𝑃𝑛𝑛𝑃𝑃𝑚𝑚{0}, 𝜶𝜶(𝟏𝟏),𝜷𝜷(𝟏𝟏),𝜸𝜸(𝟏𝟏) ∈ 𝑃𝑃𝑛𝑛 and
𝜶𝜶(𝟐𝟐),𝜷𝜷(𝟐𝟐),𝜸𝜸(𝟐𝟐) ∈ 𝑃𝑃𝑚𝑚. From the definition of 𝑃𝑃𝑛𝑛 and 𝑃𝑃𝑚𝑚 and the two relations 𝜶𝜶(𝟏𝟏) + 𝜷𝜷(𝟏𝟏) +

Complete Caps in Affine Geometry 𝐴𝐴𝐴𝐴(𝑛𝑛, 3)

60

𝜸𝜸(𝟏𝟏) = 0(𝑚𝑚𝑚𝑚𝑚𝑚 3), 𝜶𝜶(𝟐𝟐) + 𝜷𝜷(𝟐𝟐) + 𝜸𝜸(𝟐𝟐) = 𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚 3) 𝑖𝑖𝑖𝑖 follows that 𝜶𝜶(𝟏𝟏) = 𝜷𝜷(𝟏𝟏) = 𝜸𝜸(𝟏𝟏) and
𝜶𝜶(𝟐𝟐) = 𝜷𝜷(𝟐𝟐) = 𝜸𝜸(𝟐𝟐). Hence, 𝜶𝜶 = 𝜷𝜷 = 𝜸𝜸, which contradicts the assumption that 𝜶𝜶,𝜷𝜷,𝜸𝜸 are
pairwise distinct points.

Case 2. 𝛼𝛼𝑛𝑛+𝑚𝑚+1 = 𝛽𝛽𝑛𝑛+𝑚𝑚+1 = 𝛾𝛾𝑛𝑛+𝑚𝑚+1=1. Assume that 𝜶𝜶,𝜷𝜷,𝜸𝜸 ∈ 𝑃𝑃𝑛𝑛𝐵𝐵𝑚𝑚{1}. Then
𝜶𝜶(𝟏𝟏),𝜷𝜷(𝟏𝟏),𝜸𝜸(𝟏𝟏) ∈ 𝑃𝑃𝑛𝑛 and 𝜶𝜶(𝟐𝟐),𝜷𝜷(𝟐𝟐),𝜸𝜸(𝟐𝟐) ∈ 𝐵𝐵𝑚𝑚. The definition of 𝑃𝑃𝑛𝑛 implies that 𝜶𝜶(𝟏𝟏) = 𝜷𝜷(𝟏𝟏) =
𝜸𝜸(𝟏𝟏), since 𝜶𝜶(𝟏𝟏) + 𝜷𝜷(𝟏𝟏) + 𝜸𝜸(𝟏𝟏) = 𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚 3). Because 𝜶𝜶(𝟐𝟐) + 𝜷𝜷(𝟐𝟐) + 𝜸𝜸(𝟐𝟐) = 𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚 3), Claim 1
implies that 𝜶𝜶(𝟐𝟐) = 𝜷𝜷(𝟐𝟐) = 𝜸𝜸(𝟐𝟐). Therefore,𝜶𝜶 = 𝜷𝜷 = 𝜸𝜸, which, again contradicts the
assumption that 𝜶𝜶,𝜷𝜷,𝜸𝜸 are pairwise distinct points. Similarly, one can prove that the case is
impossible, when 𝜶𝜶,𝜷𝜷,𝜸𝜸 ∈ 𝐵𝐵𝑛𝑛𝑃𝑃𝑚𝑚{1}. Therefore, two points, say 𝜶𝜶,𝜷𝜷 ∈ 𝑃𝑃𝑛𝑛𝐵𝐵𝑚𝑚{1} and 𝜸𝜸 ∈
𝐵𝐵𝑛𝑛𝑃𝑃𝑚𝑚{1}. The definition of 𝑃𝑃𝑛𝑛 implies that there is 𝑖𝑖, such that 𝛼𝛼𝑖𝑖 = 𝛽𝛽𝑖𝑖 = 0, 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛, . But by
the definition of 𝐵𝐵𝑛𝑛, 𝛾𝛾𝑖𝑖 = 1 𝑚𝑚𝑜𝑜 2. Hence, 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖 + 𝛾𝛾𝑖𝑖 ≠ 0(𝑚𝑚𝑚𝑚𝑚𝑚 3), which contradicts that 𝜶𝜶 +
𝜷𝜷 + 𝜸𝜸 = 𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚 3). In a similar manner, one can prove that the case is impossible, when two
points from 𝜶𝜶,𝜷𝜷 and 𝜸𝜸 belong to 𝐵𝐵𝑛𝑛𝑃𝑃𝑚𝑚 and the third one belongs to 𝑃𝑃𝑛𝑛𝐵𝐵𝑚𝑚. Therefore, 𝑆𝑆 is a cap.

Case 3. 𝛼𝛼𝑛𝑛+𝑚𝑚+1 = 𝛽𝛽𝑛𝑛+𝑚𝑚+1 = 𝛾𝛾𝑛𝑛+𝑚𝑚+1 = 2. Therefore 𝜶𝜶,𝜷𝜷,𝜸𝜸 ∈ 𝐵𝐵𝑛𝑛+𝑚𝑚{2}. Hence, 𝜶𝜶(𝟏𝟏)𝜶𝜶(𝟐𝟐),
𝜷𝜷(𝟏𝟏)𝜷𝜷(𝟐𝟐),𝜸𝜸(𝟏𝟏)𝜸𝜸(𝟐𝟐) ∈ 𝐵𝐵𝑛𝑛+𝑚𝑚 and 𝜶𝜶(𝟏𝟏)𝜶𝜶(𝟐𝟐) + 𝜷𝜷(𝟏𝟏)𝜷𝜷(𝟐𝟐) + 𝜸𝜸(𝟏𝟏)𝜸𝜸(𝟐𝟐) = 𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚 3). Claim 1 implies
that 𝜶𝜶(𝟏𝟏)𝜶𝜶(𝟐𝟐) = 𝜷𝜷(𝟏𝟏)𝜷𝜷(𝟐𝟐) = 𝜸𝜸(𝟏𝟏)𝜸𝜸(𝟐𝟐). This yields 𝜶𝜶 = 𝜷𝜷 = 𝜸𝜸, which, again contradicts the
assumption that 𝜶𝜶,𝜷𝜷,𝜸𝜸 are pairwise distinct points.

Case 𝛼𝛼𝑛𝑛+𝑚𝑚+1, 𝛽𝛽𝑛𝑛+𝑚𝑚+1 and 𝛾𝛾𝑛𝑛+𝑚𝑚+1 are pairwise distinct numbers. Without loss of generality,
let us assume that 𝛼𝛼𝑛𝑛+𝑚𝑚+1 = 0, 𝛽𝛽𝑛𝑛+𝑚𝑚+1 = 1 and 𝛾𝛾𝑛𝑛+𝑚𝑚+1 = 2. Therefore, 𝜶𝜶 ∈ 𝑃𝑃𝑛𝑛𝑃𝑃𝑚𝑚{0}, 𝜷𝜷 ∈
𝑃𝑃𝑛𝑛𝐵𝐵𝑚𝑚{1} or 𝜷𝜷 ∈ 𝐵𝐵𝑛𝑛𝑃𝑃𝑚𝑚{1} and 𝜸𝜸 ∈ 𝐵𝐵𝑛𝑛+𝑚𝑚{2}. If 𝜷𝜷 ∈ 𝑃𝑃𝑛𝑛𝐵𝐵𝑚𝑚{1}, then 𝜶𝜶(𝟏𝟏),𝜷𝜷(𝟏𝟏) ∈ 𝑃𝑃𝑛𝑛. Hence, the
definition of 𝑃𝑃𝑛𝑛 implies that there is 𝑖𝑖, such that 𝛼𝛼𝑖𝑖 = 𝛽𝛽𝑖𝑖 = 0, 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛. But, by the definition of
𝐵𝐵𝑛𝑛, 𝛾𝛾𝑖𝑖 = 1 or 2. Therefore, 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖 + 𝛾𝛾𝑖𝑖 ≠ 0(𝑚𝑚𝑚𝑚𝑚𝑚 3), which contradicts that 𝜶𝜶(𝟏𝟏) + 𝜷𝜷(𝟏𝟏) +
𝜸𝜸(𝟏𝟏) = 𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚 3). The last relation, in turn, implies that 𝜶𝜶 + 𝜷𝜷 + 𝜸𝜸 ≠ 𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚 3). In a similar
manner, one can prove the case when 𝜷𝜷 ∈ 𝐵𝐵𝑛𝑛𝑃𝑃𝑚𝑚{1} is impossible. Hence, 𝑆𝑆 is a cap.
Now we will prove the completeness of 𝑆𝑆 also by contradiction. Let us assume that there is a
point 𝜶𝜶 = (𝛼𝛼1, … ,𝛼𝛼𝑛𝑛,𝛼𝛼𝑛𝑛+1, … ,𝛼𝛼𝑛𝑛+𝑚𝑚,𝛼𝛼𝑛𝑛+𝑚𝑚+1), such that 𝜶𝜶 ∉ 𝑆𝑆 and 𝑆𝑆 ∪ {𝜶𝜶} is a cap. The
following three cases are possible.

Case 𝛼𝛼𝑛𝑛+𝑚𝑚+1 = 2. Since 𝜶𝜶 ∉ 𝑆𝑆, we have (𝛼𝛼1, … ,𝛼𝛼𝑛𝑛,𝛼𝛼𝑛𝑛+1, … ,𝛼𝛼𝑛𝑛+𝑚𝑚) ∉ 𝐵𝐵𝑛𝑛+𝑚𝑚. We can choose
two points 𝒙𝒙, 𝒚𝒚 ∈ 𝐵𝐵𝑛𝑛+𝑚𝑚{2}, such that, if 𝛼𝛼𝑖𝑖 = 0 then 𝑥𝑥𝑖𝑖 = 2 and 𝑦𝑦𝑖𝑖 = 1, otherwise 𝑥𝑥𝑖𝑖 = 𝑦𝑦𝑖𝑖 =
𝛼𝛼𝑖𝑖, 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 + 𝑚𝑚. It is obvious that 𝒙𝒙{2}, 𝒚𝒚{2} ∈ 𝐵𝐵𝑛𝑛+𝑚𝑚{2} and 𝜶𝜶, 𝒙𝒙{2}, 𝒚𝒚{2} are pairwise
distinct points. Claim 1 implies that 𝒙𝒙{2} + 𝒚𝒚{2} + 𝜶𝜶 = 𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚 3), which contradicts the
assumption that 𝑆𝑆 ∪ {𝜶𝜶} is a cap.

Case 𝛼𝛼𝑛𝑛+𝑚𝑚+1 = 1. Let’s represent the point 𝜶𝜶 as 𝜶𝜶 = 𝜶𝜶(𝟏𝟏)𝜶𝜶(𝟐𝟐){1}, where 𝜶𝜶(𝟏𝟏) = (𝛼𝛼1,⋯ ,𝛼𝛼𝑛𝑛)
and 𝜶𝜶(𝟐𝟐) = (𝛼𝛼𝑛𝑛+1,⋯ ,𝛼𝛼𝑛𝑛+𝑚𝑚). Assume that at least one of the sets 𝑃𝑃𝑛𝑛 ∪ {𝜶𝜶(𝟏𝟏)} or 𝑃𝑃𝑚𝑚 ∪ {𝜶𝜶(𝟐𝟐)}
satisfies the condition i), say 𝑃𝑃𝑛𝑛 ∪ {𝜶𝜶(𝟏𝟏)}. First, suppose that 𝜶𝜶(𝟏𝟏) ∉ 𝑃𝑃𝑛𝑛. Then the completeness
of the set 𝑃𝑃𝑛𝑛 follows that there are two points 𝜷𝜷, 𝜸𝜸 ∈ 𝑃𝑃𝑛𝑛, such that 𝜷𝜷 + 𝜸𝜸 + 𝜶𝜶(𝟏𝟏) = 𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚 3).
We will choose two points 𝒙𝒙, 𝒚𝒚 ∈ 𝐵𝐵𝑚𝑚 in the following way. If 𝛼𝛼𝑖𝑖 = 0, then 𝑥𝑥𝑖𝑖 = 1 and 𝑦𝑦𝑖𝑖 = 2,

K. Karapetyan 61

otherwise 𝑥𝑥𝑖𝑖 = 𝑦𝑦𝑖𝑖 = 𝛼𝛼𝑖𝑖, 𝑛𝑛 + 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 + 𝑚𝑚. From the choice of the points 𝒙𝒙,𝒚𝒚 it follows that
𝒙𝒙,𝒚𝒚 ∈ 𝐵𝐵𝑚𝑚 and 𝜶𝜶(𝟐𝟐) + 𝒙𝒙 + 𝒚𝒚 = 𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚 3). Therefore, 𝜶𝜶(𝟏𝟏)𝜶𝜶(𝟐𝟐){1} + 𝜷𝜷𝒙𝒙{1} + 𝜸𝜸𝒚𝒚{1} =
𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚 3), which contradicts the assumption that S ∪ {𝜶𝜶} is a cap. Otherwise, if 𝜶𝜶(𝟏𝟏) ∈ 𝑃𝑃𝑛𝑛, then
𝜶𝜶(𝟐𝟐) ∉ 𝐵𝐵𝑚𝑚, because 𝜶𝜶 ∉ 𝑆𝑆. Then it is easy to see that 𝜶𝜶(𝟏𝟏)𝜶𝜶(𝟐𝟐){1} + 𝜶𝜶(𝟏𝟏)𝒙𝒙{1} + 𝜶𝜶(𝟏𝟏)𝒚𝒚{1} =
𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚 3), which, again contradicts the assumption that S ∪ {𝜶𝜶} is a cap. Similarly, one can
prove the case, when the set 𝑃𝑃𝑚𝑚 ∪ �𝜶𝜶(𝟐𝟐)� satisfies the condition i) is impossible. Therefore, both
sets 𝑃𝑃𝑛𝑛 ∪ {𝜶𝜶(𝟏𝟏)} and 𝑃𝑃𝑚𝑚 ∪ {𝜶𝜶(𝟐𝟐)} do not satisfy the condition i). Hence, there is a point 𝜷𝜷 ∈ 𝑃𝑃𝑛𝑛,
(respectively, 𝜸𝜸 ∈ 𝑃𝑃𝑚𝑚), such that if 𝛼𝛼𝑖𝑖 = 0, then 𝛽𝛽𝑖𝑖 ≠ 0 and if 𝛽𝛽𝑖𝑖 = 0, then 𝛼𝛼𝑖𝑖 ≠ 0, 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛
(respectively, if 𝛼𝛼𝑖𝑖 = 0, then 𝛾𝛾𝑖𝑖 ≠ 0 and if 𝛾𝛾𝑖𝑖 = 0, then 𝛼𝛼𝑖𝑖 ≠ 0, 𝑛𝑛 + 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 + 𝑚𝑚). First, let’s
choose the point 𝒙𝒙 ∈ 𝐵𝐵𝑛𝑛 in the following way. If 𝛼𝛼𝑖𝑖 = 0, then 𝑥𝑥𝑖𝑖 = 𝛽𝛽𝑖𝑖−1 and if 𝛽𝛽𝑖𝑖 = 0, then
𝑥𝑥𝑖𝑖 = 𝛼𝛼𝑖𝑖−1, otherwise, by Claim 2, we can assume that 𝑥𝑥𝑖𝑖 = 𝛽𝛽𝑖𝑖 = 𝛼𝛼𝑖𝑖, 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛. In the same
manner, we will choose the point 𝒚𝒚 ∈ 𝐵𝐵𝑚𝑚. If 𝛼𝛼𝑖𝑖 = 0, then 𝑦𝑦𝑖𝑖 = 𝛾𝛾𝑖𝑖−1 and if 𝛾𝛾𝑖𝑖 = 0, then 𝑦𝑦𝑖𝑖 =
𝛼𝛼𝑖𝑖−1, otherwise, using Claim 2, we can assume that 𝑦𝑦𝑖𝑖 = 𝛾𝛾𝑖𝑖 = 𝛼𝛼𝑖𝑖, 𝑛𝑛 + 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 + 𝑚𝑚). The
choice of the points 𝒙𝒙 and 𝒚𝒚 implies that 𝜶𝜶(𝟏𝟏)𝜶𝜶(𝟐𝟐){1} + 𝜷𝜷𝒚𝒚{1} + 𝒙𝒙𝜸𝜸{1} = 𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚 3), which
again contradicts the assumption that S ∪ {𝜶𝜶} is a cap.

Case 𝛼𝛼𝑛𝑛+𝑚𝑚+1 = 0. Assume that at least one of the sets 𝑃𝑃𝑛𝑛 ∪ {𝜶𝜶(𝟏𝟏)} or 𝑃𝑃𝑚𝑚 ∪ {𝜶𝜶(𝟐𝟐)} does not
satisfy the condition i), say the set 𝑃𝑃𝑛𝑛 ∪ {𝜶𝜶(𝟏𝟏)}. Therefore, the condition i) implies that there is a
point 𝜷𝜷 ∈ 𝑃𝑃𝑛𝑛, such that, if 𝛼𝛼𝑖𝑖 = 0, then 𝛽𝛽𝑖𝑖 ≠ 0 and if 𝛽𝛽𝑖𝑖 = 0, then 𝛼𝛼𝑖𝑖 ≠ 0, 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛. We will
choose the points 𝒛𝒛(𝟏𝟏) ∈ 𝐵𝐵𝑛𝑛 and 𝒛𝒛(𝟐𝟐), 𝒚𝒚 ∈ 𝐵𝐵𝑚𝑚 in the following way. First let’s choose 𝒛𝒛(𝟏𝟏). If
 𝛼𝛼𝑖𝑖 = 0, then 𝑧𝑧𝑖𝑖 = 𝛽𝛽𝑖𝑖−1 and if 𝛽𝛽𝑖𝑖 = 0, then 𝑧𝑧𝑖𝑖 = 𝛼𝛼𝑖𝑖−1, otherwise, using Claim 2, we will assume
that 𝑧𝑧𝑖𝑖 = 𝛽𝛽𝑖𝑖 = 𝛼𝛼𝑖𝑖, 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛. Now we will choose the points 𝒛𝒛(𝟐𝟐), 𝒚𝒚 ∈ 𝐵𝐵𝑚𝑚 in the following way.
If 𝛼𝛼𝑖𝑖 = 0, then we will assume that 𝑧𝑧𝑖𝑖 = 1 and 𝑦𝑦𝑖𝑖 = 2, otherwise 𝑧𝑧𝑖𝑖 = 𝑦𝑦𝑖𝑖 = 𝛼𝛼𝑖𝑖, 𝑛𝑛 + 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 +
𝑚𝑚. It is easy to see that 𝜷𝜷𝒚𝒚{1} ∈ 𝑃𝑃𝑛𝑛𝐵𝐵𝑚𝑚{1}, 𝒛𝒛(𝟏𝟏)𝒛𝒛(𝟐𝟐){2} ∈ 𝐵𝐵𝑛𝑛+𝑚𝑚{2}. The choice of the points
𝒛𝒛(𝟏𝟏), 𝒛𝒛(𝟐𝟐) and 𝒚𝒚 imply that 𝜶𝜶(𝟏𝟏)𝜶𝜶(𝟐𝟐){0} + 𝜷𝜷𝒚𝒚{1} + 𝒛𝒛(𝟏𝟏)𝒛𝒛(𝟐𝟐){2} = 𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚 3), which contradicts
the assumption that S ∪ {𝜶𝜶} is a cap. Similarly, one can prove the case is impossible, when the
set 𝑃𝑃𝑚𝑚 ∪ {𝜶𝜶(𝟐𝟐)} does not satisfy the condition i). Therefore, both sets 𝑃𝑃𝑛𝑛 ∪ {𝜶𝜶(𝟏𝟏)} and 𝑃𝑃𝑚𝑚 ∪
{𝜶𝜶(𝟐𝟐)} are satisfying the condition i). Since 𝜶𝜶 ∉ 𝑆𝑆, therefore either 𝜶𝜶(𝟏𝟏) ∉ 𝑃𝑃𝑛𝑛 or 𝜶𝜶(𝟐𝟐) ∉ 𝑃𝑃𝑚𝑚. If
𝜶𝜶(𝟏𝟏) ∉ 𝑃𝑃𝑛𝑛 and 𝜶𝜶(𝟐𝟐) ∈ 𝑃𝑃𝑚𝑚, then the completeness of 𝑃𝑃𝑛𝑛 follows that there are two points 𝒙𝒙,𝒚𝒚 ∈
𝑃𝑃𝑛𝑛, so that 𝒙𝒙 + 𝒚𝒚 + 𝜶𝜶(𝟏𝟏) = 𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚 3). Since 𝒙𝒙,𝒚𝒚 ∈ 𝑃𝑃𝑛𝑛 and 𝜶𝜶(𝟐𝟐) ∈ 𝑃𝑃𝑚𝑚, we have 𝒙𝒙𝜶𝜶(𝟐𝟐), 𝒚𝒚𝜶𝜶(𝟐𝟐) ∈
𝑃𝑃𝑛𝑛𝑃𝑃𝑚𝑚 and 𝒙𝒙𝜶𝜶(𝟐𝟐){0} + 𝒚𝒚𝜶𝜶(𝟐𝟐){0} + 𝜶𝜶(𝟏𝟏)𝜶𝜶(𝟐𝟐){0} = 𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚 3), which contradicts the assumption
that S ∪ {𝜶𝜶} is a cap. The case, when 𝜶𝜶(𝟐𝟐) ∉ 𝑃𝑃𝑚𝑚 and 𝜶𝜶(𝟏𝟏) ∈ 𝑃𝑃𝑛𝑛 is analogous to the above
described one and therefore is impossible. Hence, 𝜶𝜶(𝟏𝟏) ∉ 𝑃𝑃𝑛𝑛 and 𝜶𝜶(𝟐𝟐) ∉ 𝑃𝑃𝑚𝑚. Therefore, from the
completeness of 𝑃𝑃𝑛𝑛 and 𝑃𝑃𝑚𝑚 it follows that there are points 𝜷𝜷,𝜸𝜸 ∈ 𝑃𝑃𝑛𝑛 and 𝜹𝜹,𝜽𝜽 ∈ 𝑃𝑃𝑚𝑚, so that 𝜷𝜷 +
𝜸𝜸 + 𝜶𝜶(𝟏𝟏) = 𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚 3) and 𝜹𝜹 + 𝜽𝜽 + 𝜶𝜶(𝟐𝟐) = 𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚 3). The last two relations imply that
𝜶𝜶(𝟏𝟏)𝜶𝜶(𝟐𝟐){0} + 𝜷𝜷𝜹𝜹{0} + 𝜸𝜸𝜽𝜽{0} = 𝟎𝟎(𝑚𝑚𝑚𝑚𝑚𝑚 3), which contradicts the assumption that S ∪ {𝜶𝜶} is a
cap.

Corollary 3: For the given natural numbers 𝑛𝑛 and 𝑚𝑚, 𝑠𝑠𝑛𝑛+𝑚𝑚+1,3 ≥ |𝑃𝑃𝑛𝑛||𝑃𝑃𝑚𝑚| +
|𝑃𝑃𝑛𝑛||𝐵𝐵𝑚𝑚|+|𝐵𝐵𝑛𝑛||𝑃𝑃𝑚𝑚|+|𝐵𝐵𝑛𝑛+𝑚𝑚|.

Complete Caps in Affine Geometry 𝐴𝐴𝐴𝐴(𝑛𝑛, 3) 62

Corollary 4: 𝑠𝑠5,3 ≥ 42.
Proof. By definition 𝑃𝑃1={(0)}. From Theorem 1 it follows that 𝑃𝑃3 = 𝑃𝑃1+1+1 = 𝑃𝑃1𝑃𝑃1𝐵𝐵1 ∪
𝑃𝑃1𝐵𝐵1𝑃𝑃1 ∪ 𝐵𝐵1𝑃𝑃1𝑃𝑃1 ={(0, 0, 1), (0, 0, 2), (0, 1, 0), (0, 2, 0), (1, 0, 0), (2, 0, 0)}. It is easy to see that
|𝐵𝐵𝑛𝑛| = 2𝑛𝑛. Therefore, 𝑠𝑠5,3 ≥ |𝑃𝑃3||𝑃𝑃1| + |𝑃𝑃3||𝐵𝐵1| + |𝐵𝐵3||𝑃𝑃1| + |𝐵𝐵4| =6 × 1 + 6 × 2 + 8 × 1 +
16 = 42.

3. Conclusion

Notice that the cardinality of 𝑃𝑃𝑛𝑛 obtained by Theorem 1 (Theorem 2) [16, 17], essentially
depends on the representation of 𝑛𝑛 as the sum of three (six) natural numbers. Presenting the
natural numbers as the sum of six natural numbers and applying Theorem 2, for some 𝑛𝑛 ≥ 6 in
some cases, one can obtain larger complete 𝑃𝑃𝑛𝑛 sets than those, which are constructed by Theorem
1. It is easy to check that |𝑃𝑃1| = 1, |𝑃𝑃2| = 2, and |𝑃𝑃1+1+1| = 6. |𝑃𝑃2+1+1| = 12, |𝑃𝑃3+1+1| = 32,
|𝑃𝑃1+1+1+1+1+1| = 80, |𝑃𝑃7| = |𝑃𝑃3+3+1| = 168, |𝑃𝑃8| = |𝑃𝑃1+1+1+1+1+3| = 400, |𝑃𝑃9| = |𝑃𝑃3+3+3| =
864... It is not difficult to see that the maximal size |𝑃𝑃𝑛𝑛| > 2𝑛𝑛, if 𝑛𝑛 > 5. Therefore, to construct
large complete caps it is convenient to use Corollary 2, but for small complete caps one can use
Theorem 4.

References
[1] R. C. Bose, “Mathematical theory of the symmetrical factorial design”, Sankhya, vol. 8,

pp. 107-166, 1947.

[2] B. Qvist, “Some remarks concerning curves of the second degree in a finite plane”, Ann
Acad. Sci. Fenn, Ser. A, vol. 134, p. 27. 1952.

[3] G. Pellegrino, “Sul Massimo ordine delle calotte in 𝑆𝑆4,3”, Matematiche (Catania), vol. 25,
pp. 1-9, 1970.

[4] R. Hill, “On the largest size of cap in 𝑆𝑆5,3”, Atti Accad Naz.Lincei Rendicondi, vol. 54,
pp. 378-384, 1973.

[5] Y. Edel, S. Ferret, I. Landjev and L. Storme, “The classification of the largest caps in
𝐴𝐴𝐴𝐴(5, 3)”, Journal of Combinatorial Theory, ser. A, vol. 99, pp. 95-110, 2002.

[6] Y. Edel and J. Bierbrauer, “41 is the largest size of a cap in 𝑃𝑃𝐴𝐴(𝑛𝑛, 3)”, Designs, Codes
and Cryptography, vol. 16, pp. 151-160, 1999.

[7] A. Potechin, “Maximal caps in 𝐴𝐴𝐴𝐴(6, 3)”, Designs, Codes and Cryptography, vol. 46, pp.
243-259, 2008.

[8] J.W. Hirschfeld and L. Storme, ‘‘The packing problem in statistics, coding theory and
finite projective spaces’’, Journal of Statistical Planning and Inference 72, pp. 355-380,
1998.

[9] J.W. Hirschfeld and L. Storme, “The packing problem in statistics, coding theory and
finite projective spaces’’, Proceeding of the Fourth Isle of Thorns Conference, pp. 201-
246, July 16-21, 2000.

K. Karapetyan 63

[10] J. Bierbrauer and Y. Edel, “Large caps in projective Galois spaces”, In: Current topics in
Galois geometry, Editors J. De Beule and L.Storm, pp. 87-104, 2012.

[11] A. A. Davidov, G. Faina, S. Marcugini and F. Pambianco, “Computer search in projective
planes for the sizes of complete arcs”, J. Geometry, vol. 82, pp. 50-62, 2005.

[12] A. A. Davidov and P. R. J. Ostergard, “Recursive constructions of complete caps”, J.
Statist. Planning Infer, vol. 95, pp. 167-173, 2001.

[13] M. Geuletti, “Small complete caps in Galois affine spaces”, J. Algebr. Comb. Vol. 25,
pp.149-168, 2007.

[14] K. Karapetyan, “Large Caps in Affine Space”, Proceedings of International Conference
Computer Science and Information Technologies, Yerevan, Armenia, pp. 82-83, 2015.

[15] K. Karapetyan, “On the complete caps in Galois affine space 𝐴𝐴𝐴𝐴(𝑛𝑛, 3)”, Proceedings of
International Conference Computer Science and Information Technologies, Yerevan,
Armenia, p. 205, 2017.

[16] I.A. Karapetyan and K.I. Karapetyan. “The Complete Caps in Projective Geometry
PG(𝑛𝑛, 3)”, «Լրաբեր» գիտական հոդվածների ժողովածու (ՀԱՊՀ), հատոր 1, էջեր
35-44, 2021.

[17] I. Karapetyan and K. Karapetyan, “Complete Caps in Projective Geometry PG(𝑛𝑛, 3)”,
Proceedings of International Conference Computer Science and Information
Technologies, Yerevan, Armenia, pp. 57-60, 2021.

Լրիվ գլխարկներ 𝐴𝐴𝐴𝐴(𝑛𝑛, 3) աֆինական երկրաչափությունում

Կարեն Ի. Կարապետյան

ՀՀ ԳԱԱ Ինֆորմատիկայի և ավտոմատացման պրոբլեմների ինստիտուտ
e-mail: karen-karapetyan@iiap.sci.am

Ամփոփում

Դիտարկվում է 𝑛𝑛 չափանի 𝐴𝐴𝐴𝐴(𝑛𝑛, 3) աֆինական երկրաչափությունում լրիվ

գլխարկների կառուցման խնդիրը 𝐹𝐹3 = {0, 1, 2} դաշտի վրա: Գլխարկը այն կետերի
բազմությունն է, որոնցից ոչ մի երեքը համագիծ չեն: Օգտագործելով 𝑃𝑃𝑛𝑛 բազմության
հասկացությունը, մշակվել են լրիվ գլխարկների կառուցման երկու նոր մեթոդներ:

Բանալի բառեր` աֆինական երկրաչափություն, պրոյեկտիվ երկրաչափություն,
կետեր, գլխարկներ, լրիվ գլխարկներ:

Complete Caps in Affine Geometry 𝐴𝐴𝐴𝐴(𝑛𝑛, 3) 64

Полные шапки в аффинной геометрии 𝑨𝑨𝑨𝑨(𝒏𝒏,𝟑𝟑)

Карен И. Карапетян

Институт проблем информатики и автоматизации НАН РА
e-mail: karen-karapetyan@iiap.sci.am

Аннотация

Рассматривается задача построения полных шапок в аффинной геометрии
𝐴𝐴𝐴𝐴(𝑛𝑛, 3) размерности n над полем 𝐹𝐹3 = {0, 1, 2}. Шапка — это набор точек, никакие три
из которых не коллинеарны. С помощью понятия множества 𝑃𝑃𝑛𝑛, разработаны две новые
конструкции построения полных шапок.

Ключевые слова: аффинная геометрия, проективная геометрия, точки, шапки,
полные шапки.

 Կանոններ հեղինակների համար

ՀՀ ԳԱԱ ԻԱՊԻ “Կոմպյուտերային գիտության մաթեմատիկական խնդիրներ”
պարբերականը տպագրվում է 1963 թվականից: Պարբերականում
հրատարակվում են նշված ոլորտին առնչվող գիտական հոդվածներ, որոնք
պարունակում են նոր` չհրատարակված արդյունքներ:

Հոդվածները ներկայացվում են անգլերեն՝ ձևավորված համապատասխան
“ոճով” (style): Հոդվածի ձևավորման պահանջներին ավելի մանրամասն կարելի է
ծանոթանալ պարբերականի կայքէջում՝ http://mpcs.sci.am/:

 Rules for authors

The periodical “Mathematical Problems of Computer Science” of IIAP NAS RA has
been published since 1963. Scientific articles related to the noted fields with novel and
previously unpublished results are published in the periodical.

Papers should be submitted in English and prepared in the appropriate style. For
more information, please visit the periodical's website at http://mpcs.sci.am/.

Правила для авторов

Журнал «Математические проблемы компьютерных наук» ИПИА НАН
РА издается с 1963 года. В журнале публикуются научные статьи в указанной
области, содержащие новые и ранее не опубликованные результаты.

Статьи представляются на английском языке и оформляются в
соответствующем стиле. Дополнительную информацию можно получить на веб-
сайте журнала: http://mpcs.sci.am/.

 65

http://mpcs.sci.am/

The electronic version of the periodical “Mathematical Problems of Computer
Science” and rules for authors are available at

http://mpcs.sci.am/

Phone: (+37460) 62-35-51
Fax: (+37410) 28-20-50
E-mail: mpcs@sci.am
Website: http://mpcs.sci.am/

Ստորագրված է տպագրության՝ 27.05.2022

Թուղթը՝ օֆսեթ:
Հրատարակված է ՀՀ ԳԱԱ Ինֆորմատիկայի և ավտոմատացման

պրոբլեմների ինստիտուտի կողմից
Ծավալը՝ 66 էջ: Տպաքանակը՝ 100

ՀՀ ԳԱԱ ԻԱՊԻ Համակարգչային պոլիգրաֆիայի լաբորատորիա
Երևան, Պ. Սևակի 1
Հեռ. +(374 60) 623553

Գինը՝ անվճար

Подписано в печать 27.05.2022
Офсетная бумага.

Опубликовано Институтом проблем
информатики и автоматизации НАН РА

Объём: 66 страниц. Тираж: 100
Лаборатория компьютерной
полиграфии ИПИА НАН РА.

Ереван, П. Севака 1
Тел.: +(374 60) 623553

Цена: бесплатно

Signed in print 27.05.2022
Offset paper

Published by Institute for Informatics
and Automation Problems of NAS RA

Volume: 66 pages
Circulation: 100

Computer Printing Lab
of IIAP NAS RA

Yerevan, 1, P. Sevak str.
Phone: +(374 60) 623553

Free of charge

mailto:mpcs@sci.am

	Face!
	LVII
	Yerevan

	IIAP_journal_Vol_57
	new_57
	VOL_57
	01_7-17
	_01_Tumanyan_57_7_17
	Narek_57

	02_18_29
	_02_Ayunts_57_18_29__Copy_ (4)
	02_18_29
	02_18-29
	02a

	03_30-38
	_03_Karamyan_30_38
	03_30-38
	03a

	04_39-46
	_04_Avetisyan_39_46
	04_
	04a

	05_47-55
	06_56-64

	last pages_IIAP_journal_vol_57

